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Abstract  
 

Contrary to the ubiquitous practice of option price estimation for trading 

strategies, that focuses on modelling and forecasting volatility of the underlying asset, 

mostly through stochastic processes, we embrace a deterministic approach. Our aim is 

to investigate whether profits can be achieved, in index options’ trading, by 

predicting, through deterministic percentile predictors, the future price of the 

underlying asset, which is utilized as the option’s exercise price. The Black and 

Scholes (1973) formula is employed for obtaining the theoretical prices of those 

options. Trading strategies of percentile predictors are comparatively evaluated on the 

basis of the cumulative profits achieved, under a certain trading rule. Over a fifteen-

year period data sample of options on the S&P500 index, of both bullish and bearish 

percentile predictors, we provide empirical evidence that the percentile predictors on 

index options’ trading strategies are profitable when applied opposingly to the current 

trading norm, where they seem to follow the trend of the index. 

 

Keywords: options, index option trading, speculative strategies, percentile predictors, 

S&P500, VIX  
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1. Introduction 
 

Options are a class of financial derivatives. The latter are contracts, or 

securities, the value of which depends upon the value of another asset. An option is a 

contract that gives its owner the right, not the obligation, to buy or sell a set quantity 

of an asset, such as a stock, at a fixed price on, or up to, a given future date. 

Options’ trading, a branch of financial derivatives markets, has been greatly 

expanded, in terms of the traded assets’ worth, in recent years. Investors and portfolio 

managers utilize options for both hedging and speculation purposes. Numerous 

trading strategies exist, providing alternatives for all motives and circumstances. From 

an academic point of view, since the 1950s, the study of finance has been transformed 

into a high-status enterprise with the theoretical account of options, dating from the 

start of the 1970s, at its’ core, as well as been transformative of the corresponding 

markets (MacKenzie D. 2006). 

The cornerstone of financial literature around option theory is the precise and 

comprehensive option pricing models proposed by Black and Scholes (1973) and 

Merton (1973)1. Their pioneering work on option pricing, set aside former 

complexities, such as an investor’s risk aversion and expectation of stock price 

movement, thus providing a legitimate framework for derivatives markets, on the 

basis of an arbitrage mechanism. 

The correct pricing of options is crucial for the efficiency of hedging 

strategies, optimal portfolio decisions and risk management. Hence, financial 

institutions, funds, investors and portfolio managers seek accurate estimations of 

options’ prices. The Black-Scholes (BS) formula is able to provide them, under the 

prerequisite that an estimation of future volatility of the underlying asset, which is 

used as an input parameter, is available. As Degiannakis S., Filis G. and Hassani H. 

(2018) state, the single most important component for pricing option contracts, is 

forecasting volatility. 

In terms of technical analysis, parametric and non-parametric techniques have 

 
1 In 1997, Robert C. Merton and Myron S. Scholes were awarded the 1997 Nobel Prize in Economics 

for their work in finding a new method to determine the value of derivatives. Fisher Black died in 1995 

and although the Nobel Prize is not given posthumously, the Nobel committee acknowledged Black’s 

role in the Black-Scholes-Merton model. 
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been developed for modelling and forecasting time series. A great part of the literature 

on characterizing and modelling financial time series, such as stock prices or index 

prices, revolves around the parametric class of Autoregressive Conditional 

Heteroskedasticity (ARCH) models, introduced by Engle (1982), and their 

generalized form (GARCH), which follow a stochastic process, proposed by 

Bollersev (1986). As far as non-parametric techniques are concerned, the literature is 

rather limited, although combinations of non-parametric and parametric techniques 

provide evidence of improved forecasts, as shown in the work of Degiannakis et al. 

(2018).  

Early and recent studies, such as those of Chiras and Manaster (1978) and 

Degiannakis (2008) among others, provide evidence that implied volatility indices are 

better predictors of future volatility compared to the aforementioned parametric 

models.  

In this study, estimations of options’ prices for trading strategies are 

approached from a deterministic perspective. Percentile points of the empirical 

distribution of log-returns of an asset are employed as unbiased predictors of its future 

price. The future price of the asset, obtained from the percentile predictors, is utilized 

as the exercise price of an option on that asset, the theoretical price of which is given 

by the Black-Scholes formula. Percentile predictors’ trading strategies on index 

options are comparatively evaluated on the basis of their cumulative profits over a 

certain period. 

In particular, the underlying asset of the options used in this essay is the 

Standard and Poor’s 500 (S&P500 or SPX) index. The CBOE Volatility Index (VIX) , 

representing the current forward (30 calendar days, or 22 trading days) looking 

volatility of the S&P500, is utilized as the volatility input parameter for the BS 

formula. The empirical investigation, covering a range of fifteen years from January 

2nd 2004 up to July 18th 2019, provides evidence that percentile predictors’ trading 

strategies on index options are profitable when applied opposingly to the trading 

norm. The methodology is explained in detail subsequently. 

The rest of this essay is structured as follows: in chapter 2, a historical 

reflection and description of the discussed subjects is presented. In chapter 3, the data 
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used in the empirical research are described, while chapter 4 presents the 

methodology that was followed, and chapter 5 investigates the empirical results; 

chapter 6 concludes. Tables and Figures are presented in appendixes A and B. 
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2. Historical reflection and description of the discussed concepts 
 

2.1. Derivatives 

 

Financial derivatives can be seen as secondary securities, whose value 

depends upon (is derived from) the value of the primary security, or asset, that they 

are linked to. As McDonald (2013) simply, yet comprehensively describes it, a 

derivative is a financial instrument that has a value determined by the price of 

something else. 

Even though financial products like these have made headlines due to the great 

losses of financial institutions, funds and corporations, related to them, they are a 

useful and everyday part of business2. Derivatives can also be thought of as a bet on 

the price of something, but if you own that something, or you are willing to acquire it, 

this bet provides insurance against undesired outcomes concerning the price.  They 

can be used either to hedge against inherent, or potential, risk of an investment, or to 

simply speculate from the change of price. A financial derivative’s contract cannot be 

characterized as a speculative or risk-reducing (hedging) one, without knowing who is 

using it, and how. Epigrammatically, some of the underlying motives of the use of 

financial derivatives are3:  

i. Risk management 

ii. Speculation 

iii. Reduced transaction costs 

iv. Regulatory arbitrage4 

Futures, options, swaps, and forwards are just some of the potentially infinite 

financial derivatives. For the purpose of this essay, it is unnecessary to analyze other 

derivatives than options.  

 
2 “Derivatives sometimes make headlines. Prior to the financial crisis in 2008, there were a number of 

well-known derivatives-related losses: Procter & Gamble lost $150 million in 1994, Barings Bank lost 

$1.3 billion in 1995, Long-Term Capital Management lost $3.5 billion in 1998, the hedge fund 

Amaranth lost $6 billion in 2006, Société Générale lost €5 billion in 2008. During the crisis in 2008 the 

Federal Reserve loaned $85 billion to AIG in conjunction with AIG’s losses on credit default swaps. In 

the wake of the financial crisis, a  significant portion of the Dodd-Frank Wall Street Reform and 

Consumer Protection Act of 2010 pertained to derivatives”. (McDonald (2013, p.1)) 
3 For a more thorough insight on the motives of using financial derivatives see McDonald (2013, p.11 

13). 
4 Arbitrage refers to the investing opportunity where profit is certain, or else risk-free. 
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2.2. Derivatives markets 

 

Derivatives, as defined earlier, such as options, have been trading since at least 

the seventeenth century (MacKenzie D. 2006). In modern times, transactions of 

financial products usually take place in organized exchanges, although traders have 

the option to circumvent them by trading directly with a dealer, for several reasons5. 

Financial derivatives began trading formally in 1972, when futures on seven 

currencies became available for trading by the Chicago Mercantile Exchange (CME). 

Until then, regulators considered financial derivatives as being dangerously close to 

gambling, consequently, the formation of a market around such products was not 

feasible, mostly due to their inefficient pricing mechanism. 

Risk is an inherent component of life in general, as well as in business in 

particular. It arises from both natural and unnatural events, like physical disasters and 

wars, political conflicts or economic decisions that affect markets and their 

participants. When price-risk, resulting from any cause, in a market increases, the 

introduction of derivatives in that market is often observed. As McDonald (2013) 

states: “the link between price variability and the development of derivatives markets 

is natural – there is no need to manage risk when there is no risk” (p. 6). Thus, 

financial derivatives markets serve the economy in the way that they allow risk-

sharing mechanisms to be actualized. 

2.3. Options 

 

Options are contracts that give their owner the right, but do not impose the 

obligation, to buy or sell an asset at a fixed price (strike, or exercise price) on, or up 

to, a given future date. They are one of the two classes6 of financial derivatives 

discussed in the chapter above. The main segregation of options stems from whether 

they give the right to buy or sell the underlying asset; on the first case they are named 

calls, on the second puts. 

 
5These transactions are said to occur over-the-counter (OTC). The reasons a trader might prefer OTC 

trading are namely to avoid high fees and transaction costs, to trade custom financial product s or to 

avoid the uncertainty that the announcement of a large sale would bring on the market. It is worth 

mentioning that for many categories of financial products, the value of OTC trading is greater than the 

value traded on exchanges.  
6 The other class of financial derivative products is called locks or lock derivative products. Their name 

stands for the imposed obligation of the respective parties to abide by the agreed -upon terms over the 

life of the contract.  
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Some key terms in describing options are: 

Exercise price: The exercise price, or strike price of an option is the price at 

which the owner of the option will either buy, or sell the asset, depending on 

whether it is a call or a put respectively. 

Exercise: The exercise of an option is the act of paying the exercise price to 

receive the asset, or selling it at the exercise price, like above. 

Expiration: The expiration of the option is the date by, or upon, which the 

option must be either exercised or it becomes worthless. 

Exercise style: The exercise style of the option defines the time at which the 

option can be exercised. If an option can be exercised at any point up to its 

expiration, it is called an “American” option; if it can be exercised only on the 

day of expiration, it is called “European”. If the option can be exercised only 

during specified periods of its lifetime, it is called “Bermudan”. 

Unit of trading; Contract size: The unit of trading, or contract size, of an 

option is the amount of the underlying asset that is subject to being purchased 

or sold upon the exercise of a single option contract.   

Another way to describe options is by their degree of moneyness. This term 

refers to the payoff of the option if it were exercised immediately. An in-the-money 

option is one that if it were exercised immediately, the payoff would be positive. 

However, considering the price paid for the option itself, a positive payoff does not 

necessary mean that profit would be earned. A call option with an exercise price less 

than the asset price and a put with an exercise price greater than the asset price, are in-

the-money options. An out-of-the-money option is one with a negative payoff if 

exercised immediately. If the exercise price of a call option is greater than the asset 

price and the exercise price of a put option is less than the price of the asset, they are 

both out-of-the-money. An at-the-money option is one that its exercise price is 

approximately equal to that of the asset. 

The underlying asset of an option might be a non-financial asset, such as the 

weather, the outcome of elections in a country, the winner of an Olympic event and so 
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on7. Financial underlying assets of options are usually stocks, commodities, 

currencies, stock indexes, interest rates, exchange rates and other financial products, 

such as futures. 

Index options are options to buy or sell the value of the underlying index. 

They are a simple tool used by investors, traders and speculators to profit on the 

general direction of the underlying index while putting very little capital at risk. 

When an option is exercised, the delivery of the underlying asset takes place. 

This seems natural for stocks or commodities, but another process is needed when the 

physical delivery is either not possible, or has significant transaction costs. 

Commodities can be physically delivered; stocks and futures are delivered by 

updating the ownership records and currencies or exchange rates can be delivered by 

making the necessary transactions in a corresponding bank account. The complexity 

of the process required to calculate the spot price of each stock of a broad stock index, 

accompanied by the relevant transaction fees, has caused the cash-settlement of such 

options, which is a financial method of settlement where the two parties make a net 

cash payment8. Thus, index options are always cash-settled9. 

An important feature of options is their time to expiration, or time to 

maturity. It is the period between the issue of the option and its expiration date. The 

time to expiration varies from days up to a year. This feature is relevant to the motives 

of the option holder and the strategy s/he follows. 

Perhaps the most important characteristic of an option is its price, or as market 

practitioners refer to it, the option’s premium. The price of an option is essential for 

the efficiency of the interested parties’ strategies. Arbitrage conditions should not 

exist in an efficient market. Thus, the fair value of an option improves market 

efficiency. The mechanisms and the assumptions of option pricing are presented as 

detailed below. 

 
7 MacDonald (2013) in his book “Derivatives Markets”, presents an extreme example of a non-

financial asset of a future derivative, proposed by the U.S. Pentagon. The underlying asset was the 

occurrence of an event, in particular a terrorist attack on the U.S. (p. 28).  
8 Cash-settlement often occurs in other assets settlements for speculation purposes, or to avoid the 

additional costs of a physical delivery, such as transportation costs, or delivery insurance.   
9 The unit of trading of cash-settled options, like stock index options, is determined by the multiplier 

that is fixed by the market that the option is traded in (“Characteristics and Risks of standardized 

options”, p. 8). 
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In this essay, European style options of the S&P500 index with a monthly 

periodicity10 (standard options) were employed, to investigate the profitability of 

certain index options’ trading strategies. 

2.4. Pricing options 

 

The central question in option pricing revolves around the explanation of their 

cost and the parameters that determine it. In contrast to lock derivatives, options give 

the right to back away from the agreement imposed by the contract. Hence, the 

pricing of options should embody this attribute. As McDonald (2013) states: “The 

principal question in option pricing is: How do you value the right to back away from 

a commitment?” (p. 265). 

Until a more complete theory of option pricing was developed, market 

practitioners used to price options based on rules of thumb. Certain parameters were, 

and still are, intuitively suggested to influence the cost of options, such as: the current 

price of the underlying asset; the exercise price of the option; the option’s time to 

maturity; the level of interest rates; the volatility of the price of the underlying asset. 

however, this list alone is not enough to form a precise option pricing mechanism. 

Key developments in option pricing theory took place in the U.S. from late 

1950s onwards but the solutions provided, required parameters, the values of which 

were extremely hard to determine, such as an investor’s expectations of returns of the 

underlying asset and the degree of the investor’s risk-aversion (MacKenzie 2006).  

2.5. The Black-Scholes-Merton model 

 

In 1973, the work of Fisher Black and Myron Scholes on option theory, 

accompanied by the additional input from Robert Merton11, revolutionized both the 

theory and practice of finance. The model that they proposed, refers to stock options 

and is based on certain assumptions:  

• Stocks can be bought or sold at any point in time without incurring 

transaction costs or causing market prices to move. 

 
10 The time to maturity of the options we examined does not exceed 25 trading days. 
11 Merton (1973) developed the Black-Scholes model to adjust for dividend paying stocks and 

American style options. 
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• Stock prices fluctuate log-normally. 

• Stock price volatility remains constant. 

• Stocks do not pay dividends. 

• Risk-free interest rate remains constant. 

• Options can be exercised only on the day of expiration (European 

style). 

• Short-selling (sale of a borrowed asset) incurs no financial penalty. 

• There are no taxes. 

• There are no transaction costs. 

Under these assumptions, the construction of a costless self-financing portfolio 

of an option and a continuously adjusted position in the stock, which can replicate the 

payoff of the option, is possible. In this approach, option prices adjust to eliminate 

any arbitrage opportunities. The Black-Scholes model can be extended to price any 

security whose payoffs depend on the prices of other securities. The importance of the 

Black-Scholes model for financial economics is given by McDonald (2013): “This 

methodology is important not only for pricing European call options; it provides the 

intellectual foundation for pricing virtually all derivatives, and also underpins the risk-

management practices of modern financial institutions”(p. 627). 

This dynamic strategy reduces to a partial differential equation subject to a set 

of boundary conditions that are determined by the specific terms of the option, the 

famous Black-Scholes (BS) option pricing equation, or BS formula. The success of 

this equation stems from the fact that it harmoniously links the option’s price, the 

underlying asset’s price, the asset’s volatility, the riskless interest rate and time, to 

increase market efficiency by eliminating any arbitrage opportunities.  

While previous option pricing models required input parameters the values of 

which had to be empirically estimated, or determined by judgement, the BS formula 

was parsimonious in this respect, but even it required an estimation of the asset’s 

volatility, since it is future volatility that matters to the price of an option (MacKenzie 

2006). The parameters required by the BS formula to derive the theoretical fair price 

of an option are: 

i. The underlying asset’s current price. 
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ii. The option’s exercise price. 

iii. The option’s time to maturity. 

iv. The risk-free interest rate. 

v. The expected volatility of the underlying asset through the lifetime of 

the option. 

Since the only estimation required for the input parameters of the formula is 

the one of volatility, a great part of the literature is successfully involved in obtaining 

accurate predictions of it.  

In this research, the BS formula was employed to derive the theoretical price 

of options which were used to comparatively evaluate the trading strategies on index 

options that were investigated. 
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3. Data description 
 

Daily data of two indices are employed for the empirical investigation of this 

study; Standard and Poor’s 500 (S&P500 or SPX) with 4165 observations and the 

CBOE Volatility index (VIX) with 3912 observations. SPX and VIX are used as the 

asset’s price and volatility inputs12, respectively, in the BS formula. The data cover a 

range from the 2nd of January, 2003 and 2004, respectively, up to the 19th of July, 

2019 (i.e. 4165 and 3912 trading days)13. Data of the Effective Federal Funds Rate 

were also employed, as the risk-free interest rate input for the BS formula, for the 

same period as VIX14. Expiration dates of S&P500 option were obtained from option 

expiration calendars and used to derive the time to expiration. The data were collected 

from CBOE, the Federal Reserve Bank of St. Louis (fred.stlouisfed.org) and 

marketwatch.com. 

The S&P 500 index is a market-capitalization-weighted index of the 500 

largest U.S. publicly traded companies in all sectors and is widely regarded by 

investors as the best gauge of large-capitalized U.S. equities and the tendency of the 

U.S. economy in general. It is a float-weighted index, meaning company market 

capitalizations are adjusted by the number of shares available for public trading. 

Considered as the leading indicator of the U.S. stock market, the S&P 500 was the 

basis for the creation of the first benchmark index to measure the market’s 

expectation of future volatility. The CBOE (Chicago Board Options Exchange) 

introduced the VIX index in 1993, which is a real-time market index that represent the 

market’s expectation of 30 days ahead volatility, derived from the price inputs of the 

S&P 500 options15. 

Descriptive statistics of the selected indices and the logarithmic returns of the 

S&P500 are presented in Table 1. The log-returns of S&P500, in which we are more 

interested as we shall see further on, do not follow the normal distribution according 

to the Jarque-Bera statistic and its corresponding p-value. The distribution of log-

 
12 For robustness purposes, front month future contract prices were also used as the volatility input in 

the BS formula. 
13 The SPX index observations exceed those of the other input parameters by 253, as those were needed 

to obtain the empirical distribution of log-returns of the last trading year, as it is described below. 

14 The Effective Federal Funds Rate was given in monthly frequency, consequently it was adjusted to 

match the daily data by applying the monthly value on every trading day of that month.  
15 For more information see the VIX white paper at http://www.cboe.com/micro/vix/vixwhite.pdf  

http://www.cboe.com/micro/vix/vixwhite.pdf
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returns is platykurtic due to the large positive value of kurtosis, while skewness is 

negative and differs from the zero-value imposed by the normal distribution. The 

histogram of log returns is presented in Figure 1. Graphical representations of the 

S&P500, the VIX and the log-returns of S&P500 are presented in Figure 2, Figure 3 

and Figure 4 respectively.  The joint graphical representation of S&P500, VIX and log 

returns of S&P500 is presented in Figure 5. 

Table 1: Descriptive statistics of S&P500, VIX and the logarithmic returns of 

S&P500 

 LOG RETURNS SPX VIX 

Mean 0.000288 1603.976 0.185215 

Median 0.000690 1388.170 0.160600 

Maximum 0.109572 3025.860 0.808600 

Minimum -0.094695 676.5300 0.091400 

Std. Dev. 0.011393 571.2701 0.085540 

Skewness -0.353113 0.794730 2.632252 

Kurtosis 14.62252 2.521495 12.83537 

    

Jarque-Bera 23551.67 478.6273 21617.93 

Probability 0.000000 0.000000 0.000000 

    

Sum 1.202573 6686977. 772.1608 

Sum Sq. Dev. 0.540970 1.36E+09 30.49782 

    

Observations 4168 4169 4169 
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Figure 1. Histogram of the log-returns of S&P500 
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4. Methodology  
 

Option price estimations, utilized either for hedging or speculation purposes, 

are commonly approached by modelling and forecasting volatility of the underlying 

asset. In terms of technical analysis, ARCH and GARCH models, stochastic volatility 

models, realized volatility models, as well as non-parametric, or semi parametric 

techniques are employed to obtain accurate volatility forecasts (Degiannakis et al. 

2018), even though volatility indexes are considered as better predictors of future 

volatility, as seen in the work of Chiras and Manaster (1978) and Degiannakis et al. 

(2008) among others. 

This study embraces a deterministic approach in option pricing, with respect to 

the option’s exercise price. Since volatility indexes provide adequate estimates of 

future volatility, we focus on estimates of the asset’s future price, that is the 

corresponding option’s exercise price. The question imposed is: Considering trading 

options, can profits be achieved by predicting their exercise price through 

deterministic predictors?  

There is a plethora of alternatives to choose from, primary among asset classes 

with different nature and behavior in the global economic system, the range of the 

options’ time to maturity and the variety of relevant trading strategies, before we can 

answer this question. 

In order to narrow our options, we adopt a simple trading rule to build our 

strategy; options are purchased, with the intention to be exercised. Furthermore, 

we focus on standard options which have a monthly expiration periodicity16, with no 

more than twenty-five trading days to maturity. Considering the underlying asset of 

the option, we choose stock index options instead of other asset classes such as 

currencies, commodities, stocks or other financial derivatives. 

Index options are options to buy or sell the value of the underlying index, they 

are always cash-settled and are typically European style. They are a simple tool used 

by investors, traders and speculators to profit on the general direction of the 

 
16 Standard options have a monthly expiration periodicity and usually expire on the third Friday of each 

month. For more information about S&P500 options you can visit www.cboe.com or any other 

brokerage website. 

http://www.cboe.com/
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underlying index while putting very little capital at risk. In this study, the Standard 

and Poor’s 500 index, considered as the leading indicator of the U.S. stock market and 

the best gauge of the U.S. economy in general, is used as the underlying asset of 

options employed for comparatively evaluating the trading strategies in question.  

Percentile points of the empirical distribution of the past trading year of the 

asset’s log-returns, are used as predictors of the future value of the asset. These future 

values, derived from the percentile predictors, are utilized as the exercise price of 

options on the asset. 

The BS formula, derived from the Black & Scholes model, is the most used 

tool, among traders, to calculate the theoretical price of European options. The daily 

prices of options obtained from it, are used to determine the daily returns of each 

percentile predictor’s strategy, on the basis of their cumulative profits over a specified 

period and under a trading rule. 

4.1. Percentile points as Predictors 

 

The basic elements of this research are percentile points of the empirical 

distribution of the log-returns of a financial asset. Since log-returns represent the 

percentage change of the asset’s value, the aforementioned percentile points are used 

as predictors of the asset’s future value. In this way, we achieve a constant17 criterion 

for our predictions, which is the desired percentile of the aforementioned empirical 

distribution. Percentile predictors are unbiased because they use current available 

information by employing in-sample data and thus, not relying on producing recursive 

forecasts by utilizing stochastic processes.  

The percentile predictors are obtained as follows: 

Let [𝑌𝑡]𝑡=0
𝑇 =  [𝑙𝑜𝑔 (

𝑃𝑡

𝑃𝑡−1
)]

𝑡=1

𝑇

 refer to the log-return series, where 𝑃𝑡 is the closing 

price of the asset of the trading day 𝑡. The empirical distribution of 𝑌𝑡 of the last 𝑛 

trading days, denoted as 𝐹(𝑛)𝑡(𝑌𝑡), is defined as: 

 
17 The percentile point is on a specific percentile of the empirical distribution across the data set. 
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 𝐹(𝑛)𝑡(𝑌𝑡) =  
1

𝑛 + 1
∑ 1𝑌𝑖  < 𝑌𝑡

𝑛

𝑖=1

 (1) 

where 𝑛 is the size of the rolling sample [𝑌(𝑛)𝑡]
𝑡−𝑛

𝑡
  over the data time frame t = 

1,…,T, for 𝑡 ≥ 𝑛, and 1𝑌𝑖  < 𝑌𝑡
 is an indicator function that is equal to 1 if 𝑌𝑖 ≤ 𝑌𝑡 and 0 

otherwise. 

The desired percentile to be evaluated is denoted as 𝑘18. Then, the percentile 

point of the 𝑘𝑡ℎ percentile of 𝐹(𝑛)𝑡(𝑌𝑡), which is the percentile predictor, is denoted as 

𝑓(𝑛)𝑡,𝑘(𝑌𝑡 ,𝑘).  

The asset’s future price prediction is later utilized as the exercise price of 

options on the asset. The exercise price of the option, 𝐸𝑡,𝑘  19, for the trading day 𝑡 and 

percentile predictor 𝑘, is given by: 

 𝐸𝑡,𝑘 = 𝑓(𝑛)𝑡,𝑘(𝑌𝑡 , 𝑘) × 𝑃𝑡, where 𝑡 ≥ 𝑛 (2) 

Since the log-returns of the asset express its’ percentage change, the percentile 

predictor, as defined above, indicates a value placed over 𝑘% of those changes, of the 

past 𝑛 trading days. By multiplying the percentile predictor at time 𝑡, with the closing 

price of the asset at time 𝑡, we obtain a plausible, based on available information, 

estimation of the future price of the asset, used as the exercise price of the option 

purchased on trading day 𝑡.  

In this research, the S&P 500 index, denoted as 𝑆𝑃𝑋, is used as the underlying 

asset, mentioned above as 𝑃, where 𝑆𝑃𝑋𝑡 is the closing price of the index of trading 

day 𝑡. We assume that a sample size of 𝑛 = 252 trading days is adequate for the 

empirical distribution of  𝑌𝑡. We also consider six percentiles to be evaluated, three on 

each tail of the distribution. In particular the percentiles in question are the 1%, 5%, 

 
18 The vector of percentiles to be evaluated is [𝑘]1

𝐽 with dimensions 1 × 𝐽, where 𝐽 is the number of 

percentiles and 0,1 ≤ 𝑘𝑗 ≤ 0,99. 
19 The array of exercise prices 𝐸(𝑇−𝑛)×𝐽 , that contains 𝐽 exercise prices for each trading day 𝑡, is 

denoted as: 

𝐸(𝑇−𝑛)×𝐽 = [

𝐸𝑡 −𝑛,1 … 𝐸𝑡 −𝑛,𝐽

⋮ ⋱ ⋮
𝐸𝑇 ,1 … 𝐸𝑇 ,𝐽

] 
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10%, 90%,95% and 99%20. 

For instance, by employing the percentile predictor 𝑓252|𝑡,99%, we get 

consistent estimations of the asset’s future price throughout the trading period, 

resulting from the percentage change that lies above 99% of the past trading year’s 

percentage changes. 

4.2. BS formula price estimations 

  

In this study, the Black-Scholes formula is employed to estimate the 

theoretical prices of the options, which are utilized to comparatively evaluate the 

profitability of the percentile predictors’ trading strategies. The Black-Scholes 

mathematical model developed, under certain assumptions, for pricing an option 

contract, has been extensively mentioned, studied and extended in the existing 

literature. For the purpose of this research, there is no need for in-depth analysis of the 

underlying mathematical processes. In short, the BS option formula is calculated by 

multiplying the underlying asset’s price by the cumulative standard normal 

probability distribution function. Thereafter, the net present value of the exercise price 

multiplied by the cumulative standard normal distribution is subtracted from the 

resulting value of the previous calculation for call options, whereas the opposite 

subtraction takes place for put options. 

In general, according to the basic BS model, the price of a call and a put 

option denoted, respectively, by 𝑃𝑅𝑐𝑎𝑙𝑙 and 𝑃𝑅𝑝𝑢𝑡  are given by: 

 𝑃𝑅𝑐𝑎𝑙𝑙 = 𝑃 ∙ 𝑁(𝑑1) − 𝐸 ∙ 𝑒𝑟∙𝜏  ∙ 𝛮(𝑑2) (3) 

 

 𝑃𝑅𝑝𝑢𝑡 = −𝑃 ∙ 𝑁(𝑑1) + 𝐸 ∙ 𝑒𝑟∙𝜏  ∙ 𝛮(𝑑2) (4) 

 

where 𝑑1 =  

log(𝑃
𝐸⁄ )+(𝑟+

1

2
(

𝜎𝑃
2

2
))𝜏 

𝜎𝑃  √𝜏
 and 𝑑2 =  𝑑1 − 𝜎𝑃√𝜏. Here, 𝑃 refers to the 

underlying asset’s current price, 𝐸 is the option’s exercise price, 𝑟 is the compounded 

 
20 Thus, the vector of the percentiles under evaluation is:  

[𝑘𝑗]
𝑗 =1

6
=  [0,011 0,052 0,103    0.904 0,955 0,996] 
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risk-free interest rate, 𝜏21 is the time to expiration, 𝑁(. ) is the cumulative standard 

normal distribution function and 𝜎𝑃  is the standard deviation of log-returns of the 

asset 𝑃. The BS formula requires five input variables as mentioned above.  

Expected volatility is implied by solving the BS formula for 𝜎, using the 

option’s market price and its’ corresponding exercise price. As mentioned earlier, 

implied volatility indices have long been considered as better predictors of future 

volatility, supported by evidence from recent studies. 

The VIX index, derived from the prices of the SPX options, is a competent 

approximation of current forward-looking volatility of SPX. Since we use options of 

SPX, VIX, is suitable to be employed as the volatility input for the BS formula, in 

order to produce estimations of options’ prices closest to the ones observed in the 

market. For robustness purposes, we also used the daily prices of front month VIX 

future contracts, but no qualitive improvement was observed. 

In this study, we consider four out of five inputs for the BS formula as given. The 

remaining one is the exercise price input, accounting for the profitability of the 

percentile predictors’ trading strategies, which is constructed as shown previously. 

We denote the BS formula inputs that we employ as: 

i. 𝑆𝑃𝑋𝑡 is the current price of the underlying asset, which is the SPX index, on 

trading day 𝑡. 

ii. 𝐸𝑡,𝑘  is the exercise price derived from the percentile predictor of the 𝑘𝑡ℎ 

percentile, 𝑓(𝑛)𝑡,𝑘(𝑌𝑡 ,𝑘), on trading day 𝑡. 

iii. 𝑟𝑡  is the compounded risk-free interest rate on trading day 𝑡, in our case the 

Effective Federal Funds Rate. 

iv. 𝜏𝑡 is the time to expiration of the option on trading day 𝑡. 

v. 𝑉𝑡  is the expected volatility on trading day 𝑡, which is the closing price of the 

VIX index on that day. 

For the comparative evaluation of the percentile predictors’ trading strategies, the 

BS formula provides a number of option prices for each trading day 𝑡 equal to the 

 
21 𝜏 is given in trading days, which means that weekends and trading holidays are not included. The BS 

formula measures the time to expiration in years. We transform 𝜏, to be consistent with the BS formula, 

considering 252 trading days per annum as 𝜏 252⁄ . 
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number of percentile predictors we wish to evaluate. Thus, for every percentile 

predictor, equations (3) and (4) are formed as: 

 𝑃𝑅𝑡 ,𝑘
𝑐𝑎𝑙𝑙 =  𝑆𝑃𝑋𝑡𝑁(𝑑1) −  𝐸𝑡 ,𝑘𝑒𝑟𝑡  𝜏𝑡 𝑁(𝑑2) (5) 

 𝑃𝑅𝑡,𝑘
𝑝𝑢𝑡 =  −𝑆𝑃𝑋𝑡𝑁(𝑑1) + 𝐸𝑡,𝑘𝑒𝑟𝑡  𝜏𝑡 𝑁(𝑑2) (6) 

 

where 𝑑1 =
log(𝑆𝑃𝑋𝑡

𝐸𝑡,𝑘
⁄ )+(𝑟𝑡+

1

2
(

𝑉𝑡

2
))𝜏𝑡

𝑉𝑡  √𝜏𝑡
 , 𝑑2 =  𝑑1 − 𝑉𝑡 √𝜏𝑡, and 𝑃𝑅

𝑡 ,𝑘

𝑐𝑎𝑙𝑙(𝑝𝑢𝑡 )
 refers to the 

call(put) option price of percentile predictor 𝑘, on trading day 𝑡.  

4.3. Comparative evaluation of Percentile Predictors’ Trading Strategies 

 

The simple trading rule we devised – options are exercised - determines the 

manner and time that profits are earned. Profits or losses cannot be known prior to the 

day of expiration. On the day of expiration, if the exercise price of the call(put) option 

is under(above) the asset price22, the option is exercised. The profit, assuming the 

option is exercised, is the difference between the exercise price and the index price on 

that day, minus the option’s price, while the loss is limited to the premium initially 

paid. In mathematical notation:  

 𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙(𝑃𝑡+𝜏𝑡

,𝐸𝑡,𝑘 ,𝑃𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙) = {

−𝑃𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙 , 𝑖𝑓 𝑃𝑡+𝜏𝑡

≤ 𝐸𝑡,𝑘

𝑃𝑡+𝜏𝑡
− (𝐸𝑡,𝑘 + 𝑃𝑅𝑡,𝑘

𝑐𝑎𝑙𝑙), 𝑖𝑓 𝑃𝑡+𝜏𝑡
> 𝐸𝑡,𝑘

 (7) 

 𝑅𝑡,𝑘
𝑝𝑢𝑡(𝑃𝑡+𝜏𝑡

, 𝐸𝑡,𝑘 ,𝑃𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙) = {

−𝑃𝑅𝑡,𝑘
𝑝𝑢𝑡

, 𝑖𝑓 𝑃𝑡+𝜏𝑡
≥ 𝐸𝑡,𝑘

𝐸𝑡,𝑘 − (𝑃𝑡+𝜏𝑡
+ 𝑃𝑅𝑡,𝑘

𝑝𝑢𝑡), 𝑖𝑓 𝑃𝑡+𝜏𝑡
< 𝐸𝑡,𝑘

 (8) 

Where 𝑅
𝑡,𝑘

𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)
 is the profit(revenue) or loss of the call(put) option of the percentile 

predictor 𝑓(𝑛)𝑡,𝑘(𝑌𝑡 ,𝑘), on trading day 𝑡, 𝑃 is the price of the asset and 𝑡 + 𝜏𝑡  is an 

indicator providing the asset’s price on the day of expiration. In our analysis, 𝑃 =

 
22 In our research, we employ the closing price of the S&P500 on the day of expiration for 

convenience. The value actually considered to determine whether an option on S&P500 is exercised or 

not, is the exercise-settlement value, SET, which is calculated using the opening sales price in the 

primary market of each component security on the expiration date. The exercise -settlement amount is 

equal to the difference between the exercise-settlement value and the exercise price of the option, 

multiplied by $100. For more information see SPX Options Product Specifications in 

http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-index-options/s-p-500-

options-with-a-m-settlement-spx/spx-options-specs. 

http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-index-options/s-p-500-options-with-a-m-settlement-spx/spx-options-specs
http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-index-options/s-p-500-options-with-a-m-settlement-spx/spx-options-specs
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𝑆𝑃𝑋. 

The percentile predictors’ trading strategies are comparatively evaluated on 

the basis of the cumulative profits achieved throughout the period that is examined. 

Cumulative profits of call(put) options for each percentile predictor, denoted as 

𝐶𝑅
𝑡,𝑘

𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)
, are given by: 

 𝐶𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)

= 𝑅𝑡,𝑘
𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)

+ 𝐶𝑅𝑡−1,𝑘
𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)

 (9) 

The values needed for the comparative evaluation of the percentile predictors’ 

trading strategies, for any given period over the data time frame, are obtained by 

equation (9), such as 𝑡 is the last trading day of that period. The trading strategy with 

the greatest value of 𝐶𝑅
𝑡,𝑘

𝑐𝑎𝑙𝑙(𝑝𝑢𝑡)
 is considered the most profitable one.   
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5. Empirical findings 
 

The profitability of percentile predictors’ trading strategies on SPX index 

options was comparatively evaluated, on the basis of their cumulative profits, over a 

fifteen-year period from January 2nd 2004 up to July 18th 2019. Six percentile 

predictors were examined, derived from the percentiles 1%, 5%, 10%, 90%, 95% and 

99% of the empirical distribution of the last 252 trading days of the log-returns of 

𝑆𝑃𝑋𝑡 for each trading day 𝑡. The BS formula was employed to provide daily 

estimations of the theoretical prices of options for each percentile predictor’s trading 

strategy, by utilizing the exercise prices provided by the percentile predictors. 

Consequently, the profitability of the percentile predictors on index options’ trading 

strategies was comparatively evaluated on the basis of the cumulative profits achieved 

under the trading rule that options are exercised.  

It is important to note the norm of option trading behavior according to the 

current and the anticipated movement of the underlying asset’s price. A bullish trader, 

anticipating a rise in the price of the asset, will purchase a call option with exercise 

price greater than the current price, in hope of an even greater rise in the price, enough 

to cover the premium and make profits. On the other hand, a bearish trader will 

purchase a put option with exercise price lower than the current price of the asset, 

anticipating an even greater drop of the price, as above.  

The mean of the log-returns series, 𝑌𝑡
𝑇, 𝑌 wages around zero, which means 

that the percentile predictors represent a bullish anticipation on the price of 𝑆𝑃𝑋, for 

percentiles above the median, and a bearish one otherwise. Hence, options’ trading 

strategies of percentile predictors can be described as bullish call, bullish put, bearish 

call and bearish put. Three bullish and tree bearish percentile predictors were 

employed in order to compare the effectiveness of various percentiles on each 

strategy. 

Considering that SPX was in an uptrend throughout the period we examine, as 

seen in Figure 2, – except a relatively small period from around late 2007 up to early 

2009 -, bullish call options’ strategies were expected to be profitable, according to the 

aforementioned trading norm. Surprisingly, this is not the case as seen in Table 2 

below.  
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Table 2: Cumulative Returns of Percentile Predictors’ trading strategies on index 

options over the period January 2nd 2003 – July 18th 2019 

 

Bearish strategies Bullish strategies 
 

Percentile 

Predictors 
1% 5% 10% 90% 95% 99% 

       

Call $11.683,12 $5.708,78 $1.868,42 -$14.019,65 -$15.040,50 -$15.523,46 

       

Put -$5.860,49 -$11.803,17 -$15.625,93 -$31.443,09 -$32.452,81 -$32.908,04 

The amounts are in hundreds of U.S. dollars 

 

Bearish call strategies were able to make profits across all the percentile 

predictors that were examined. The 1% percentile predictor bearish call strategy 

earned $1.168.312,00 at the end of the period we examined, while more moderate 

percentile predictors of the same strategy provided less earnings; $570.878,00 for the 

5% percentile predictor and $186.842,00 for the 1% percentile predictor. On the other 

hand, bullish call strategies suffered losses from $1.401.965,00 for the 90% percentile 

predictor and $1.504.050,00 for the 95% percentile predictor, up to $1.552.346,00 for 

the 99% percentile predictor. Both bearish and bullish strategies of put options 

suffered losses across all the percentile predictors, as it was expected. For the bearish 

put strategy of the 1% percentile predictor, a loss of $586.049,00 was reported, while 

losses of $1.180.317,00 and $1.562.593,00 were reported for the 5% and 10% 

percentile predictors respectively. The bullish put strategy losses were even greater; 

$3.144.309,00 loss for the 90% percentile predictor, $3.245.281,00 loss for the 95% 

percentile predictor and $3.290.804,00 loss for the 99% percentile predictor.  

The course of the cumulative returns, over the time frame we examined, of the 

bearish call strategy of the 1% percentile predictor and the bullish call strategy of the 

99% percentile predictor, are presented in Figure 6 and Figure 7 respectively23. The 

bullish call strategy seems to have a smooth course while the bearish call strategy 

 
23 The graphical representations of the courses of cumulative results of the rest trading strategies across 

all the percentile predictors that were examined are presented in Appendix A in page 38. 
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seems to have a rough one. In Figure 8, the course of the cumulative profits of the 

bearish call strategy of the 1% percentile predictor is presented alongside the course 

of the price of the S&P500 index, where the former seems to follow the latter. 
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Figure 6. Cumulative Returns of the 1% Percentile Predictor’ Bearish Call trading 

strategy 

Figure 7. Cumulative Returns of the 99% Bullish Percentile Predictor’s Call trading 

strategy 
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These results provide empirical evidence that percentile predictors on index 

options’ trading strategies are profitable when applied contrary to the trading norm 

with respect to the underlying asset’s trend. Also, extreme percentile predictors, 

derived from percentiles on the far-ends of the empirical distribution’s tails, such as 

the 1% and 99%, outperform the moderate ones. Furthermore, bearish call options’ 

trading strategies of percentile predictors seem to follow the trend of the underlying 

asset. 

For robustness purposes, front month future contracts’ daily prices of VIX 

were employed as the volatility input for the BS formula but no qualitive 

improvement was observed24. Relevant Figures are presented in 9. APPENDIX B: 

Cumulative returns of Percentile Predictors’ strategies on index options of the S&P500, using 

VIX Futures’ daily prices as the volatility input in the BS formula. 

  

 
24 See Table 3: Cumulative Returns of Percentile Predictors’ trading strategies using VIX Futures’ daily 

prices as the volatility input in the BS formula  

over the period January 2nd 2003 – July 18th 2019s 
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6. Conclusions  
 

Options are financial instruments which are widely used by market 

participants for both hedging and speculation purposes. The correct pricing of options 

has triggered a lot of interest in the financial literature and transformed both the 

theory and practice of finance on the intellectual foundation of the Black-Scholes 

model, which not only provides the framework for pricing all derivatives but also 

underpins risk-management practices and valuation under uncertainty. On this basis, 

numerous methods have been proposed in order to limit risk by modelling and 

forecasting financial time series, mostly through stochastic processes. In this context, 

market efficiency has improved by limiting both risk and opportunities for 

speculation. 

This study examined whether a deterministic approach on pricing options 

could be employed for speculation purposes. Percentile points of the past trading 

year’s empirical distribution of log-returns of the underlying asset were utilized as 

deterministic predictors of a potential future price of the asset. These percentile 

predictors reflect either a bullish or a bearish trading strategy to be implemented. The 

percentile predictors on index options’ trading strategies were comparatively 

evaluated on the basis of the cumulative profits of options which utilized the predicted 

future price of the asset as the exercise price input parameter.  

The results of the empirical investigation of the percentile predictor trading 

strategies on options of the S&P500 index over a period of fifteen years, from January 

2nd 2004 up to July 18th 2019, suggest that within this framework profits can be 

earned if a trader acts contrary to the trading norm. In other words, when the index 

value is in an uptrend, bearish call percentile predictors’ strategies, especially of 

extreme percentile predictors, are profitable and the course of their cumulative profits 

seem to follow the trend of the index. However, conclusions cannot be drawn in the 

case of a downtrend of the index’s value.  

These findings are very interesting in the context that there is allowance for 

speculation in option trading which opposes the trading norm and the ubiquitous 

practice of pricing options. Further research in this direction is needed considering the 

range of options’ time horizons to maturity and the variety of the underlying assets’ 
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classes. In addition, further investigation on the effect of the rate of the asset’s returns 

on the efficiency of the trading strategies in question, their performance in downtrend 

periods and the comparative evaluation of various percentiles could provide 

enlightening findings. 
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8. APPENDIX A: Cumulative returns of Percentile Predictors’ 

trading strategies on index options of the S&P500, using VIX as the 

volatility input in the BS formula 
 
 

8.1. Cumulative returns of Bearish Call Percentile Predictors’ trading 

strategies 

 
 

 
Figure 9. Cumulative Returns of the 1% Percentile Predictor’s Call trading strategy 

 
 
 

 
Figure 10. Cumulative Returns of the 5% Percentile Predictor’s Call trading 

strategy 
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Figure 11. Cumulative Returns of the 10% Percentile Predictor’s Call trading 

strategy 

 
 

8.2. Cumulative Returns of Bearish Put Percentile Predictors’ trading 

strategies 

 
 

 
Figure 12. Cumulative Returns of the 1% Percentile Predictor’s Put trading 

strategy 
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Figure 13. Cumulative Returns of the 5% Percentile Predictor’s Put trading 

strategy 

 
 
 

 
Figure 14. Cumulative Returns of the 10% Percentile Predictor’s Put trading 

strategy 
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8.3. Cumulative returns of Bullish Call Percentile Predictors’ trading 

strategies 

 
 

 
Figure 15. Cumulative Returns of the 90% Percentile Predictor’s Call trading 

strategy 

 
 
 

 
Figure 16. Cumulative Returns of the 95% Percentile Predictor’s Call trading 

strategy 
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Figure 17. Cumulative Returns of the 99% Percentile Predictor’s Call trading 

strategy 

 
 

8.4. Cumulative Returns of Bullish Put Percentile Predictors’ trading 

strategies 

 
 

 
Figure 18. Cumulative Returns of the 90% Percentile Predictor’s Put trading 

strategy 
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Figure 19. Cumulative Returns of the 95% Percentile Predictor’s Put trading 

strategy 

 
 
 

 
Figure 20. Cumulative Returns of the 99% Percentile Predictor’s Put trading 

strategy 
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9. APPENDIX B: Cumulative returns of Percentile Predictors’ 

strategies on index options of the S&P500, using VIX Futures’ daily 

prices as the volatility input in the BS formula. 
 

 

Table 3: Cumulative Returns of Percentile Predictors’ trading strategies using VIX 

Futures’ daily prices as the volatility input in the BS formula 

over the period January 2nd 2003 – July 18th 2019s 

 

Bearish strategies Bullish strategies 
 

percentiles 1% 5% 10% 90% 95% 99% 

       

Calls $9.539,37 $3.014,51 -$1.053,69 -$16.978,16 -$17.853,42 -$17.949,81 

       

Puts -$8.004,24  -$14.497,43 -$18.548,04 -$34.401,61 -$35.265,74 -$35.334,40 

 

 

9.1. Cumulative returns of Bearish Call Percentile Predictors’ trading 

strategies 

 
 

 
Figure 21. Cumulative Returns of the 1% Percentile Predictor’s Call trading 

strategy 
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Figure 22. Cumulative Returns of the 5% Percentile Predictor’s Call trading 

strategy 

 
 
 

 
Figure 23. Cumulative Returns of the 10% Percentile Predictor’s Call trading 

strategy 
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9.2. Cumulative returns of Bearish Put Percentile Predictors’ trading 

strategies 

 
 

 
Figure 24. Cumulative Returns of the 1% Percentile Predictor’s Put trading 

strategy 

 
 
 

 
Figure 25. Cumulative Returns of the 5% Percentile Predictor’s Put trading 

strategy 
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Figure 26. Cumulative Returns of the 10% Percentile Predictor’s Put trading 

strategy 

 

9.3. Cumulative Returns of Bullish Call Percentile Predictors’ trading 

strategies 

 
 

 
Figure 27. Cumulative Returns of the 90% Percentile Predictor’s Call trading 

strategy 
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Figure 28. Cumulative Returns of the 95% Percentile Predictor’s Call trading 

strategy 

 
 
 

 
Figure 29. Cumulative Returns of the 99% Percentile Predictor’s Call trading 

strategy 
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9.4. Cumulative returns of Bullish Put Percentile Predictors’ trading 

strategies 

 
 

 
Figure 30. Cumulative Returns of the 90% Percentile Predictor’s Put trading 

strategy 

 
 
 

 
Figure 31. Cumulative Returns of the 95% Percentile Predictor’s Put trading 

strategy 
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Figure 32. Cumulative Returns of the 99% Percentile Predictor’s Put trading 

strategy 
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