PANTEION UNIVERSITY OF SOCIAL AND POLITICAL SCIENCES

SCHOOL OF POLITICAL SCIENCE DEPARTMENT OF SOCIAL POLICY

The importance of items' level of measurement in investigating the structure and assessing the psychometric properties of multidimensional constructs

DOCTORAL DISSERTATION

Anastasia Charalampi

Supervising committee

Catherine Michalopoulou, Professor, Panteion University (Supervisor)

Clive Richardson, Professor, Panteion University

Maria Symeonaki, Associate Professor, Panteion University

Copyright © Αναστασία Χαραλάμπη, 2018

All rights reserved. Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας διδακτορικής διατριβής εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της διδακτορικής διατριβής για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Η έγκριση της διδακτορικής διατριβής από το Πάντειον Πανεπιστήμιο Κοινωνικών και Πολιτικών Επιστημών δεν δηλώνει αποδοχή των γνωμών του συγγραφέα.

To my family

Abbreviations

CC: Corrected Item-total Correlation

CESD: Center for Epidemiologic Studies Depression Scale

CFA: Confirmatory Factor Analysis

CFI: Comparative Fit Index

CI: Confidence Interval

CRCMM: Composite reliability for congeneric measures model

df: Degrees of Freedom

EFA: Exploratory Factor Analysis

ESS: European Social Survey

MAR: Missing at Random

MCAR: Missing Completely at Random

NA: No Answer

NFI: Normed Fit Index

PAF: Principal Axis Factoring

PCA: Principal Component Analysis

PVQ: Portrait Value Questionnaire

RMSEA: Root-mean-square Error of Approximation

SD: Standard Deviation

SRMR: Standardized Root Mean Square Residual

SVS: Schwartz's Value Survey

TLI: Tucker-Lewis index

Contents

Abstract.		1
Περίληψη	1	3
Introducti	on	5
At	titude Scales: Theory Testing	5
Re	eliability and Validity	9
Sc	hwartz's Human Values Scale	12
Th	ne European Social Survey Measurement of Wellbeing	15
Re	esearch Questions	18
	First research question	19
	Second research question	20
Method		21
Pa	rticipants	21
Ins	struments	24
	Schwartz's Portrait Value Questionnaire (PVQ-21)	24
	The ESS measurement of personal and social wellbeing	25
Sta	atistical Analyses	28
	Methodology when items are considered as pseudo-interval	29
	Exploratory Factor Analysis	29
	Confirmatory Factor Analysis	30
	Subscale construction and assessment	32
	Methodology when items are considered as both ordinal and	
	pseudo-interval	33
	Exploratory Factor Analysis	33
	Confirmatory Factor Analysis	35
	Subscale construction and assessment	35
Results		37
Da	ata Screening for Unengaged Responses and Outliers	37
Re	esults When Items Are Considered as Pseudo-Interval	37
	Results – Belgium	37
	EFA results	37
	CFA results	41
	Subscale construction and assessment	44

Results – all 16 countries	46
EFA results	47
CFA results	60
Subscale construction and assessment	63
Results When Items Are Considered as Both Ordinal and Pseudo-	
Interval	70
Results – Poland	70
EFA results	70
CFA results	75
Subscale construction and assessment	77
Results – all 16 countries	79
EFA results	79
CFA results	83
Subscale construction and assessment	84
Discussion and Conclusions	88
References	93
Appendix I	105
A. The European Social Survey short form of Portrait Value	
Questionnaire (PVQ-21) developed by Schwartz	106
B. The European Social Survey measurement of personal and social	
wellbeing of Round 6 (2012)	110
Appendix II	118
A. Schwartz's human values scale: Exploratory Factor Analysis (EFA)	
and Confirmatory Factor Analysis (CFA) Results	119
B. Wellbeing: Exploratory Factor Analysis (EFA) and Confirmatory	
Factor Analysis (CFA) Results	694

Tables

Table 1 Number of values found in each country after unifying values to solve
the problem of non-positive definite matrices of the constructs in single-country
CFA
Table 2 Participants' demographic and social characteristics: European Social
Survey, 2002-2014
Table 3 The short form of Schwartz's Portrait Value Questionnaire (PVQ-21):
European Social Survey
Table 4 The 2012 European Social Survey (ESS) measurement of personal and
social wellbeing
Table 5 Unengaged responses and outliers based on the first half-samples:
European Social Survey
Table 6 Item analysis of Schwartz scale values for the European Social Survey,
2012: Belgium (first half-sample: n=934)
Table 7 Factor loadings of exploratory factor analysis (principal axis factoring)
with promax rotation: European Social Survey 2012, Belgium (first half-
sample: $n = 934$)
Table 8 Descriptive statistics, reliability coefficients and internal consistencies
of the subscales: European Social Survey 2012, Belgium (first half-sample: $n =$
934)
Table 9 Factor loadings of exploratory factor analysis (principal axis factoring)
with promax rotation (3 Factors): European Social Survey 2012, Belgium (first
half-sample: $n = 934$)
Table 10 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 Factors): European Social Survey 2012,
Belgium (first half-sample: $n = 934$)
Table 11 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of seven models: European Social Survey 2012, Belgium (second half-
sample: <i>n</i> = 935)
Table 12 Descriptive statistics, reliability coefficients and internal consistencies
of the subscales (full sample): European Social Survey 2012, Belgium ($N =$
1,869)
Table 13 Missing data analysis of the Schwartz's human values items based on

the first split-half samples: European Social Survey
Table 14 Items rejected from the analysis based on first half-samples: European
Social Survey
Table 15 Factors and items presented according to their factor loadings:
European Social Survey
Table 16 Confirmatory factor analysis performed with maximum likelihood of
the covariance matrix on the second half-sample of each country: Goodness-of-
fit indices, European Social Survey
Table 17 Cronbach's alpha (α) and split-half reliability coefficients and
convergent and discriminant validity of Schwartz's human values subscales
based on the full sample of each country: European Social Survey
Table 18 Item analysis of the 2012 European Social Survey
measurement of wellbeing for Poland (first half-sample:
n = 949)
Table 19 Exploratory factor analysis of the 2012 European Social Survey
wellbeing items performed with robust weighted least squares of the polychoric
correlation matrix applying geomin rotation on the first split-half sample of
Poland ($n = 949$): Goodness-of-fit indices
Table 20 Exploratory factor analysis of the 2012 European Social Survey
wellbeing items performed with robust weighted least squares of the polychoric
correlation matrix applying geomin rotation on the first split-half sample of
Poland (<i>n</i> = 949)
Table 21 Descriptive statistics, convergent and dicriminant validity, composite
reliability and internal consistencies of the 2012 European Social Survey
wellbeing subscales: Poland (N = 1,898)
Table 22 Items rejected from the analysis: European Social Survey, 2012
Table 23 Exploratory factor analysis of the 2012 European Social Survey
wellbeing items performed with robust weighted least squares of the polychoric
correlation matrix (geomin rotation) on the first half-sample of each country:
Goodness-of-fit indices
Table 24 The wellbeing factors and items presented according to their factor
loadings: European Social Survey, 2012
Table 25 Confirmatory factor analysis of the 2012 European Social Survey

correlation matrix on the second half sample of each country. Goodness of fit	
correlation matrix on the second half-sample of each country: Goodness-of-fit	0.4
indices	84
Table 26 Composite reliability and convergent and discriminant validity of the	
wellbeing subscales based on the full sample of each country: European Social	0.5
Survey, 2012	85
Table 27 Univariate statistics of the wellbeing subscales based on the full	
sample of each country: European Social Survey, 2012	87
Table A1 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Belgium (first half-sample: $n = 949$)	119
Table A2 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Belgium (first	
half-sample: <i>n</i> = 949)	120
Table A3 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Belgium (first	
half-sample: <i>n</i> = 949)	120
Table A4 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
Belgium (first half-sample: $n = 949$)	121
Table A5 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Belgium (first half-sample: $n = 949$)	121
Table A6 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of eight models: European Social Survey 2002, Belgium (second half-	
sample: <i>n</i> = 949)	122
Table A7 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales (full sample): European Social Survey 2002,	
Belgium (N = 1,899)	123
Table A8 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Belgium (first half-sample: $n = 889$)	124
Table A9 Factor loadings of exploratory factor analysis (principal axis	14 f
factoring) with promax rotation: European Social Survey 2004, Belgium (first	
half-sample: $n = 889$)	125
nan-sample. $n = 007$,	143

Table A10 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Belgium (first
half-sample: $n = 889$)
Table A11 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2004,
Belgium (first half-sample: $n = 889$)
Table A12 Factor loadings of exploratory factor analysis (principal axis factoring)
with promax rotation (2 factors): European Social Survey 2004, Belgium (first half-
sample: $n = 889$)
Table A13 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of eight models: European Social Survey 2004, Belgium (second half-
sample: $n = 889$)
Table A14 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales (full sample): European Social Survey 2004,
Belgium (<i>N</i> = 1,778)
Table A15 Item analysis of Schwartz scale values of the European Social
Survey, 2006: Belgium (first half-sample: $n = 899$)
Table A16 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2006, Belgium (first
half-sample: $n = 899$)
Table A17 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2006, Belgium (first
half-sample: $n = 899$)
Table A18 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2006,
Belgium (first half-sample: $n = 899$)
Table A19 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of five models: European Social Survey 2006, Belgium (second half-
sample: <i>n</i> = 899)
Table A20 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2006, Belgium ($N =$
1,798)
Table A21 Item analysis of Schwartz scale values of the European Social

Survey, 2008: Belgium (first half-sample: $n = 880$)
Table A22 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2008, Belgium (first
half-sample: $n = 880$)
Table A23 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, Belgium (first
half-sample: <i>n</i> = 880)
Table A24 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2008, Belgium (first
half-sample: $n = 880$)
Table A25 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2008,
Belgium (first half-sample: $n = 880$)
Table A26 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of eight models: European Social Survey 2008, Belgium (second half-
sample: <i>n</i> = 880)
Table A27 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, Belgium ($N =$
1,760)
Table A28 Item analysis of Schwartz scale values of the European Social
Survey, 2010: Belgium (first half-sample: $n = 852$)
Table A29 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2010, Belgium (first
half-sample: $n = 852$)
Table A30 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2010, Belgium (first
half-sample: <i>n</i> = 852)
Table A31 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2010,
Belgium (first half-sample: $n = 852$)
Table A32 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2010,
Belgium (first half-sample: $n = 852$)

Table A33 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of eight models: European Social Survey 2010, Belgium (second half-	
sample: $n = 852$)	141
Table A34 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Belgium ($N =$	
1,704)	142
Table A35 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Belgium (first half-sample: $n = 884$)	143
Table A36 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Belgium (first	
half-sample: $n = 884$)	143
Table A37 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Belgium (first	
half-sample: $n = 884$)	144
Table A38 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Belgium (first half-sample: $n = 884$)	144
Table A39 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-9 items): European Social Survey	
2014, Belgium (first half-sample: $n = 884$)	145
Table A40 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of seven models: European Social Survey 2014, Belgium (second half-	
sample: $n = 884$)	145
Table A41 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Belgium ($N =$	
1,769)	146
Table A42 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Denmark (first half-sample: $n = 753$)	147
Table A43 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Denmark (first	
half-sample: $n = 753$)	148
Table A44 Descriptive statistics, reliability coefficients and internal consistencies of	
the subscales: European Social Survey 2002, Denmark (first half-sample: $n = 753$)	148

Table A45 Factor loadings of exploratory factor analysis (principal axis factoring)	
with promax rotation (2 factors): European Social Survey 2002, Denmark (first half-	
sample: $n = 753$)	149
Table A46 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of six models: European Social Survey 2002, Denmark (second half-	
sample: $n = 753$)	149
Table A47 Descriptive statistics, reliability coefficients and internal consistencies of	
the subscales: European Social Survey 2002, Denmark (N = 1,506)	150
Table A48 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Denmark (first half-sample: $n = 743$)	151
Table A49 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Denmark (first	
half-sample: $n = 743$)	152
Table A50 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Denmark (first	
half-sample: <i>n</i> = 743)	152
Table A51 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Denmark (first half-sample: $n = 743$)	153
Table A52 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Denmark (first half-sample: $n = 743$)	153
Table A53 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of six models: European Social Survey 2004, Denmark (second half-	
sample: $n = 744$)	154
Table A54 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Denmark ($N =$	
1,487)	155
Table A55 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Denmark (first half-sample: $n = 752$)	156
Table A56 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Denmark (first	
half-sample: <i>n</i> = 752)	156

Table A57 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Denmark (first	
half-sample: $n = 752$)	157
Table A58 Factor loadings of exploratory factor analysis (principal axis factoring)	
with promax rotation (2 factors): European Social Survey 2006, Denmark (first half-	
sample: $n = 752$)	157
Table A59 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of five models: European Social Survey 2006, Denmark (second half-	
sample: $n = 753$)	158
Table A60 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Denmark ($N =$	
1,505)	159
Table A61 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Denmark (first half-sample: $n = 805$)	160
Table A62 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Denmark (first	
half-sample: $n = 805$)	161
Table A63 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Denmark (first	
half-sample: $n = 805$)	161
Table A64 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Denmark (first half-sample: $n = 805$)	162
Table A65 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of five models: European Social Survey 2008, Denmark (second half-	
sample: $n = 805$)	162
Table A66 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Denmark ($N =$	
1,610)	163
Table A67 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Denmark (first half-sample: $n = 788$)	165
Table A68 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Denmark (first	

half-sample: $n = 788$)
Table A69 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2010, Denmark (first
half-sample: $n = 788$)
Table A70 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of four models: European Social Survey 2010, Denmark (second half-
sample: $n = 788$)
Table A71 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2010, Denmark ($N =$
1,576)
Table A72 Item analysis of Schwartz scale values of the European Social
Survey, 2012: Denmark (first half-sample: $n = 825$)
Table A73 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2012, Denmark (first
half-sample: $n = 825$)
Table A74 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Denmark (first
half-sample: $n = 825$)
Table A75 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2012,
Denmark (first half-sample: $n = 825$)
Table A76 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of six models: European Social Survey 2012, Denmark (second half-
sample: $n = 825$)
Table A77 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Denmark ($N =$
1,650)
Table A78 Item analysis of Schwartz scale values of the European Social
Survey, 2014: Denmark (first half-sample: $n = 751$)
Table A79 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2014, Denmark (first
half-sample: $n = 751$)
Table A80 Descriptive statistics, reliability coefficients and internal

consistencies of the subscales: European Social Survey 2014, Denmark (first	
half-sample: $n = 751$)	174
Table A81 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Denmark (first half-sample: $n = 751$)	174
Table A82 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-9 items): European Social Survey	
2014, Denmark (first half-sample: $n = 751$)	175
Table A83 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of six models: European Social Survey 2014, Denmark (second half-	
sample: $n = 825$)	175
Table A84 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Denmark ($N =$	
1,502)	176
Table A85 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Finland (first half-sample: $n = 865$)	177
Table A86 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Finland (first	
half-sample: $n = 865$)	178
Table A87 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Finland (first	
half-sample: $n = 865$)	178
Table A88 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-10 items): European Social Survey	
2002, Finland (first half-sample: $n = 865$)	179
Table A89 Confirmatory factor analysis (maximum likelihood), goodness-of-fit	
indices of four models: European Social Survey 2002, Finland (second half-	
sample: $n = 865$)	179
Table A90 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Finland ($N =$	
1,730)	180
Table A91 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Finland (first half-sample: $n = 859$)	181

Table A92 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2004, Finland (first
half-sample: $n = 859$)
Table A93 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Finland (first
half-sample: $n = 859$)
Table A94 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2004,
Finland (first half-sample: $n = 859$)
Table A95 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2004,
Finland (first half-sample: $n = 859$)
Table A96 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors-11 items): European Social Survey
2004, Finland (first half-sample: $n = 859$)
Table A97 Confirmatory factor analysis (maximum likelihood), goodness-of-fit
indices of eight models: European Social Survey 2004, Finland (second half-
sample: $n = 860$)
Table A98 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Finland ($N =$
1,719)
Table A99 Item analysis of Schwartz scale values of the European Social
Survey, 2006: Finland (first half-sample: $n = 829$)
Table A100 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2006, Finland (first
half-sample: $n = 829$)
Table A101 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Finland (first
half-sample: <i>n</i> = 829)
Table A102 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2004,
Finland (first half-sample: $n = 829$)
Table A103 Factor loadings of exploratory factor analysis (principal axis

factoring) with promax rotation (2 factors): European Social Survey 2004,	
Finland (first half-sample: $n = 829$)	189
Table A104 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (4 factors-11 items): European Social Survey	
2004, Finland (first half-sample: $n = 829$)	190
Table A105 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of ten models: European Social Survey 2006, Finland (second half-	
sample: $n = 830$)	191
Table A106 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Finland ($N =$	
1,659)	192
Table A107 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Finland (first half-sample: $n = 953$)	193
Table A108 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Finland (first	
half-sample: $n = 953$)	194
Table A109 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Finland (first	
half-sample: $n = 953$)	194
Table A110 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of ten models: European Social Survey 2008, Finland (second half-	
sample: $n = 953$)	195
Table A111 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Finland ($N =$	
1,906)	196
Table A112 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Finland (first half-sample: $n = 827$)	197
Table A113 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Finland (first	
half-sample: $n = 827$)	198
Table A114 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Finland (first	
half-sample: $n = 827$)	198

Table A115 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2010,	
Finland (first half-sample: $n = 827$)	199
Table A116 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Finland (first half-sample: $n = 827$)	200
Table A117 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2010, Finland (second half-	
sample: $n = 828$)	200
Table A118 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Finland ($N =$	
1,655)	20
Table A119 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Finland (first half-sample: $n = 1,098$)	203
Table A120 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Finland (first	
half-sample: <i>n</i> = 1,098)	204
Table A121 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Finland (first	
half-sample: $n = 1,098$)	204
Table A122 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Finland (first half-sample: $n = 1,098$)	20:
Table A123 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-12 items): European Social Survey	
2012, Finland (first half-sample: $n = 1,098$)	20:
Table A124 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2012, Finland (second	
half-sample: <i>n</i> = 1,099)	20
Table A125 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Finland ($N =$	
2,197)	20
Table A126 Item analysis of Schwartz scale values of the European Social	

Survey, 2014: Finland (first half-sample: $n = 1,043$)	208
Table A127 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Finland (first	
half-sample: $n = 1,043$)	208
Table A128 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Finland (first	
half-sample: $n = 1,043$)	209
Table A129 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Finland (first half-sample: $n = 1,043$)	209
Table A130 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of five models: European Social Survey 2014, Finland (second half-	
sample: $n = 1,044$)	210
Table A131 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Finland ($N =$	
2,087)	21
Table A132 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: France (first half-sample: $n = 680$)	21
Table A133 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, France (first	
half-sample: $n = 680$)	21
Table A134 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, France (first half-	
sample: $n = 680$)	21
Table A135 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
France (first half-sample: $n = 680$)	21
Table A136 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2002, France (first half-sample: $n = 680$)	21
Table A137 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, France (second half-	
sample: $n = 681$)	21

Table A138 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, France $(N =$	
1,361)	216
Table A139 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: France (first half-sample: $n = 852$)	217
Table A140 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, France (first	
half-sample: $n = 852$)	218
Table A141 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, France (first half-	
sample: $n = 852$)	218
Table A142 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
France (first half-sample: $n = 852$)	219
Table A143 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of five models: European Social Survey 2004, France (second half-	
sample: $n = 853$)	219
Table A144 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, France $(N =$	
1,705)	220
Table A145 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: France (first half-sample: $n = 993$)	222
Table A146 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, France (first	
half-sample: <i>n</i> = 993)	223
Table A147 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, France (first half-	
sample: $n = 993$)	223
Table A148 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2006,	
France (first half-sample: $n = 993$)	224
Table A149 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	

France (first half-sample: $n = 993$)
Table A150 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors-14 items): European Social Survey
2006, France (first half-sample: $n = 993$)
Table A151 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of nine models: European Social Survey 2006, France (second half-
sample: $n = 993$)
Table A152 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2006, France ($N =$
1,986)
Table A153 Item analysis of Schwartz scale values of the European Social
Survey, 2008: France (first half-sample: $n = 1,036$)
Table A154 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2008, France (first
half-sample: $n = 1,036$)
Table A155 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, France (first half-
sample: $n = 1,036$)
Table A156 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2006,
France (first half-sample: $n = 1,036$)
Table A157 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2006,
France (first half-sample: $n = 1,036$)
Table A158 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of eight models: European Social Survey 2008, France (second half-
sample: $n = 1,037$)
Table A159 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, France $(N =$
2,073)
Table A160 Item analysis of Schwartz scale values of the European Social
Survey, 2010: France (first half-sample: $n = 864$)
Table A161 Factor loadings of exploratory factor analysis (principal axis

factoring) with promax rotation: European Social Survey 2010, France (first	
half-sample: $n = 864$)	235
Table A162 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, France (first half-	
sample: $n = 864$)	235
Table A163 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
France (first half-sample: $n = 864$)	236
Table A164 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2010, France (second half-	
sample: $n = 864$)	236
Table A165 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, France ($N =$	
1,728)	237
Table A166 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: France (first half-sample: $n = 984$)	239
Table A167 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, France (first	
half-sample: <i>n</i> = 984)	240
Table A168 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, France (first half-	
sample: $n = 984$)	240
Table A169 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2012,	
France (first half-sample: $n = 984$)	241
Table A170 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
France (first half-sample: $n = 984$)	242
Table A171 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2012, France (second half-	
sample: <i>n</i> = 984)	242
Table A172 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, France $(N =$	

1,968)	243
Table A173 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: France (first half-sample: $n = 958$)	245
Table A174 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, France (first	
half-sample: <i>n</i> = 958)	246
Table A175 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, France (first half-	
sample: $n = 958$)	246
Table A176 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
France (first half-sample: $n = 958$)	247
Table A177 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2014, France (second half-	
sample: $n = 959$)	247
Table A178 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, France ($N =$	
1,917)	248
Table A179 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Germany (first half-sample: $n = 1,416$)	250
Table A180 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Germany (first	
half-sample: $n = 1,416$)	251
Table A181 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Germany (first	
half-sample: $n = 1,416$)	251
Table A182 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Germany (first half-sample: $n = 1,416$)	252
Table A183 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-11 items): European Social Survey	
2002, Germany (first half-sample: $n = 1,416$)	252
Table A184 Confirmatory factor analysis (maximum likelihood), goodness-of-	

fit indices of seven models: European Social Survey 2002, Germany (second	
half-sample: $n = 1,417$)	253
Table A185 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Germany ($N =$	
2,833)	254
Table A186 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Germany (first half-sample: $n = 1,435$)	255
Table A187 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Germany (first	
half-sample: $n = 1,435$)	256
Table A188 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Germany (first	
half-sample: $n = 1,435$)	256
Table A189 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Germany (first half-sample: $n = 1,435$)	257
Table A190 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2004, Germany (second half-	
sample: $n = 1,435$)	257
Table A191 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Germany ($N =$	
2,870)	258
Table A192 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Germany (first half-sample: $n = 1,458$)	259
Table A193 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Germany (first	
half-sample: $n = 1,458$)	260
Table A194 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Germany (first	
half-sample: $n = 1,458$)	260
Table A195 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2006,	
Germany (first half-sample: $n = 1,458$)	261

Table A196 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Germany (first half-sample: $n = 1,458$)	262
Table A197 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2006, Germany (second half-	
sample: $n = 1,458$)	262
Table A198 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Germany ($N =$	
2,916)	263
Table A199 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Germany (first half-sample: $n = 1,375$)	265
Table A200 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Germany (first	
half-sample: $n = 1,375$)	266
Table A201 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Germany (first	
half-sample: $n = 1,375$)	266
Table A202 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2006,	
Germany (first half-sample: $n = 1,375$)	267
Table A203 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Germany (first half-sample: $n = 1,375$)	267
Table A204 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (4 factors-12 items): European Social Survey	
2006, Germany (first half-sample: $n = 1,375$)	268
Table A205 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2008, Germany (second	
half-sample: $n = 1,376$)	268
Table A206 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Germany ($N =$	
2,751)	269
Table A207 Item analysis of Schwartz scale values of the European Social	

Survey, 2010: Germany (first half-sample: $n = 1,515$)	270
Table A208 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Germany (first	
half-sample: $n = 1,515$)	271
Table A209 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Germany (first	
half-sample: $n = 1,515$)	27
Table A210 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2010,	
Germany (first half-sample: $n = 1,515$)	27
Table A211 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Germany (first half-sample: $n = 1,515$)	27
Table A212 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2010, Germany (second	
half-sample: <i>n</i> = 1,516)	27
Table A213 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Germany ($N =$	
3,031)	27
Table A214 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Germany (first half-sample: $n = 1,479$)	27
Table A215 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Germany (first	
half-sample: <i>n</i> = 1,479)	27
Table A216 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Germany (first	
half-sample: <i>n</i> = 1,479)	27
Table A217 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Germany (first half-sample: $n = 1,479$)	27
Table A218 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-9 items): European Social Survey	
2012, Germany (first half-sample: $n = 1,479$)	27

Table A219 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2012, Germany (second	
half-sample: $n = 1,479$)	277
Table A220 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Germany ($N =$	
2,958)	278
Table A221 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Germany (first half-sample: $n = 1,512$)	279
Table A222 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Germany (first	
half-sample: $n = 1,512$)	280
Table A223 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Germany (first	
half-sample: $n = 1,512$)	280
Table A224 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Germany (first half-sample: $n = 1,512$)	281
Table A225 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-11 items): European Social Survey	
2014, Germany (first half-sample: $n = 1,512$)	281
Table A226 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2014, Germany (second	
half-sample: $n = 1,513$)	282
Table A227 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Germany ($N =$	
3,025)	283
Table A228 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Hungary (first half-sample: $n = 822$)	284
Table A229 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Hungary (first	
half-sample: $n = 822$)	285
Table A230 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Hungary (first	

half-sample: $n = 822$)
Table A231 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2002,
Hungary (first half-sample: $n = 822$)
Table A232 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors-14 items): European Social Survey
2002, Hungary (first half-sample: $n = 822$)
Table A233 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors-13 items): European Social Survey
2002, Hungary (first half-sample: $n = 822$)
Table A234 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of nine models: European Social Survey 2002, Hungary (second
half-sample: $n = 822$)
Table A235 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2002, Hungary ($N =$
1,644)
Table A236 Item analysis of Schwartz scale values of the European Social
Survey, 2004: Hungary (first half-sample: $n = 734$)
Table A237 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2004, Hungary (first
half-sample: $n = 734$)
Table A238 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Hungary
(first half-sample: $n = 734$)
Table A239 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of seven models: European Social Survey 2004, Hungary (second
half-sample: $n = 734$)
Table A240 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2004, Hungary $(N =$
1,468)
Table A241 Item analysis of Schwartz scale values of the European Social
Survey, 2006: Hungary (first half-sample: $n = 739$)
Table A242 Factor loadings of exploratory factor analysis (principal axis

factoring) with promax rotation: European Social Survey 2006, Hungary (first	
half-sample: $n = 739$)	295
Table A243 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Hungary (first	
half-sample: <i>n</i> = 739)	295
Table A244 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Hungary (first half-sample: $n = 739$)	296
Table A245 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2004, Hungary (first half-sample: $n = 739$)	297
Table A246 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-13 items): European Social Survey	
2004, Hungary (first half-sample: $n = 739$)	297
Table A247 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2006, Hungary (second	
half-sample: <i>n</i> = 740)	298
Table A248 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Hungary ($N =$	
1,479)	299
Table A249 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Hungary (first half-sample: $n = 726$)	300
Table A250 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Hungary (first	
half-sample: <i>n</i> = 726)	301
Table A251 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Hungary (first	
half-sample: <i>n</i> = 726)	301
Table A252 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2008, Hungary (second	
half-sample: <i>n</i> = 726)	302
Table A253 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Hungary $(N =$	

1,452)	30
Table A254 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Hungary (first half-sample: $n = 743$)	30
Table A255 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Hungary (first	
half-sample: $n = 743$)	30
Table A256 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Hungary (first	
half-sample: $n = 743$)	30
Table A257 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Hungary (first half-sample: $n = 743$)	30
Table A258 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-17 items): European Social Survey	
2010, Hungary (first half-sample: $n = 743$)	3
Table A259 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2010, Hungary (second half-	
sample: $n = 743$)	3
Table A260 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Hungary ($N =$	
1,486)	3
Table A261 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Hungary (first half-sample: $n = 987$)	3
Table A262 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Hungary (first	
half-sample: $n = 987$)	3
Table A263 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Hungary (first	
half-sample: $n = 987$)	3
Table A264 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2012,	
Hungary (first half-sample: $n = 987$)	3
Table A265 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation (2 factors): European Social Survey 2012,	
Hungary (first half-sample: $n = 987$)	313
Table A266 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2012, Hungary (second	
half-sample: <i>n</i> = 987)	314
Table A267 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Hungary ($N =$	
1,974)	315
Table A268 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Hungary (first half-sample: $n = 764$)	316
Table A269 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Hungary (first	
half-sample: $n = 764$)	317
Table A270 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Hungary (first	
half-sample: <i>n</i> = 764)	317
Table A271 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-15 items): European Social Survey	
2014, Hungary (first half-sample: $n = 764$)	318
Table A272 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of five models: European Social Survey 2014, Hungary (second half-	
sample: $n = 765$)	318
Table A273 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Hungary ($N =$	
1,529)	319
Table A274 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Ireland (first half-sample: $n = 961$)	320
Table A275 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Ireland (first	
half-sample: <i>n</i> = 961)	321
Table A276 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Ireland (first half-	
sample: $n = 961$)	321

Table A277 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
Ireland (first half-sample: $n = 961$)	322
Table A278 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Ireland (first	
half-sample: <i>n</i> = 961)	323
Table A279 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Ireland (second half-	
sample: $n = 962$)	323
Table A280 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Ireland ($N =$	
1,923)	324
Table A281 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Ireland (first half-sample: $n = 595$)	320
Table A282 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Ireland (first half-sample: $n = 595$)	32
Table A283 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Ireland (first half-	
sample: $n = 595$)	32
Table A284 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Ireland (first half-sample: $n = 595$)	32
Table A285 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2004, Ireland (first half-sample: $n = 595$)	32
Table A286 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-20 items): European Social Survey	
2004, Ireland (first half-sample: $n = 595$)	33
Table A287 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2004, Ireland (second half-	
sample: <i>n</i> = 595)	33
Table A288 Descriptive statistics, reliability coefficients and internal	

consistencies of the subscales: European Social Survey 2004, Ireland ($N =$	
1,190)	332
Table A289 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Ireland (first half-sample: $n = 826$)	334
Table A290 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Ireland (first	
half-sample: <i>n</i> = 826)	335
Table A291 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Ireland (first half-	
sample: $n = 829$)	335
Table A292 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2006,	
Ireland (first half-sample: $n = 829$)	336
Table A293 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Ireland (first half-sample: $n = 829$)	337
Table A294 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2006, Ireland (second half-	
sample: $n = 827$)	338
Table A295 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Ireland ($N =$	
1,653)	339
Table A296 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Ireland (first half-sample: $n = 882$)	340
Table A297 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Ireland (first	
half-sample: $n = 882$)	341
Table A298 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Ireland (first half-	
sample: <i>n</i> = 882)	341
Table A299 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
Ireland (first half-sample: $n = 882$)	342

Table A300 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Ireland (first half-sample: $n = 882$)	343
Table A301 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, Ireland (second half-	
sample: $n = 882$)	343
Table A302 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Ireland ($N =$	
1,764)	344
Table A303 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Ireland (first half-sample: $n = 1,210$)	346
Table A304 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Ireland (first	
half-sample: $n = 1,210$)	347
Table A305 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Ireland (first half-	
sample: $n = 1,210$)	348
Table A306 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Ireland (first half-sample: $n = 1,210$)	348
Table A307 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2010, Ireland (second half-	
sample: $n = 1,210$)	349
Table A308 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Ireland ($N =$	
2,420)	350
Table A309 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Ireland (first half-sample: $n = 1,314$)	351
Table A310 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Ireland (first	
half-sample: $n = 1,314$)	352
Table A311 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Ireland (first half-	

sample: $n = 1,314$)	352
Table A312 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Ireland (first half-sample: $n = 1,314$)	353
Table A313 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2012, Ireland (second half-	
sample: $n = 1,314$)	353
Table A314 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Ireland ($N =$	
2,628)	354
Table A315 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Ireland (first half-sample: $n = 1,195$)	356
Table A316 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Ireland (first	
half-sample: $n = 1,195$)	357
Table A317 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Ireland (first half-	
sample: $n = 1,195$)	357
Table A318 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2014,	
Ireland (first half-sample: $n = 1,195$)	358
Table A319 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Ireland (first half-sample: $n = 1,195$)	359
Table A320 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2014, Ireland (second half-	
sample: $n = 1,195$)	360
Table A321 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Ireland ($N =$	
2,390)	361
Table A322 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Netherlands (first half-sample: $n = 1,182$)	362
Table A323 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation: European Social Survey 2002, Netherlands	
(first half-sample: $n = 1,182$)	363
Table A324 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Netherlands (first	
half-sample: $n = 1,182$)	363
Table A325 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
Netherlands (first half-sample: $n = 1,182$)	364
Table A326 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Netherlands	
(first half-sample: $n = 1,182$)	365
Table A327 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Netherlands (second	
half-sample: $n = 1,182$)	365
Table A328 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Netherlands ($N =$	
2,364)	366
Table A329 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Netherlands (first half-sample: $n = 940$)	368
Table A330 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Netherlands	
(first half-sample: $n = 940$)	369
Table A331 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Netherlands (first	
half-sample: $n = 940$)	369
Table A332 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Netherlands (first half-sample: $n = 940$)	370
Table A333 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Netherlands (first half-sample: $n = 940$)	371
Table A334 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2004, Netherlands (second	

half-sample: $n = 941$)	3
Table A335 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Netherlands (first	
half-sample: $n = 1,881$)	3
Table A336 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Netherlands (first half-sample: $n = 944$)	3
Table A337 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Netherlands	
(first half-sample: $n = 944$)	3
Table A338 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Netherlands (first	
half-sample: <i>n</i> = 944)	3
Table A339 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Netherlands (first half-sample: $n = 944$)	3
Table A340 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2006, Nethelands (second	
half-sample: <i>n</i> = 945)	3
Table A341 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Netherlands ($N =$	
1,889)	3
Table A342 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Netherlands (first half-sample: $n = 889$)	3
Table A343 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Netherlands	
(first half-sample: $n = 889$)	3
Table A344 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Netherlands (first	
half-sample: <i>n</i> = 889)	3
Table A345 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
Netherlands (first half-sample: $n = 889$)	3
Table A346 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation (2 factors): European Social Survey 2008,	
Netherlands (first half-sample: $n = 889$)	382
Table A347 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2008, Netherlands (second	
half-sample: $n = 889$)	382
Table A348 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Netherlands ($N =$	
1,778)	383
Table A349 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Netherlands (first half-sample: $n = 914$)	385
Table A350 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Netherlands	
(first half-sample: $n = 914$)	386
Table A351 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Netherlands (first	
half-sample: $n = 914$)	386
Table A352 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2010,	
Netherlands (first half-sample: $n = 914$)	387
Table A353 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Netherlands (first half-sample: $n = 914$)	388
Table A354 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (4 factors-16 items): European Social Survey	
2010, Netherlands (first half-sample: $n = 914$)	389
Table A355 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2010, Netherlands (second	
half-sample: $n = 915$)	390
Table A356 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Netherlands ($N =$	
1,829)	391
Table A357 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Netherlands (first half-sample: $n = 922$)	392

Table A358 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2012, Netherlands
(first half-sample: $n = 922$)
Table A359 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Netherlands (first
half-sample: $n = 922$)
Table A360 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2012,
Netherlands (first half-sample: $n = 922$)
Table A361 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors-13 items): European Social Survey
2012, Netherlands (first half-sample: $n = 922$)
Table A362 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of seven models: European Social Survey 2012, Netherlands (second
half-sample: $n = 923$)
Table A363 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Netherlands ($N =$
1,845)
Table A364 Item analysis of Schwartz scale values of the European Social
Survey, 2014: Netherlands (first half-sample: $n = 913$)
Table A365 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2014, Netherlands
(first half-sample: $n = 913$)
Table A366 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2014, Netherlands (first
half-sample: $n = 913$)
Table A367 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (3 factors): European Social Survey 2014,
Netherlands (first half-sample: $n = 913$)
Table A368 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2014,
Netherlands (first half-sample: $n = 913$)
Table A369 Confirmatory factor analysis (maximum likelihood), goodness-of-

fit indices of eight models: European Social Survey 2014, Netherlands (second	
half-sample: <i>n</i> = 914)	400
Table A370 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Netherlands ($N =$	
1,827)	401
Table A371 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Norway (first half-sample: $n = 911$)	403
Table A372 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Norway (first	
half-sample: $n = 911$)	404
Table A373 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Norway (first	
half-sample: $n = 911$)	404
Table A374 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
Norway (first half-sample: $n = 911$)	405
Table A375 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Norway (first half-sample: $n = 911$)	405
Table A376 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-11 items): European Social Survey	
2002, Norway (first half-sample: $n = 911$)	406
Table A377 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2002, Norway (second half-	
sample: $n = 911$)	406
Table A378 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Norway ($N =$	
1,822)	407
Table A379 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Norway (first half-sample: $n = 795$)	408
Table A380 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Norway (first	
half-sample: <i>n</i> = 795)	409

Table A381 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Norway (first	
half-sample: $n = 795$)	409
Table A382 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Norway (first half-sample: $n = 795$)	410
Table A383 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Norway (first	
half-sample: $n = 795$)	410
Table A384 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, Norway (second	
half-sample: $n = 796$)	411
Table A385 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Norway ($N =$	
1,591)	412
Table A386 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Norway (first half-sample: $n = 776$)	413
Table A387 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Norway (first	
half-sample: $n = 776$)	414
Table A388 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Norway (first	
half-sample: $n = 776$)	414
Table A389 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2006,	
Norway (first half-sample: $n = 776$)	415
Table A390 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Norway (first half-sample: $n = 776$)	416
Table A391 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-16 items): European Social Survey	
2006, Norway (first half-sample: $n = 776$)	417
Table A392 Confirmatory factor analysis (maximum likelihood), goodness-of-	

fit indices of nine models: European Social Survey 2006, Norway (second half-	417
sample: <i>n</i> = 777)	417
Table A393 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Norway ($N =$	
1,553)	418
Table A394 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Norway (first half-sample: $n = 698$)	420
Table A395 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Norway (first	
half-sample: $n = 698$)	421
Table A396 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Norway ($N =$	
698)	421
Table A397 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Norway (first half-sample: $n = 698$)	422
Table A398 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-10 items): European Social Survey	
2008, Norway (first half-sample: $n = 698$)	422
Table A399 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, Norway (second	
half-sample: <i>n</i> = 699)	423
Table A400 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Norway ($N =$	
1,397)	424
Table A401 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Norway (first half-sample: $n = 774$)	425
Table A402 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Norway (first	
half-sample: $n = 774$)	426
Table A403 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Norway (first	
half-sample: $n = 774$)	426

Table A404 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Norway (first half-sample: $n = 774$)	427
Table A405 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2010, Norway (second half-	
sample: $n = 774$)	427
Table A406 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Norway ($N =$	
1,548)	428
Table A407 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Norway (first half-sample: $n = 812$)	429
Table A408 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Norway (first	
half-sample: $n = 812$)	430
Table A409 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Norway (first	
half-sample: $n = 812$)	430
Table A410 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Norway (first half-sample: $n = 812$)	431
Table A411 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-15 items): European Social Survey	
2010, Norway (first half-sample: $n = 812$)	432
Table A412 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2012, Norway (second	
half-sample: $n = 812$)	432
Table A413 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Norway ($N =$	
1,624)	433
Table A414 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Norway (first half-sample: $n = 718$)	435
Table A415 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Norway (first	

half-sample: $n = 718$)
Table A416 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2014, Norway (first
half-sample: $n = 718$)
Table A417 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2014,
Norway (first half-sample: $n = 718$)
Table A418 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of six models: European Social Survey 2014, Norway (second half-
sample: $n = 718$)
Table A419 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2014, Norway ($N =$
1,436)
Table A420 Item analysis of Schwartz scale values of the European Social
Survey, 2002: Poland (first half-sample: $n = 1,055$)
Table A421 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2002, Poland (first
half-sample: $n = 1,055$)
Table A422 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2002, Poland (first half-
sample: $n = 1,055$)
Table A423 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2002,
Poland (first half-sample: $n = 1,055$)
Table A424 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of six models: European Social Survey 2002, Poland (second half-
sample: $n = 1,055$)
Table A425 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2002, Poland ($N =$
2,110)
Table A426 Item analysis of Schwartz scale values of the European Social
Survey, 2004: Poland (first half-sample: $n = 858$)
Table A427 Factor loadings of exploratory factor analysis (principal axis

factoring) with promax rotation: European Social Survey 2004, Poland (first	
half-sample: $n = 858$)	445
Table A428 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Poland (first half-	
sample: $n = 858$)	445
Table A429 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Poland (first half-sample: $n = 858$)	446
Table A430 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-12 items): European Social Survey	
2004, Poland (first half-sample: $n = 858$)	446
Table A431 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-16 items): European Social Survey	
2004, Poland (first half-sample: $n = 858$)	447
Table A432 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, Poland (second half-	
sample: $n = 858$)	447
Table A433 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Poland ($N =$	
1,716)	448
Table A434 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Poland (first half-sample: $n = 860$)	450
Table A435 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Poland (first	
half-sample: $n = 860$)	451
Table A436 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Poland (first half-	
sample: $n = 860$)	451
Table A437 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Poland (first half-sample: $n = 860$)	452
Table A438 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	

Poland (first half-sample: $n = 860$)
Table A439 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of eight models: European Social Survey 2006, Poland (second half-
sample: $n = 861$)
Table A440 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Poland ($N = 1,721$)
Table A441 Item analysis of Schwartz scale values of the European Social
Survey, 2008: Poland (first half-sample: $n = 809$)
Table A442 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2008, Poland (first
half-sample: $n = 809$)
Table A443 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, Poland (first half-
sample: $n = 809$)
Table A444 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2008,
Poland (first half-sample: $n = 809$)
Table A445 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2008,
Poland (first half-sample: $n = 809$)
Table A446 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of seven models: European Social Survey 2008, Poland (second half-
sample: <i>n</i> = 810)
Table A447 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2008, Poland (first half-
sample: <i>n</i> = 1,619)
Table A448 Item analysis of Schwartz scale values of the European Social
Survey, 2010: Poland (first half-sample: $n = 678$)
Table A449 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2010, Poland (first
half-sample: $n = 678$)
Table A450 Descriptive statistics, reliability coefficients and internal

consistencies of the subscales: European Social Survey 2010, Poland (first half-	
sample: $n = 678$)	462
Table A451 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2010,	
Poland (first half-sample: $n = 678$)	463
Table A452 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Poland (first half-sample: $n = 678$)	464
Table A453 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2010, Poland (second half-	
sample: $n = 679$)	465
Table A454 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Poland ($N =$	
1,751)	466
Table A455 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Poland (first half-sample: $n = 949$)	467
Table A456 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Poland (first	
half-sample: $n = 949$)	468
Table A457 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Poland (first half-	
sample: $n = 949$)	468
Table A458 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of four models: European Social Survey 2012, Poland (second half-	
sample: $n = 949$)	469
Table A459 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Poland ($N =$	
1,898)	470
Table A460 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Poland (first half-sample: $n = 807$)	471
Table A461 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Poland (first	
half-sample: $n = 807$)	472

Table A462 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Poland (first half-	
sample: $n = 807$)	472
Table A463 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-18 items): European Social Survey	
2014, Poland (first half-sample: $n = 807$)	473
Table A464 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of four models: European Social Survey 2014, Poland (second half-	
sample: $n = 808$)	473
Table A465 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Poland ($N =$	
1,615)	474
Table A466 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Portugal (first half-sample: $n = 755$)	476
Table A467 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Portugal (first	
half-sample: $n = 755$)	477
Table A468 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Portugal (first	
half-sample: $n = 755$)	477
Table A469 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Portugal (first half-sample: $n = 755$)	478
Table A470 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-16 items): European Social Survey	
2002, Portugal (first half-sample: $n = 755$)	479
Table A471 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Portugal (second	
half-sample: $n = 756$)	479
Table A472 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Portugal $(N =$	
1,511)	480
Table A473 Item analysis of Schwartz scale values of the European Social	

Survey, 2004: Portugal (first half-sample: $n = 1,026$)	482
Table A474 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Portugal (first	
half-sample: <i>n</i> = 1,026)	483
Table A475 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Portugal (first	
half-sample: <i>n</i> = 1,026)	483
Table A476 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Portugal (first half-sample: $n = 1,026$)	484
Table A477 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Portugal (first half-sample: $n = 1,026$)	485
Table A478 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-16 items): European Social Survey	
2004, Portugal (first half-sample: $n = 1,026$)	480
Table A479 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of ten models: European Social Survey 2004, Portugal (second half-	
sample: $n = 1,026$)	48′
Table A480 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Portugal ($N =$	
2,052)	488
Table A481 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Portugal (first half-sample: $n = 1,111$)	490
Table A482 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Portugal (first	
half-sample: <i>n</i> = 1,111)	49
Table A483 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Portugal (first	
half-sample: <i>n</i> = 1,111)	49
Table A484 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Portugal (first half-sample: $n = 1,111$)	492

Table A485 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-15 items): European Social Survey	
2006, Portugal (first half-sample: $n = 1,111$)	493
Table A486 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2006, Portugal (second	
half-sample: $n = 1,111$)	493
Table A487 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Portugal ($N =$	
2,222)	494
Table A488 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Portugal (first half-sample: $n = 1,183$)	496
Table A489 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Portugal (first	
half-sample: $n = 1,183$)	497
Table A490 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Portugal (first	
half-sample: $n = 1,183$)	497
Table A491 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Portugal (first half-sample: $n = 1,183$)	498
Table A492 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-15 items): European Social Survey	
2008, Portugal (first half-sample: $n = 1,183$)	499
Table A493 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, Portugal (second	
half-sample: $n = 1,184$)	499
Table A494 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Portugal ($N =$	
2,367)	500
Table A495 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Portugal (first half-sample: $n = 1,075$)	502
Table A496 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Portugal (first	

half-sample: $n = 1,075$)
Table A497 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2010, Portugal (first
half-sample: <i>n</i> = 1,075)
Table A498 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2010,
Portugal (first half-sample: $n = 1,075$)
Table A499 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of six models: European Social Survey 2010, Portugal (second half-
sample: $n = 1,075$)
Table A500 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2010, Portugal ($N =$
2,150)
Table A501 Item analysis of Schwartz scale values of the European Social
Survey, 2012: Portugal (first half-sample: $n = 1,075$)
Table A502 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation: European Social Survey 2012, Portugal (first
half-sample: $n = 1,075$)
Table A503 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Portugal (first
half-sample: $n = 1,075$)
Table A504 Factor loadings of exploratory factor analysis (principal axis
factoring) with promax rotation (2 factors): European Social Survey 2012,
Portugal (first half-sample: $n = 1,075$)
Table A505 Confirmatory factor analysis (maximum likelihood), goodness-of-
fit indices of six models: European Social Survey 2012, Portugal (second half-
sample: <i>n</i> = 1,076)
Table A506 Descriptive statistics, reliability coefficients and internal
consistencies of the subscales: European Social Survey 2012, Portugal ($N =$
2,151)
Table A507 Item analysis of Schwartz scale values of the European Social
Survey, 2014: Portugal (first half-sample: $n = 632$)
Table A508 Factor loadings of exploratory factor analysis (principal axis

factoring) with promax rotation: European Social Survey 2014, Portugal (first	
half-sample: $n = 632$)	513
Table A509 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Portugal (first	
half-sample: $n = 632$)	513
Table A510 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2014,	
Portugal (first half-sample: $n = 632$)	514
Table A511 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Portugal (first half-sample: $n = 632$)	515
Table A512 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2014, Portugal (second	
half-sample: $n = 633$)	515
Table A513 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Portugal ($N =$	
1,265)	516
Table A514 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Slovenia (first half-sample: $n = 759$)	518
Table A515 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Slovenia (first	
half-sample: $n = 759$)	519
Table A516 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Slovenia (first	
half-sample: $n = 759$)	519
Table A517 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Slovenia (first half-sample: $n = 759$)	520
Table A518 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-13 items): European Social Survey	
2002, Slovenia (first half-sample: $n = 759$)	520
Table A519 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Slovenia (second	

half-sample: $n = 759$)	52
Table A520 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Slovenia ($N =$	
1,519)	52
Table A521 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Slovenia (first half-sample: $n = 721$)	52
Table A522 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Slovenia (first	
half-sample: <i>n</i> = 721)	52
Table A523 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Slovenia (first	
half-sample: <i>n</i> = 721)	52
Table A524 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Slovenia (first half-sample: $n = 721$)	52
Table A525 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-17 items): European Social Survey	
2004, Slovenia (first half-sample: $n = 721$)	52
Table A526 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, Slovenia (second	
half-sample: $n = 721$)	52
Table A527 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Slovenia ($N =$	
1,442)	52
Table A528 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Slovenia (first half-sample: $n = 738$)	52
Table A529 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Slovenia (first	
half-sample: $n = 738$)	53
Table A530 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Slovenia (first	
half-sample: $n = 738$)	5
Table A531 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation (2 factors-14 items): European Social Survey	
2006, Slovenia (first half-sample: $n = 738$)	531
Table A532 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of five models: European Social Survey 2006, Slovenia (second half-	
sample: $n = 738$)	531
Table A533 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Slovenia ($N =$	
1,476)	532
Table A534 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Slovenia (first half-sample: $n = 643$)	533
Table A535 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Slovenia (first	
half-sample: $n = 643$)	534
Table A536 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Slovenia (first	
half-sample: $n = 643$)	534
Table A537 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
Slovenia (first half-sample: $n = 643$)	535
Table A538 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Slovenia (first half-sample: $n = 643$)	536
Table A539 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, Slovenia (second	
half-sample: $n = 643$	536
Table A540 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Slovenia ($N =$	
1,286)	537
Table A541 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Slovenia (first half-sample: $n = 701$)	539
Table A542 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Slovenia (first	
half-sample: <i>n</i> = 701)	540

Table A543 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Slovenia (first	
half-sample: $n = 701$)	540
	340
Table A544 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	<i>5 1</i> 1
Slovenia (first half-sample: $n = 701$)	541
Table A545 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-15 items): European Social Survey	
2010, Slovenia (first half-sample: $n = 701$)	542
Table A546 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2010, Slovenia (second	
half-sample: $n = 701$)	542
Table A547 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Slovenia ($N =$	
1,403)	543
Table A548 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Slovenia (first half-sample: $n = 628$)	545
Table A549 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Slovenia (first	
half-sample: $n = 628$)	545
Table A550 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Slovenia (first	
half-sample: $n = 628$)	546
Table A551 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Slovenia (first half-sample: $n = 628$)	546
Table A552 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2012, Slovenia (second half-	
sample: $n = 629$)	547
Table A553 Descriptive statistics, reliability coefficients and internal	J 1 /
consistencies of the subscales: European Social Survey 2012, Slovenia ($N =$	
1,257)	547
Table A554 Item analysis of Schwartz scale values of the European Social	J4 /
Table A334 Item analysis of Schwartz scale values of the European Social	

Survey, 2014: Slovenia (first half-sample: $n = 612$)	549
Table A555 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Slovenia (first	
half-sample: $n = 612$)	549
Table A556 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Slovenia (first	
half-sample: $n = 612$)	550
Table A557 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Slovenia (first half-sample: $n = 612$)	550
Table A558 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-10 items): European Social Survey	
2014, Slovenia (first half-sample: $n = 612$)	551
Table A559 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2014, Slovenia (second	
half-sample: $n = 612$)	551
Table A560 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Slovenia (first	
half-sample: $n = 1,224$)	552
Table A561 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Spain (first half-sample: $n = 864$)	553
Table A562 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Spain (first	
half-sample: $n = 864$)	554
Table A563 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Spain (first half-	
sample: $n = 864$)	554
Table A564 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Spain (first half-sample: $n = 864$)	555
Table A565 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2002, Spain (first half-sample: $n = 864$)	556

Table A566 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Spain (second half-	
sample: $n = 864$)	556
Table A567 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Spain ($N =$	
1,729)	557
Table A568 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Spain (first half-sample: $n = 831$)	559
Table A569 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Spain (first	
half-sample: $n = 831$)	560
Table A570 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Spain (first half-	
sample: $n = 831$)	560
Table A571 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Spain (first half-sample: $n = 831$)	561
Table A572 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2004, Spain (first half-sample: $n = 831$)	562
Table A573 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, Spain (second half-	
sample: $n = 831$)	562
Table A574 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Spain ($N = 1,663$)	563
Table A575 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Spain (first half-sample: $n = 938$)	564
Table A576 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Spain (first	
half-sample: <i>n</i> = 938)	565
Table A577 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Spain (first half-	
sample: $n = 938$)	565

Table A578 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Spain (first half-sample: $n = 938$)	566
Table A579 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2006, Spain (first half-sample: $n = 938$)	567
Table A580 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-14 items): European Social Survey	
2006, Spain (first half-sample: <i>n</i> = 938)	567
Table A581 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Spain ($N =$	
1,876)	568
Table A582 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Spain (first half-sample: $n = 1,288$)	570
Table A583 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Spain (first	
half-sample: $n = 1,288$)	571
Table A584 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Spain (first half-	
sample: $n = 1,288$)	571
Table A585 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
Spain (first half-sample: $n = 1,288$)	572
Table A586 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Spain (first half-sample: $n = 1,288$)	572
Table A587 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, Spain (second half-	
sample: $n = 1,288$)	573
Table A588 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Spain ($N =$	
2,576)	574
Table A589 Item analysis of Schwartz scale values of the European Social	

Survey, 2010: Spain (first half-sample: $n = 942$)	575
Table A590 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Spain (first	
half-sample: $n = 942$)	575
Table A591 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Spain (first half-	
sample: $n = 942$)	576
Table A592 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of three models: European Social Survey 2010, Spain (second half-	
sample: $n = 943$)	576
Table A593 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Spain ($N =$	
1,885)	577
Table A594 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Spain (first half-sample: $n = 944$)	578
Table A595 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Spain (first	
half-sample: <i>n</i> = 944)	579
Table A596 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Spain (first half-	
sample: $n = 944$)	579
Table A597 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2012,	
Spain (first half-sample: $n = 944$)	580
Table A598 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
Spain (first half-sample: $n = 944$)	581
Table A599 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2012, Spain (second half-	
sample: <i>n</i> = 945)	581
Table A600 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Spain ($N =$	
1,889)	582

Table A601 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Spain (first half-sample: $n = 962$)	584
Table A602 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Spain (first	
half-sample: <i>n</i> = 962)	585
Table A603 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Spain (first half-	
sample: $n = 962$)	585
Table A604 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Spain (first half-sample: $n = 962$)	586
Table A605 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of five models: European Social Survey 2014, Spain (second half-	
sample: $n = 963$)	586
Table A606 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Spain ($N =$	
1,925)	587
Table A607 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Sweden (first half-sample: $n = 826$)	588
Table A608 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Sweden (first	
half-sample: $n = 826$)	589
Table A609 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Sweden (first	
half-sample: $n = 826$)	589
Table A610 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
Sweden (first half-sample: $n = 826$)	590
Table A611 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	
Sweden (first half-sample: $n = 826$)	590
Table A612 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2002, Sweden (second	

half-sample: $n = 827$)	59 1
Table A613 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Sweden ($N =$	
1,653)	592
Table A614 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Sweden (first half-sample: $n = 816$)	593
Table A615 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Sweden (first	
half-sample: <i>n</i> = 816)	59
Table A616 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Sweden (first	
half-sample: $n = 816$)	594
Table A617 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Sweden (first half-sample: $n = 816$)	59
Table A618 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Sweden (first half-sample: $n = 816$)	59
Table A619 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-14 items): European Social Survey	
2004, Sweden (first half-sample: $n = 816$)	59
Table A620 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2004, Sweden (second half-	
sample: <i>n</i> = 816)	59
Table A621 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Sweden ($N =$	
1,632)	59
Table A622 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: Sweden (first half-sample: $n = 782$)	59
Table A623 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, Sweden (first	
half-sample: $n = 782$)	60
Table A624 Descriptive statistics, reliability coefficients and internal	

consistencies of the subscales: European Social Survey 2006, Sweden (first	
half-sample: $n = 782$)	60
Table A625 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
Sweden (first half-sample: $n = 782$)	60
Table A626 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-10 items): European Social Survey	
2006, Sweden (first half-sample: $n = 782$)	60
Table A627 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-9 items): European Social Survey	
2006, Sweden (first half-sample: $n = 782$)	60
Table A628 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2006, Sweden (second	
half-sample: $n = 782$)	60
Table A629 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, Sweden $(N =$	
1,564)	60
Table A630 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: Sweden (first half-sample: $n = 765$)	60
Table A631 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Sweden (first	
half-sample: <i>n</i> = 765)	60
Table A632 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Sweden (first	
half-sample: <i>n</i> = 765)	60
Table A633 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
Sweden (first half-sample: $n = 765$)	60
Table A634 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
Sweden (first half-sample: $n = 765$)	60
Table A635 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2008, Sweden (second	

half-sample: $n = 766$)	607
Table A636 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Sweden ($N =$	
1,531)	608
Table A637 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Sweden (first half-sample: $n = 748$)	609
Table A638 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Sweden (first	
half-sample: <i>n</i> = 748)	609
Table A639 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Sweden (first	
half-sample: $n = 748$)	610
Table A640 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Sweden (first half-sample: $n = 748$)	610
Table A641 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-8 items): European Social Survey	
2010, Sweden (first half-sample: $n = 748$)	611
Table A642 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2010, Sweden (second	
half-sample: $n = 749$)	61
Table A643 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Sweden ($N =$	
1,497)	612
Table A644 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Sweden (first half-sample: $n = 923$)	613
Table A645 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Sweden (first	
half-sample: $n = 923$)	614
Table A646 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Sweden (first	
half-sample: $n = 923$)	614
Table A647 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation (2 factors): European Social Survey 2012,	
Sweden (first half-sample: $n = 923$)	615
Table A648 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-12 items): European Social Survey	
2012, Sweden (first half-sample: $n = 923$)	615
Table A649 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2012, Sweden (second	
half-sample: $n = 924$)	616
Table A650 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Sweden ($N =$	
1,847)	617
Table A651 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Sweden (first half-sample: $n = 895$)	618
Table A652 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Sweden (first	
half-sample: $n = 895$)	619
Table A653 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Sweden (first	
half-sample: $n = 895$)	619
Table A654 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Sweden (first half-sample: $n = 895$)	620
Table A655 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2014, Sweden (second half-	
sample: $n = 896$)	620
Table A656 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Sweden ($N =$	
1,791)	621
Table A657 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: Switzerland (first half-sample: $n = 1,020$)	622
Table A658 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, Switzerland	
(first half-sample: $n = 1,020$)	623

Table A659 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Switzerland (first	
	(22
half-sample: $n = 1,020$)	623
Table A660 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2002,	60 4
Switzerland (first half-sample: $n = 1,020$)	624
Table A661 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors-9 items): European Social Survey	
2002, Switzerland (first half-sample: $n = 1,020$)	624
Table A662 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2002, Switzerland (second	
half-sample: $n = 1,020$)	625
Table A663 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, Switzerland ($N =$	
2,040)	626
Table A664 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: Switzerland (first half-sample: $n = 1,070$)	627
Table A665 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, Switzerland	
(first half-sample: $n = 1,070$)	628
Table A666 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, Switzerland (first	
half-sample: $n = 1,070$)	628
Table A667 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2004,	
Switzerland (first half-sample: $n = 1,070$)	629
Table A668 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
Switzerland (first half-sample: $n = 1,070$)	629
Table A669 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, Switzerland (second	
half-sample: $n = 1,071$)	630
Table A670 Descriptive statistics, reliability coefficients and internal	
<u> </u>	

consistencies of the subscales: European Social Survey 2004, Switzerland ($N = 1$)	
2,141)	631
Table A671 Item analysis of Schwartz scale values of the European Social Survey, 2006: Switzerland (first half-sample: $n = 902$)	632
Table A672 Factor loadings of exploratory factor analysis (principal axis	032
factoring) with promax rotation: European Social Survey 2006, Switzerland	
	632
Table A673 Descriptive statistics, reliability coefficients and internal	032
consistencies of the subscales: European Social Survey 2006, Switzerland (first	
	633
Table A674 Factor loadings of exploratory factor analysis (principal axis	055
factoring) with promax rotation (2 factors): European Social Survey 2006,	
	633
Table A675 Confirmatory factor analysis (maximum likelihood), goodness-of-	033
fit indices of six models: European Social Survey 2006, Switzerland (second	
	634
Table A676 Descriptive statistics, reliability coefficients and internal	051
consistencies of the subscales: European Social Survey 2006, Switzerland ($N =$	
•	635
Table A677 Item analysis of Schwartz scale values of the European Social	
	636
Table A678 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, Switzerland	
	636
Table A679 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Switzerland (first	
	637
Table A680 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of three models: European Social Survey 2008, Switzerland (second	
•	637
Table A681 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, Switzerland ($N =$	
	638

Table A682 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: Switzerland (first half-sample: $n = 753$)	639
Table A683 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, Switzerland	
(first half-sample: $n = 753$)	640
Table A684 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Switzerland (first	
half-sample: $n = 753$)	640
Table A685 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
Switzerland (first half-sample: $n = 753$)	641
Table A686 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-11 items): European Social Survey	
2010, Switzerland (first half-sample: $n = 753$)	641
Table A687 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of seven models: European Social Survey 2010, Switzerland (second	
half-sample: $n = 753$)	642
Table A688 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, Switzerland ($N =$	
1,506)	643
Table A689 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: Switzerland (first half-sample: $n = 746$)	644
Table A690 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, Switzerland	
(first half-sample: $n = 746$)	645
Table A691 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Switzerland (first	
half-sample: $n = 746$)	645
Table A692 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-11 items): European Social Survey	
2012, Switzerland (first half-sample: $n = 746$)	646
Table A693 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2012, Switzerland (second	

half-sample: $n = 747$)	64
Table A694 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, Switzerland ($N =$	
1,493)	64
Table A695 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: Switzerland (first half-sample: $n = 766$)	64
Table A696 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, Switzerland	
(first half-sample: $n = 766$)	64
Table A697 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Switzerland (first	
half-sample: <i>n</i> = 766)	64
Table A698 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
Switzerland (first half-sample: $n = 766$)	65
Table A699 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2014, Sweden (second half-	
sample: $n = 766$)	65
Table A700 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, Switzerland ($N =$	
1,532)	65
Table A701 Item analysis of Schwartz scale values of the European Social	
Survey, 2002: United Kingdom (first half-sample: $n = 911$)	65
Table A702 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2002, United	
Kingdom (first half-sample: $n = 911$)	65
Table A703 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, United Kingdom	
(first half-sample: $n = 911$)	65
Table A704 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2002,	
United Kingdom (first half-sample: $n = 911$)	65
Table A705 Factor loadings of exploratory factor analysis (principal axis	

factoring) with promax rotation (2 factors): European Social Survey 2002,	
United Kingdom (first half-sample: $n = 911$)	656
Table A706 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (4 factors-14 items): European Social Survey	
2002, United Kingdom (first half-sample: $n = 911$)	657
Table A707 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2002, United Kingdom	
(second half-sample: $n = 911$)	657
Table A708 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2002, United Kingdom	
(N = 1,822)	658
Table A709 Item analysis of Schwartz scale values of the European Social	
Survey, 2004: United Kingdom (first half-sample: $n = 948$)	660
Table A710 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2004, United	
Kingdom (first half-sample: $n = 948$)	661
Table A711 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, United Kingdom	
(first half-sample: $n = 948$)	661
Table A712 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2004,	
United Kingdom (first half-sample: $n = 948$)	662
Table A713 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors-13 items): European Social Survey	
2004, United Kingdom (first half-sample: $n = 948$)	663
Table A714 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2004, United Kingdom	
(second half-sample: $n = 949$)	663
Table A715 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2004, United Kingdom	
(N = 1,897)	664
Table A716 Item analysis of Schwartz scale values of the European Social	
Survey, 2006: United Kingdom (first half-sample: $n = 1,197$)	665

Table A717 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2006, United	
Kingdom (first half-sample: $n = 1,197$)	666
Table A718 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, United Kingdom	
(first half-sample: $n = 1,197$)	666
Table A719 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2006,	
United Kingdom (first half-sample: $n = 1,197$)	667
Table A720 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of six models: European Social Survey 2006, United Kingdom	
(second half-sample: $n = 1,197$)	667
Table A721 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2006, United Kingdom	
(N = 2,394)	668
Table A722 Item analysis of Schwartz scale values of the European Social	
Survey, 2008: United Kingdom (first half-sample: $n = 1,176$)	669
Table A723 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2008, United	
Kingdom (first half-sample: $n = 1,176$)	670
Table A724 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2008, United Kingdom	
(first half-sample: $n = 1,176$)	670
Table A725 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2008,	
United Kingdom (first half-sample: $n = 1,176$)	671
Table A726 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2008,	
United Kingdom (first half-sample: $n = 1,176$)	672
Table A727 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2008, United Kingdom	
(second half-sample: $n = 1,176$)	672
Table A728 Descriptive statistics, reliability coefficients and internal	

consistencies of the subscales: European Social Survey 2008, United Kingdom	
(N = 2,352)	673
Table A729 Item analysis of Schwartz scale values of the European Social	
Survey, 2010: United Kingdom (first half-sample: $n = 1,211$)	675
Table A730 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2010, United	
Kingdom (first half-sample: $n = 1,211$)	676
Table A731 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, United Kingdom	
(first half-sample: $n = 1,211$)	676
Table A732 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2010,	
United Kingdom (first half-sample: $n = 1,211$)	677
Table A733 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2010,	
United Kingdom (first half-sample: $n = 1,211$)	678
Table A734 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2010, United Kingdom	
(second half-sample: $n = 1,211$)	679
Table A735 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2010, United Kingdom	
(N = 2,422)	680
Table A736 Item analysis of Schwartz scale values of the European Social	
Survey, 2012: United Kingdom (first half-sample: $n = 1,143$)	681
Table A737 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2012, United	
Kingdom (first half-sample: $n = 1,143$)	682
Table A738 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, United Kingdom	
(first half-sample: $n = 1,143$)	682
Table A739 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2012,	
United Kingdom (first half-sample: $n = 1,143$)	683

Table A740 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2012,	
United Kingdom (first half-sample: $n = 1,143$)	684
Table A741 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (4 factors-14 items): European Social Survey	
2012, United Kingdom (first half-sample: $n = 1,143$)	685
Table A742 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of nine models: European Social Survey 2012, United Kingdom	
(second half-sample: $n = 1,143$)	685
Table A743 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2012, United Kingdom	
(N = 2,286)	686
Table A744 Item analysis of Schwartz scale values of the European Social	
Survey, 2014: United Kingdom (first half-sample: $n = 1,132$)	688
Table A745 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation: European Social Survey 2014, United	
Kingdom (first half-sample: $n = 1,132$)	689
Table A746 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, United Kingdom	
(first half-sample: $n = 1,132$)	689
Table A747 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (3 factors): European Social Survey 2014,	
United Kingdom (first half-sample: $n = 1,132$)	690
Table A748 Factor loadings of exploratory factor analysis (principal axis	
factoring) with promax rotation (2 factors): European Social Survey 2014,	
United Kingdom (first half-sample: $n = 1,132$)	691
Table A749 Confirmatory factor analysis (maximum likelihood), goodness-of-	
fit indices of eight models: European Social Survey 2014, United Kingdom	
(second half-sample: $n = 1,132$)	691
Table A750 Descriptive statistics, reliability coefficients and internal	
consistencies of the subscales: European Social Survey 2014, United Kingdom	
(first half-sample: $n = 2,264$)	692
Table B1 Item analysis of the 2012 European Social Survey measurement of	

wellbeing for Belgium (first half-sample: $n = 934$)	694
Table B2 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Belgium ($n = 934$): Goodness-of-fit indices	695
Table B3 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Belgium (n = 934)	696
Table B4 Descriptive statistics, convergent and dicriminant validity, composite	
reliability and internal consistencies of the 2012 European Social Survey	
wellbeing subscales: Belgium ($N = 1,869$)	699
Table B5 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Denmark (first half-sample: $n = 825$)	700
Table B6 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Denmark ($n = 825$): Goodness-of-fit indices	701
Table B7 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Denmark $(n = 825)$	702
Table B8 Descriptive statistics, convergent and dicriminant validity, composite	
reliability and internal consistencies of the 2012 European Social Survey	
wellbeing subscales: Denmark ($N = 1,650$)	705
Table B9 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Finland (first half-sample: $n = 1,098$)	706
Table B10 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Finland	
(n = 1,098): Goodness-of-fit indices	707
Table B11 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	

correlation matrix applying geomin rotation on the first half-sample of Finland	
(n = 1,098)	708
Table B12 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Finland $(N = 2,197)$	711
Table B13 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for France (first half-sample: $n = 984$)	712
Table B14 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first split-half sample of	
France ($n = 984$): Goodness-of-fit indices	713
Table B15 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of France	
(n = 984)	714
Table B16 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: France ($N = 1,968$)	717
Table B17 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Germany (first half-sample: $n = 1,479$)	718
Table B18 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Germany ($n = 1,479$): Goodness-of-fit indices	719
Table B19 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Germany ($n = 1,479$)	720
Table B20 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Germany ($N = 2,958$)	723
Table B21 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Hungary (first half-sample: $n = 1,007$)	724

Table B22 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Hungary ($n = 1,007$): Goodness-of-fit indices	725
Table B23 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Hungary $(n = 1,007)$	726
Table B24 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Hungary ($N = 2,014$)	729
Table B25 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Ireland (first half-sample: $n = 1,314$)	730
Table B26 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Ireland	
(n = 1,314): Goodness-of-fit indices	731
Table B27 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Ireland	
(n = 1,314)	732
Table B28 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Ireland ($N = 2,628$)	735
Table B29 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for the Netherlands (first half-sample: $n = 922$)	736
Table B30 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of the	
Netherlands ($n = 922$): Goodness-of-fit indices	737
Table B31 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of the	

Netherlands ($n = 922$)	738
Table B32 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Netherlands ($N = 1,845$)	741
Table B33 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Norway (first half-sample: $n = 812$)	742
Table B34 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Norway	
(n = 812): Goodness-of-fit indices	743
Table B35 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Norway	
(n = 812)	74
Table B36 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Norway ($N = 1,624$)	74
Table B37 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Portugal (first half-sample: $n = 1,075$)	74
Table B38 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Portugal ($n = 1,075$): Goodness-of-fit indices	74
Table B39 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Portugal (<i>n</i> = 1,075)	75
Table B40 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Portugal ($N = 2,151$)	75
Table B41 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Slovenia (first half-sample: $n = 628$)	75
Table B42 Exploratory factor analysis of the 2012 European Social Survey	

wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Slovenia ($n = 628$): Goodness-of-fit indices	755
Table B43 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Slovenia (<i>n</i> = 628)	756
Table B44 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Slovenia ($N = 1,257$)	759
Table B45 Item analysis of the 2012 European Social Survey measurement of	
personal and social wellbeing for Spain (first half-sample: $n = 944$)	760
Table B46 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Spain	
(n = 943): Goodness-of-fit indices	761
Table B47 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Spain (n	
= 943)	762
Table B48 Descriptive statistics, convergent and discriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Spain (full sample: $N = 1,888$)	765
Table B49 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Sweden (first half-sample: $n = 923$)	766
Table B50 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Sweden	
(n = 923): Goodness-of-fit indices	767
Table B51 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of Sweden	
(n = 923)	768

Table B52 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Sweden ($N = 1,847$)	771
Table B53 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for Switzerland (first half-sample: $n = 746$)	772
Table B54 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Switzerland ($n = 746$): Goodness-of-fit indices	773
Table B55 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of	
Switzerland ($n = 746$)	774
Table B56 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: Switzerland ($N = 1,493$)	777
Table B57 Item analysis of the 2012 European Social Survey measurement of	
wellbeing for the United Kingdom (first half-sample: $n = 1,143$)	778
Table B58 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of the	
United Kingdom ($n = 1,143$): Goodness-of-fit indices	779
Table B59 Exploratory factor analysis of the 2012 European Social Survey	
wellbeing items performed with robust weighted least squares of the polychoric	
correlation matrix applying geomin rotation on the first half-sample of the	
United Kingdom ($n = 1,143$)	780
Table B60 Descriptive statistics, convergent and dicriminant validity,	
composite reliability and internal consistencies of the 2012 European Social	
Survey wellbeing subscales: United Kingdom ($N = 2,286$)	783

Figures

Figure 1 Structural relations among the ten values and the two dimensions	14
Figure 2 Standardized solution for the 2 first-order correlated factors (model 2-	
13 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Belgium (second half-sample:	
<i>n</i> = 935)	44
Figure 3 Standardized solution for the 2 first-order correlated factors	
(model 2-13 items) without cross-loadings based on CFA analysis.	
Observed variables are represented by rectangles and latent	
variables are enclosed in ellipses: European Social Survey 2012, Belgium	
(<i>N</i> = 1,869)	45
Figure 4 Standardized solution for the model with 5 first-order correlated	
factors and without cross-loading items based on CFA analysis performed on	
the second split-half sample of Poland ($n = 947$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 3.75$, CFI = .926, TLI = .914, RMSEA (90%	
CI) = .054 (.050057)	76
Figure 5 Standardized solution for the model with 5 first-order correlated	
factors and without cross-loading items based on CFA analysis performed on	
the full sample of Poland ($N = 1,896$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 5.82$, CFI = .937, TLI = .925, RMSEA (90% CI) = .050 (.048053)	78
Figure A1 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Belgium (second half-sample: $n = 949$)	122
Figure A2 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Belgium (N = 1,899)	123
Figure A3 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	

represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Belgium (second half-sample: $n = 889$)	127
Figure A4 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Belgium (N = 1,778)	128
Figure A5 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Belgium (second half-sample: $n = 899$)	131
Figure A6 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Belgium (N = 1,798)	132
Figure A7 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Belgium (second half-sample: $n = 880$)	136
Figure A8 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Belgium (N = 1,760)	137
Figure A9 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Belgium (second half-sample: $n = 852$)	141
Figure A10 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Belgium (N = 1,704)	142
Figure A11 Standardized solution for the 3 first-order correlated factors (model	
3c-9 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	

European Social Survey 2014, Belgium (second half-sample: $n = 885$)	146
Figure A12 Standardized solution for the 3 first-order correlated factors (model	
3c-9 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Belgium (N = 1,769)	147
Figure A13 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Denmark (second half-sample: $n = 753$)	150
Figure A14 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Denmark (N = 1,506)	151
Figure A15 Standardized solution for the 2 first-order correlated factors (model	
2-10 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Denmark (first half-sample: $n = 744$)	154
Figure A16 Standardized solution for the 2 first-order correlated factors (model	
2-10 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Denmark (N = 1,487)	155
Figure A17 Standardized solution for the 2 first-order correlated factors (model	
2-9 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Denmark (second half-sample: $n = 753$)	158
Figure A18 Standardized solution for the 2 first-order correlated factors (model	
2-9 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Denmark (N = 1,505)	159
Figure A19 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Denmark (second half-sample: $n = 805$)	163

Figure A20 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Denmark (N = 1,610)	164
Figure A21 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Denmark (second half-sample: $n = 788$)	167
Figure A22 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Denmark (N = 1,576)	168
Figure A23 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Denmark (second half-sample: $n = 825$)	171
Figure A24 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Denmark (N = 1,650)	172
Figure A25 Standardized solution for the 3 first-order correlated factors (model	
3b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Denmark (second half-sample: $n = 751$)	176
Figure A26 Standardized solution for the 3 first-order correlated factors (model	
3b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Denmark (N = 1,502)	177
Figure A27 Standardized solution for the 2 first-order correlated factors (model	
2b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Finland (second half-sample: $n = 865$)	180
Figure A28 Standardized solution for the 2 first-order correlated factors (model	

2b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Finland (N = 1,730)	181
Figure A29 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Finland (second half-sample: $n =$	
860)	185
Figure A30 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Finland (N = 1,719)	186
Figure A31 Standardized solution for the 4 first-order correlated factors (model	
4d-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Finland (second half-sample: $n = 830$)	192
Figure A32 Standardized solution for the 4 first-order correlated factors (model	
4d-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Finland (N = 1,659)	193
Figure A33 Standardized solution for the 2 first-order correlated factors (model	
2a) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Finland (second half-sample: $n = 953$)	195
Figure A34 Standardized solution for the 2 first-order correlated factors (model	
2a) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Finland (N = 1,906)	196
Figure A35 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Finland (second half-sample: $n = 828$)	201
Figure A36 Standardized solution for the 3 first-order correlated factors (model	

3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Finland (N = 1,655)	202
Figure A37 Standardized solution for the 3 first-order correlated factors (model	
3c-12 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Finland (second half-sample: $n = 1,099$)	206
Figure A38 Standardized solution for the 3 first-order correlated factors (model	
3c-12 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Finland (N = 2,197)	207
Figure A39 Standardized solution for the 2 first-order correlated factors (model	
2-10 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Finland (second half-sample: $n = 1,044$)	210
Figure A40 Standardized solution for the 2 first-order correlated factors (model	
2-10 items) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Finland (N = 2,087)	211
Figure A41 Standardized solution for the 2 first-order correlated factors (model	
2d-14 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Finland (second half-sample: $n = 681$)	216
Figure A42 Standardized solution for the 2 first-order correlated factors (model	
2d-14 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Finland ($N = 1,361$)	217
Figure A43 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Finland (second half-sample: $n = 853$)	220
Figure A44 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	

represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Finland (N = 1,705)	221
Figure A45 Standardized solution for the 3 first-order correlated factors (model	
3c-14 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, France (second half-sample: $n = 993$)	227
Figure A46 Standardized solution for the 3 first-order correlated factors (model	
3c-14 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, France ($N = 1,986$)	228
Figure A47 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, France (second half-sample: $n = 1,037$)	232
Figure A48 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, France ($N = 2,073$)	233
Figure A49 Standardized solution for the 4 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, France (second half-sample: $n = 864$)	237
Figure A50 Standardized solution for the 4 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, France ($N = 1,728$)	238
Figure A51 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, France (second half-sample: $n = 984$)	243
Figure A52 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	

European Social Survey 2012, France ($N = 1,968$)	244
Figure A53 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, France (second half-sample: $n = 959$)	248
Figure A54 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, France (N = 1,917)	249
Figure A55 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Germany (second half-sample: $n = 1,417$)	253
Figure A56 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Germany (N = 2,833)	254
Figure A57 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Germany (second half-sample: $n = 1,435$)	258
Figure A58 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Germany (<i>N</i> = 2,780)	259
Figure A59 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Germany (second half-sample: $n = 1,458$)	263
Figure A60 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Germany ($N = 2,916$)	264

Figure A61 Standardized solution for the 4 first-order correlated factors (model	
4c-12 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Germany (second half-sample: $n = 1,376$)	269
Figure A62 Standardized solution for the 4 first-order correlated factors (model	
4c-12 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Germany (second half-sample: $n = 2,751$)	270
Figure A63 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Germany (second half-sample: $n = 1,516$)	273
Figure A64 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Germany ($N = 3,031$)	274
Figure A65 Standardized solution for the 2 first-order correlated factors (model	
2c-9 items) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Germany (second half-sample: $n = 1,479$)	278
Figure A66 Standardized solution for the 2 first-order correlated factors (model	
2c-9 items) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Germany ($N = 2,958$)	279
Figure A67 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Germany (second half-sample: $n = 1,513$)	282
Figure A68 Standardized solution for the 3 first-order correlated factors (model	
3c-11 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Germany ($N = 3,025$)	283
Figure A69 Standardized solution for the 2 first-order correlated factors (model	

2e-13 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Hungary (second half-sample: $n =$	
822)	288
Figure A70 Standardized solution for the 2 first-order correlated factors (model	
2e-13 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Hungary (N = 1,644)	289
Figure A71 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Hungary (second half-sample: $n = 734$)	292
Figure A72 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Hungary (N = 1,468)	293
Figure A73 Standardized solution for the 2 first-order correlated factors (model	
2e-13 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Hungary (second half-sample: $n = 740$)	298
Figure A74 Standardized solution for the 2 first-order correlated factors (model	
2e-13 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Hungary (N = 1,479)	299
Figure A75 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Hungary (second half-sample: $n = 726$)	302
Figure A76 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Hungary (N = 1,452)	303
Figure A77 Standardized solution for the 2 first-order correlated factors (model	

2b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Hungary (second half-sample: $n = 743$)	308
Figure A78 Standardized solution for the 2 first-order correlated factors (model	
2b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Hungary (N = 1,486)	309
Figure A79 Standardized solution for the 4 first-order correlated factors (model	
4b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Hungary (second half-sample: $n = 987$)	314
Figure A80 Standardized solution for the 4 first-order correlated factors (model	
4b) without cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Hungary (N = 1,974)	315
Figure A81 Standardized solution for the 2 first-order correlated factors (model	
2c-15 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Hungary (second half-sample: $n = 765$)	319
Figure A82 Standardized solution for the 2 first-order correlated factors (model	
2c-15 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Hungary (N = 1,529)	320
Figure A83 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Ireland (second half-sample: $n = 962$)	324
Figure A84 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Ireland ($N = 1,923$)	325
Figure A85 Standardized solution for the 3 first-order correlated factors (model	
3c-20 items) with cross-loadings based on CFA analysis. Observed variables	

are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Ireland (second half-sample: $n = 595$)	332
Figure A86 Standardized solution for the 3 first-order correlated factors (model	
3c-20 items) with cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Ireland (N = 1,190)	333
Figure A87 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Ireland (second half-sample: $n = 827$)	338
Figure A88 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Ireland (N = 1,653)	339
Figure A89 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Ireland (second half-sample: $n = 882$)	344
Figure A90 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Ireland (N = 1,764)	345
Figure A91 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Ireland (second half-sample: $n = 1,210$)	349
Figure A92 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Ireland ($N = 2,420$)	350
Figure A93 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	

European Social Survey 2012, Ireland (second half-sample: $n = 1,314$)	354
Figure A94 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Ireland ($N = 2,628$)	355
Figure A95 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Ireland (second half-sample: $n = 1,195$)	360
Figure A96 Standardized solution for the 3 first-order correlated factors (model	
3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Ireland (N = 2,390)	361
Figure A97 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Netherlands (second half-sample: $n = 1,182$)	366
Figure A98 Standardized solution for the 2 first-order correlated factors (model	
2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Netherlands (N = 2,364)	367
Figure A99 Standardized solution for the 4 first-order correlated factors (model	
4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Netherlands (second half-sample: $n = 941$)	372
Figure A100 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Netherlands (N = 1,881)	373
Figure A101 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Netherlands (second half-sample: $n = 945$)	377

Figure A102 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Netherlands (N = 1,889)	378
Figure A103 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Netherlands (second half-sample: $n = 889$)	383
Figure A104 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Netherlands (N = 1,778)	384
Figure A105 Standardized solution for the 4 first-order correlated factors	
(model 4c-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Netherlands (second half-sample: $n =$	
915)	390
Figure A106 Standardized solution for the 4 first-order correlated factors	
(model 4c-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Netherlands (N = 1,829)	391
Figure A107 Standardized solution for the 3 first-order correlated factors	
(model 3c-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, Netherlands (second half-sample: $n =$	
923)	395
Figure A108 Standardized solution for the 3 first-order correlated factors	
(model 3c-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, Netherlands (<i>N</i> = 1,845)	396
Figure A109 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	

European Social Survey 2014, Netherlands (second half-sample: $n = 914$)	401
Figure A110 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Netherlands (N = 1,827)	402
Figure A111 Standardized solution for the 2 first-order correlated factors	
(model 2c-11 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Norway (second half-sample: $n =$	
911)	407
Figure A112 Standardized solution for the 2 first-order correlated factors	
(model 2c-11 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Norway (N = 1,822)	408
Figure A113 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Norway (second half-sample: $n = 796$)	411
Figure A114 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Norway (N = 1,591)	412
Figure A115 Standardized solution for the 3 first-order correlated factors	
(model 3c-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Norway (second half-sample: $n =$	
777)	418
Figure A116 Standardized solution for the 3 first-order correlated factors	
(model 3c-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Norway (N = 1,553)	419
Figure A117 Standardized solution for the 2 first-order correlated factors	
(model 2d-10 items) with cross-loadings based on CFA analysis. Observed	

variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Norway (second half-sample: $n =$	
699)	423
Figure A118 Standardized solution for the 2 first-order correlated factors	
(model 2d-10 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2008, Norway (N = 1,397)	424
Figure A119 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Norway (second half-sample: $n = 774$)	428
Figure A120 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Norway (<i>N</i> = 1,548)	429
Figure A121 Standardized solution for the 3 first-order correlated factors	
(model 3c-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, Norway (second half-sample: $n =$	
812)	433
Figure A122 Standardized solution for the 3 first-order correlated factors	
(model 3c-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, Norway ($N = 1,624$)	434
Figure A123 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Norway (second half-sample: $n = 718$)	437
	731
Figure A124 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	400
European Social Survey 2014, Norway ($N = 1,436$)	438
Figure A125 Standardized solution for the 3 first-order correlated factors	

(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Poland (second half-sample: $n = 1,055$)	442
Figure A126 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Poland ($N = 2,110$)	443
Figure A127 Standardized solution for the 2 first-order correlated factors	
(model 2d-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Poland (second half-sample: $n =$	
858)	448
Figure A128 Standardized solution for the 2 first-order correlated factors	
(model 2d-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Poland (N = 1,716)	449
Figure A129 Standardized solution for the 2 first-order correlated factors	
(model 2d-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Poland (second half-sample: $n =$	
861)	453
Figure A130 Standardized solution for the 2 first-order correlated factors	
(model 2d-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Poland (N = 1,721)	454
Figure A131 Standardized solution for the 3 first-order correlated factors	
(model 3c-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2008, Poland (second half-sample: $n =$	
810)	459
Figure A132 Standardized solution for the 3 first-order correlated factors	
(model 3c-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	

ellipses: European Social Survey 2008, Poland ($N = 1,619$)	460
Figure A133 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Poland (second half-sample: $n = 679$)	465
Figure A134 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Poland (N = 1,751)	466
Figure A135 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Poland (second half-sample: $n = 949$)	469
Figure A136 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Poland (N = 1,898)	470
Figure A137 Standardized solution for the 2 first-order correlated factors	
(model 2b-18 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2014, Poland (second half-sample: $n =$	
808)	474
Figure A138 Standardized solution for the 2 first-order correlated factors	
(model 2b-18 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2014, Poland (N = 1,615)	475
Figure A139 Standardized solution for the 2 first-order correlated factors	
(model 2d-16 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Portugal (second half-sample: $n =$	
756)	480
Figure A140 Standardized solution for the 2 first-order correlated factors	
(model 2d-16 items) with cross-loadings based on CFA analysis. Observed	

variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Portugal (N = 1,511)	481
Figure A141 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Portugal (second half-sample: $n = 1,026$)	488
Figure A142 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Portugal (N = 2,052)	489
Figure A143 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Portugal (second half-sample: $n =$	
1,111)	494
Figure A144 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Portugal (N = 2,222)	495
Figure A145 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2008, Portugal (second half-sample: $n =$	
1,184)	500
Figure A146 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2008, Portugal (<i>N</i> = 2,367)	501
Figure A147 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Portugal (second half-sample: $n = 1,705$)	505
Figure A148 Standardized solution for the 2 first-order correlated factors	

(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Portugal (N = 2,150)	506
Figure A149 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Portugal (second half-sample: $n = 1,076$)	510
Figure A150 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Portugal (N = 2,151)	511
Figure A151 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Portugal (second half-sample: $n = 633$)	516
Figure A152 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Portugal (N = 1,265)	517
Figure A153 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Slovenia (second half-sample: $n = 759$)	521
Figure A154 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Slovenia (N = 1,519)	522
Figure A155 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Slovenia (second half-sample: $n = 721$)	527
Figure A156 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	

represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Slovenia (N = 1,442)	528
Figure A157 Standardized solution for the 2 first-order correlated factors	
(model 2c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Slovenia (second half-sample: $n =$	
738)	532
Figure A158 Standardized solution for the 2 first-order correlated factors	
(model 2c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Slovenia (N = 1,476)	533
Figure A159 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Slovenia (second half-sample: $n = 643$)	537
Figure A160 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Slovenia (N = 1,286)	538
Figure A161 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Slovenia (second half-sample: $n =$	
701)	543
Figure A162 Standardized solution for the 2 first-order correlated factors	
(model 2d-15 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Slovenia (N = 1,403)	544
Figure A163 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Slovenia (second half-sample: $n = 629$)	547
Figure A164 Standardized solution for the 3 first-order correlated factors	

(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Slovenia (N = 1,257)	548
Figure A165 Standardized solution for the 3 first-order correlated factors	
(model 3c-10 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2014, Slovenia (second half-sample: $n =$	
612)	552
Figure A166 Standardized solution for the 3 first-order correlated factors	
(model 3c-10 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2014, Slovenia (N = 1,224)	553
Figure A167 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Spain (second half-sample: $n = 864$)	557
Figure A168 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Spain (N = 1,729)	558
Figure A169 Standardized solution for the 2 first-order correlated factors	
(model 2d-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Spain (second half-sample: $n =$	
831)	563
Figure A170 Standardized solution for the 2 first-order correlated factors	
(model 2d-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Spain (N = 1,663)	564
Figure A171 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Spain (second half-sample: $n = 938$)	568

Figure A172 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Spain ($N = 1,876$)	569
Figure A173 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Spain (second half-sample: $n = 1,288$)	573
Figure A174 Standardized solution for the 2 first-order correlated factors	
(model 2b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Spain ($N = 2,576$)	574
Figure A175 Standardized solution for the 2 first-order correlated factors	
(model 2) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Spain (second half-sample: $n = 943$)	576
Figure A176 Standardized solution for the 2 first-order correlated factors	
(model 2) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, Spain ($N = 1,885$)	577
Figure A177 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Spain (second half-sample: $n = 945$)	582
Figure A178 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Spain ($N = 1,889$)	583
Figure A179 Standardized solution for the 2 first-order correlated factors	
(model 2) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Spain (second half-sample: $n = 963$)	587
Figure A180 Standardized solution for the 2 first-order correlated factors	

(model 2) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Spain (N = 1,925)	588
Figure A181 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Sweden (second half-sample: $n = 827$)	591
Figure A182 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2002, Sweden ($N = 1,653$)	592
Figure A183 Standardized solution for the 3 first-order correlated factors	
(model 3c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Sweden (second half-sample: $n =$	
816)	597
Figure A184 Standardized solution for the 3 first-order correlated factors	
(model 3c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, Sweden (N = 1,632)	598
Figure A185 Standardized solution for the 2 first-order correlated factors	
(model 2d-9 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Sweden (second half-sample: $n =$	
782)	603
Figure A186 Standardized solution for the 2 first-order correlated factors	
(model 2d-9 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2006, Sweden (N = 1,564)	604
Figure A187 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Sweden (second half-sample: $n = 766$)	607

Figure A188 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Sweden (N = 1,531)	608
Figure A189 Standardized solution for the 3 first-order correlated factors	
(model 3c-8 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Sweden (second half-sample: $n =$	
749)	612
Figure A190 Standardized solution for the 3 first-order correlated factors	
(model 3c-8 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Sweden (N = 1,497)	613
Figure A191 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Sweden (second half-sample: $n = 924$)	616
Figure A192 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Sweden (N = 1,847)	617
Figure A193 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Sweden (second half-sample: $n = 896$)	621
Figure A194 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Sweden (N = 1,791)	622
Figure A195 Standardized solution for the 3 first-order correlated factors	
(model 3c-9 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Switzerland (second half-sample: $n =$	

1,020)	625
Figure A196 Standardized solution for the 3 first-order correlated factors	
(model 3c-9 items) without cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, Switzerland (N = 2,040)	626
Figure A197 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Switzerland (second half-sample: $n = 1,071$)	630
Figure A198 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2004, Switzerland (N = 2,141)	631
Figure A199 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Switzerland (second half-sample: $n = 902$)	634
Figure A200 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, Switzerland (N = 1,804)	635
Figure A201 Standardized solution for the 2 first-order correlated factors	
(model 2) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Switzerland (second half-sample: $n = 910$)	637
Figure A202 Standardized solution for the 2 first-order correlated factors	
(model 2) without cross-loadings based on CFA analysis. Observed variables	
are represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, Switzerland (N = 1,819)	638
Figure A203 Standardized solution for the 2 first-order correlated factors	
(model 2c-11 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Switzerland (second half-sample: $n =$	

753)	642
Figure A204 Standardized solution for the 2 first-order correlated factors	
(model 2c-11 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2010, Switzerland (N = 1,506)	643
Figure A205 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Switzerland (second half-sample: $n = 747$)	647
Figure A206 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2012, Switzerland (N = 1,493)	648
Figure A207 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Switzerland (second half-sample: $n = 766$)	651
Figure A208 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, Switzerland (N = 1,532)	652
Figure A209 Standardized solution for the 4 first-order correlated factors	
(model 4c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, United Kingdom (second half-sample:	
n = 911)	658
Figure A210 Standardized solution for the 4 first-order correlated factors	
(model 4c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2002, United Kingdom (N = 1,822)	659
Figure A211 Standardized solution for the 2 first-order correlated factors	
(model 2d-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	

ellipses: European Social Survey 2004, United Kingdom (second naif-sample:	
n = 949)	664
Figure A212 Standardized solution for the 2 first-order correlated factors	
(model 2d-13 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2004, United Kingdom (N = 1,897)	665
Figure A213 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, United Kingdom (second half-sample: $n =$	
1,197)	668
Figure A214 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2006, United Kingdom (N = 2,394)	669
Figure A215 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, United Kingdom (second half-sample: $n =$	
1,176)	673
Figure A216 Standardized solution for the 3 first-order correlated factors	
(model 3b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2008, United Kingdom (N = 2,352)	674
Figure A217 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, United Kingdom (second half-sample: $n =$	
1,211)	679
Figure A218 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2010, United Kingdom (N = 2,422)	680

Figure A219 Standardized solution for the 4 first-order correlated factors	
(model 4c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, United Kingdom (second half-sample:	
n = 1,143)	686
Figure A220 Standardized solution for the 4 first-order correlated factors	
(model 4c-14 items) with cross-loadings based on CFA analysis. Observed	
variables are represented by rectangles and latent variables are enclosed in	
ellipses: European Social Survey 2012, United Kingdom ($N = 2,286$)	687
Figure A221 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, United Kingdom (second half-sample: $n =$	
1,132)	692
Figure A222 Standardized solution for the 4 first-order correlated factors	
(model 4b) with cross-loadings based on CFA analysis. Observed variables are	
represented by rectangles and latent variables are enclosed in ellipses:	
European Social Survey 2014, United Kingdom ($N = 2,264$)	693
Figure B1 Standardized solution for the model with 5 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the second half-sample of Belgium $(n = 935)$. Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 3.36$, CFI = .914, TLI = .902, RMSEA (90%	
CI) = .050 (.047054)	697
Figure B2 Standardized solution for the model with 5 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the full sample of Belgium ($N = 1,869$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 5.46$, CFI = .927, TLI = .914, RMSEA (90% CI) = .049 (.047051)	698
Figure B3 Standardized solution for the model with 6 first-order correlated	
factors with four cross-loading items based on CFA analysis performed on the	
second half-sample of Denmark ($n = 825$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	

for this model: $\chi / df = 3.02$, CFI = .893, 1LI = .879, RMSEA (90% CI) = .050	
(.046053)	703
Figure B4 Standardized solution for the model with 6 first-order correlated	
factors with four cross-loading items based on CFA analysis performed on the	
full sample of Denmark ($N = 1,650$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 4.68$, CFI = .910, TLI = .895, RMSEA (90% CI) = .047 (.045049)	704
Figure B5 Standardized solution for the model with 5 first-order correlated	
factors and two cross-loading items based on CFA analysis performed on the	
second half-sample of Finland ($n = 1,099$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	
for this model: $\chi^2/df = 3.77$, CFI = .921, TLI = .908, RMSEA (90% CI) = .050	
(.047054)	709
Figure B6 Standardized solution for the model with 5 first-order correlated	
factors and two cross-loading items based on CFA analysis performed on the	
full sample of Finland ($N = 2,197$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 6.10$, CFI = .932, TLI = .916, RMSEA (90% CI) = .048 (.046051)	710
Figure B7 Standardized solution for the model with 5 first-order correlated	
factors and no cross-loading items based on CFA analysis performed on the	
second half-sample of France $(n = 984)$. Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices for	
this model: $\chi^2/df = 3.57$, CFI = .926, TLI = .914, RMSEA (90% CI) = .051	
(.047055)	715
Figure B8 Standardized solution for the model with 5 first-order correlated	
factors and no cross-loading items based on CFA analysis performed on the full	
sample of France ($N = 1,968$). Observed variables are represented by squares	
and latent variables are enclosed in circles. Goodness of fit indices: $\chi^2/df =$	
5.74, CFI = .934, TLI = .922, RMSEA (90% CI) = .049 (.047052)	716
Figure B9 Standardized solution for the model with 4 first-order correlated	
factors and two cross-loading items based on CFA analysis performed on the	
second half-sample of Germany ($n = 1,479$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	

fit indices for this model: $\chi^2/df = 4.25$, CFI = .934, TLI = .922, RMSEA (90%	
CI) = .047 (.044050)	721
Figure B10 Standardized solution for the model with 4 first-order correlated	
factors and two cross-loading items based on CFA analysis performed on the	
full sample of Germany ($N = 2,958$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 7.05$, CFI = .939, TLI = .924, RMSEA (90% CI) = .045 (.043047)	722
Figure B11 Standardized solution for the model with 6 first-order correlated	
factors and seven cross-loading items based on CFA analysis performed on the	
second half-sample of Hungary ($n = 1,007$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	
for this model: $\chi^2/df = 4.27$, CFI = .899, TLI = .880, RMSEA (90% CI) = .057	
(.054060)	727
Figure B12 Standardized solution for the model with 6 first-order correlated	
factors and seven cross-loading items based on CFA analysis performed on the	
full sample of Hungary ($N = 2,014$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 7.44$, CFI = .911, TLI = .892, RMSEA (90% CI) = .057 (.055059)	728
Figure B13 Standardized solution for the model with 5 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
second half-sample of Ireland ($n = 1,314$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	
for this model: $\chi^2/df = 3.72$, CFI = .945, TLI = .933, RMSEA (90% CI) = .045	
(.042049)	733
Figure B14 Standardized solution for the model with 5 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
full sample of Ireland ($N = 2,628$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 5.93$, CFI = .953, TLI = .942, RMSEA (90% CI) = .043 (.041045)	734
Figure B15 Standardized solution for the model with 4 first-order correlated	
factors and five cross-loading items based on CFA analysis performed on the	
second half-sample of the Netherlands ($n = 923$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	

Tit indices for this model: $\chi / df = 3.52$, CFI = .936, TLI = .924, RMSEA (90%	700
	739
Figure B16 Standardized solution for the model with 4 first-order correlated	
factors and five cross-loading items based on CFA analysis performed on the	
full sample of the Netherlands ($N = 1,845$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 6.06$, CFI = .940, TLI = .926, RMSEA (90% CI) = .052 (.050055)	74(
Figure B17 Standardized solution for the model with 5 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the second half-sample of Norway ($n = 812$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 3.65$, CFI = .896, TLI = .875, RMSEA (90%	
CI) = .057 (.053061)	745
Figure B18 Standardized solution for the model with 5 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the full sample of Norway ($N = 1,624$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 6.47$, CFI = .901, TLI = .875, RMSEA (90% CI) = .058 (.055061)	746
Figure B19 Standardized solution for the model with 4 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the second half-sample of Portugal $(n = 1,076)$. Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 4.66$, CFI = .939, TLI = .927, RMSEA (90%	
	75]
Figure B20 Standardized solution for the model with 5 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the full sample of Portugal ($N = 2,151$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 8.87$, CFI = .933, TLI = .916, RMSEA (90% CI) = .060 (.058063) 7	752
Figure B21 Standardized solution for the model with 4 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
second half-sample of Slovenia ($n = 629$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	

for this model: $\chi / df = 3.16$, CFI = .922, 1LI = .908, RMSEA (90% CI) = .059	
(.054063)	757
Figure B22 Standardized solution for the model with 4 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
full sample of Slovenia ($N = 1,257$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 5.08$, CFI = .932, TLI = .915, RMSEA (90% CI) = .057 (.054060)	758
Figure B23 Standardized solution for the model with 4 first-order correlated	
factors and a single cross-loading item based on Confirmatory factor analysis	
performed on the second half-sample of Spain ($n = 945$). Observed variables	
are represented by squares and latent variables are enclosed in circles.	
Goodness of fit indices: $\chi^2/df = 3.56$, CFI = .955, TLI = .947, RMSEA (90%)	
CI) = .052 (.047057)	763
Figure B24 Standardized solution for the model with 4 first-order correlated	
factors and a single cross-loading item based on Confirmatory factor analysis	
performed on the full sample of Spain ($N = 1,888$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices: $\chi^2/df = 5.65$, CFI = .963, TLI = .956, RMSEA (90% CI) = .050	
(.046053)	764
Figure B25 Standardized solution for the model with 5 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
second half-sample of Sweden $(n = 924)$. Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices	
for this model: $\chi^2/df = 3.09$, CFI = .938, TLI = .928, RMSEA (90% CI) = .048	
(.044051)	769
Figure B26 Standardized solution for the model with 5 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
full sample of Sweden ($N = 1,847$). Observed variables are represented by	
squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 4.90$, CFI = .945, TLI = .934, RMSEA (90% CI) = .046 (.044048)	770
Figure B27 Standardized solution for the model with 4 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the second half-sample of Switzerland $(n = 747)$. Observed variables are	

represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 3.08$, CFI = .945, TLI = .933, RMSEA (90%	
CI) = .053 (.047058)	775
Figure B28 Standardized solution for the model with 4 first-order correlated	
factors and a single cross-loading item based on CFA analysis performed on	
the full sample of Switzerland ($N = 1,493$). Observed variables are represented	
by squares and latent variables are enclosed in circles. Goodness of fit indices:	
$\chi^2/df = 4.30$, CFI = .957, TLI = .947, RMSEA (90% CI) = .047 (.043051)	776
Figure B29 Standardized solution for the model with 4 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
second half-sample of the United Kingdom ($n = 1,143$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices for this model: $\chi^2/df = 3.59$, CFI = .949, TLI = .937, RMSEA (90%	
CI) = .048 (.044051)	781
Figure B30 Standardized solution for the model with 4 first-order correlated	
factors and four cross-loading items based on CFA analysis performed on the	
full sample of the United Kingdom ($N = 2,286$). Observed variables are	
represented by squares and latent variables are enclosed in circles. Goodness of	
fit indices: $\chi^2/df = 5.56$, CFI = .959, TLI = .948, RMSEA (90% CI) = .045	
(.042047)	782

Abstract

Investigating the structure and assessing the psychometric properties of multidimensional scales before their application is a prerequisite of scaling theory. This involves splitting a sample of adequate size randomly into two halves and first performing Exploratory factor analysis (EFA) on one half-sample in order to assess the construct validity of the scale. Then the structure identified by EFA is validated by carrying out Confirmatory factor analysis (CFA) on the second half. As in any statistical analysis — whether univariate, bivariate or multivariate — the first and most important consideration is to ascertain the level of measurement of the input variables, in this instance the defining items of the scale. This guides the correct choice of the methods to be used. In this doctoral dissertation, we carry out the investigation and assessment of Schwartz's human values scale included in the European Social Survey (ESS) when items are considered as pseudo-interval and the 2012 ESS measurement of wellbeing when items are considered as both ordinal and pseudo-interval. It is a methodological study aiming at demonstrating the importance of items' level of measurement in carrying out a psychometric validation of multidimensional constructs.

Schwartz's human values scale has been widely used by social and cross-cultural psychologists in order to study differences in values among individuals and includes the ten motivationally distinct basic values which encompass the major value orientations recognized cross-culturally: power, achievement, hedonism, stimulation, self-direction, universalism, benevolence, tradition, conformity and security. The measurement of wellbeing provides an important indicator of the welfare of nations and presents opportunities for policy making. Researchers generally share the view of wellbeing as a multidimensional concept. The 2012 ESS measurement of personal and social wellbeing, a combination of theoretical models and evidence from statistical analysis, is defined as a six-dimensional construct: evaluative wellbeing, emotional wellbeing, functioning, vitality, community wellbeing and supportive relationships. The theoretical structure of both scales has been thoroughly documented.

The analysis was based on the ESS Round 1 to Round 7 Data (2002-2014) for 16 European countries: Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden,

Switzerland and the UK. In the case of Schwartz's human values scale, EFA resulted in a two-factor solution for 41 cases, a three-factor solution for 51 cases and a four-factor solution for 20 cases. In the case of wellbeing scale, EFA resulted in a four-factor solution and a five-factor solution for seven countries, respectively, and a six-factor solution for two countries. These results were supported by CFA performed on the second half-samples. Subscales were constructed based on analysis of the total samples, and reliabilities, convergent and discriminant validities and internal consistencies were investigated.

Although the definition of each subscale differs from the documented theoretical structures and across countries the analysis contributes to the growing research on the measurement of Schwartz's human values and wellbeing by providing reliable and valid subscales for each country that can be used by social researchers in their analyses. The methodology presented may be easily applied to other Likert-type scales or scales using both ordinal and pseudo-interval items which are defined as multidimensional by theory. In the case of theory development, the preliminary considerations and the sequence of decisions for performing EFA may be applied with the appropriate modifications.

Keywords: Exploratory Factor Analysis, Confirmatory Factor Analysis, reliability, validity, European Social Survey.

Η σημασία του επιπέδου μέτρησης των ερωτήσεων-μονάδων κατά τη διερεύνηση της δομής και την αποτίμηση των ψυχομετρικών ιδιοτήτων πολυδιάστατων εννοιών

Αναστασία Χαραλάμπη

Περίληψη

Η διερεύνηση της θεωρητικής δομής και η εκτίμηση των ψυχομετρικών ιδιοτήτων πριν την εφαρμογή πολυδιάστατων κλιμάκων είναι προαπαιτούμενο της θεωρίας κλιμάκων. Αυτό περιλαμβάνει την τυχαία διχοτόμηση ενός δείγματος επαρκούς μεγέθους σε δύο ημι-δείγματα διενεργώντας αρχικά Διερευνητική Παραγοντική Ανάλυση (ΔΠΑ) στο πρώτο ημι-δείγμα προκειμένου να εκτιμηθεί η εγκυρότητα κατασκευής της εννοίας της κλίμακας. Στη συνέχεια ακολουθεί η επαλήθευση της δομής με την εφαρμογή Επιβεβαιωτικής Παραγοντικής Ανάλυσης (ΕΠΑ) στο δεύτερο ημι-δείγμα. Όπως σε κάθε στατιστική ανάλυση – μονοδιάστατη, διμεταβλητή ή πολυμεταβλητή – το πρώτο και σημαντικότερο που πρέπει να ληφθεί υπόψη είναι η θεώρηση του επιπέδου μέτρησης των μεταβλητών και στην προκειμένη περίπτωση των ερωτήσεων-μονάδων που προσδιορίζουν την κλίμακα. Με αυτόν τον τρόπο καθοδηγείται η σωστή επιλογή της μεθόδου που θα χρησιμοποιηθεί. Στην παρούσα διδακτορική διατριβή, εξετάζουμε τη διερεύνηση και την εκτίμηση της κλίμακας ανθρωπίνων αξιών του Schwartz, που περιλαμβάνεται στην Ευρωπαϊκή Κοινωνική Έρευνα (ΕΚΕ), όταν οι ερωτήσεις-μονάδες θεωρούνται ψευδο-διαστήματος και της μέτρησης της ευζωίας της ΕΚΕ για το 2012 όταν οι ερωτήσεις-μονάδες θεωρούνται τακτικές και ψευδο-διαστήματος. Πρόκειται για μία μεθοδολογική έρευνα που επιχειρεί να αποδώσει τη σημασία του επιπέδου μέτρησης κατά τη διερεύνηση του διαστατού και την αποτίμηση των ψυχομετρικών ιδιοτήτων πολυδιάστατων εννοιών.

Η κλίμακα ανθρωπίνων αξιών του Schwartz έχει χρησιμοποιηθεί ευρέως από τους κοινωνικούς και διαπολιτισμικούς ψυχολόγους προκειμένου να μελετήσουν τις διαφορές ως προς τις προσωπικές αξίες μεταξύ των ατόμων και περιλαμβάνει δέκα ξεχωριστές ως προς κίνητρο αξίες, οι οποίες περικλείουν τις κύριες αξίες που αναγνωρίζονται διαπολιτισμικά: εξουσία, κατόρθωμα, ηδονισμός, διέγερση, αυτόκαθορισμός, καθολικότητα, καλοσύνη, παράδοση, συμμόρφωση και ασφάλεια. Η μέτρηση της ευζωίας παρέχει έναν σημαντικό δείκτη για την ευημερία των χωρών και παρουσιάζει ευκαιρίες για τη χάραξη πολιτικών. Γενικά οι ερευνητές

αντιμετωπίζουν την ευζωία ως μία πολυδιάστατη έννοια. Με βάση τη μέτρηση της ΕΚΕ για την προσωπική και κοινωνική ευζωία για το 2012, που αποτελεί συνδυασμό θεωρητικών μοντέλων και στατιστικών αναλύσεων, προσδιορίζεται μία κατασκευή εννοίας σε έξι διαστάσεις-κλειδιά: αξιολογική ευζωία, συναισθηματική ευζωία, λειτουργικότητα, ζωτικότητα, κοινοτική ευζωία και υποστηρικτικές σχέσεις. Η θεωρητική δομή και των δύο κλιμάκων έχει τεκμηριωθεί διεξοδικά.

Η ανάλυση βασίστηκε στα δεδομένα των γύρων 1 έως 7 (2002-2014) της ΕΚΕ για 16 Ευρωπαϊκές χώρες: Βέλγιο, Δανία, Φινλανδία, Γαλλία, Γερμανία, Ουγγαρία, Ιρλανδία, Ολλανδία, Νορβηγία, Πολωνία, Πορτογαλία, Σλοβενία, Ισπανία, Σουηδία, Ελβετία και Ηνωμένο Βασίλειο. Στην περίπτωση της κλίμακας ανθρωπίνων αξιών του Schwartz, η ΔΠΑ οδήγησε σε λύση δύο παραγόντων για 41 περιπτώσεις, σε λύση τριών παραγόντων για 51 περιπτώσεις και σε λύση τεσσάρων παραγόντων για 20 περιπτώσεις. Στην περίπτωση της κλίμακας της ευζωίας, η ΔΠΑ οδήγησε σε λύση τεσσάρων και πέντε παραγόντων για επτά χώρες, αντίστοιχα, και σε λύση έξι παραγόντων για δύο χώρες. Η εφαρμογή ΕΠΑ στο δεύτερο ημι-δείγμα υποστήριξε αυτά τα αποτελέσματα. Οι υπό-κλίμακες κατασκευάστηκαν με βάση την ανάλυση του συνολικού δείγματος και διερευνήθηκε η αξιοπιστία, η συγκλίνουσα και διακρίνουσα εγκυρότητα, καθώς και η εσωτερική τους συνοχή.

Παρόλο που η ερμηνεία κάθε υπό-κλίμακας διαφέρει από τις προτεινόμενες θεωρητικές δομές και μεταξύ των χωρών, η ανάλυση συνεισφέρει στην αναπτυσσόμενη έρευνα πάνω στη μέτρηση της κλίμακας ανθρωπίνων αξιών του Schwartz και της ευζωίας παρέχοντας αξιόπιστες και έγκυρες υπό-κλίμακες για κάθε χώρα, οι οποίες μπορούν να χρησιμοποιηθούν στις αναλύσεις των κοινωνικών ερευνητών. Η μεθοδολογία που παρουσιάζεται μπορεί εύκολα να εφαρμοστεί σε άλλες κλίμακες τύπου Likert ή σε κλίμακες που χρησιμοποιούν τακτικές και ψευδοδιαστήματος μεταβλητές και οι οποίες προσδιορίζονται ως πολυδιάστατες με βάση τη θεωρία. Στην περίπτωση ανάπτυξης της θεωρίας, οι πρωταρχικές θεωρήσεις και η ακολουθία των αποφάσεων για την εφαρμογή ΔΠΑ μπορούν να εφαρμοστούν με τις κατάλληλες τροποποιήσεις.

Λέζεις-κλειδιά: Διερευνητική Παραγοντική Ανάλυση, Επιβεβαιωτική Παραγοντική Ανάλυση, αξιοπιστία, εγκυρότητα, Ευρωπαϊκή Κοινωνική Έρευνα.

Introduction

Attitude Scales: Theory Testing

Attitude scaling methods, were first introduced by Thurstone (1928, 1929), Likert (1932) and Guttman (1944) as differential, summative and cumulative scales, respectively, have been widely used (Muruyama & Ryan, 2014). Of these, Likert (or Likert-type) scales are the most extensively used in social sciences, educational, medical and health sample survey research today. The development of attitude scales is based on the principle that a single question provides a poor indicator of a person's general attitude (or cognitive and non-cognitive skills or personality traits) and therefore, in order to measure an attitude more accurately, "a sample of beliefs [opinion-questions] covering a range of aspects of the attitude" (Moser & Kalton, 1975, p. 351) has to be defined and the respondent's attitude is usually measured by combining his or her responses for each of the items into some form of score depending on the definition of the scale. In order to allow for the computation of respondents' scores, each item is assigned the same number (and labeling) of response categories. Furthermore, a prerequisite of scaling theory is to provide evidence on the psychometric properties of the scale or subscales and ascertain their reliability and validity before computing the respondents' scores.

Factor analysis, introduced by Spearman (1904, 1927), aims to "determine the number and nature of latent variables or *factors* that account for the variation and covariation among a set of observed measures, commonly referred as *indicators* ... [which] are intercorrelated because they share a common cause" (Brown, 2015, p. 10). Thurstone (1947) developed the common factor model according to which "each indicator in a set of observed measures is a linear function of one or more common factors and one unique factor" (Brown, 2015, p. 11). There are two basic types of analyses based on the common factor model: Exploratory factor analysis (EFA) and Confirmatory factor analysis (CFA). A fundamental equation of the common factor model is presented by Brown (2015, p. 17):

$$y_j = \lambda_{j1}\eta_1 + \lambda_{j2}\eta_2 + \dots + \lambda_{jm}\eta_m + \varepsilon_j$$

where y_j is the jth of p indicators from a sample of n independent participants, λ_{jm} is the factor loading relating variable j to the mth factor η and ε_j is the variance that is unique to indicator y_i and independent to all ηs (factors) and εs (unique variances).

Attitude scaling theory requires a sequence of theoretical and rule of thumb decisions for investigating the scales' structure (dimensionality) and assessing their psychometric properties. This investigation depends on whether the goal is theory development — subscales are not predetermined as dimensions by theory — or theory testing — subscales are predetermined as dimensions by theory (Tabachnick & Fidell, 2007; Thompson, 2005). In the case of theory development, Principal components analysis (PCA) or EFA is performed to define components or factors as subscales and component or factor loadings are reported (Symeonaki, Michalopoulou, & Kazani, 2015). As Thompson (2005) pointed out, although PCA is exploratory in nature it differs from common factor analyses defined as EFA (see also Bartholomew, Steele, Moustaki, & Galbraith, 2008; Fabrigar, Wegener, MacCallum, & Strahan, 1999). Bartholomew et al. (2008) and Fabrigar et al. (1999) noted that the choice between PCA and EFA depends on whether the goal is to reduce the correlated observed variables into a smaller set of independent composite variables (components) or to test a theoretical model of latent factors causing the observed variables. In the case of theory testing (Charalampi, Michalopoulou, & Richardson, 2016; Michalopoulou, 2017), first a sample of adequate size is randomly split into two halves and EFA is performed on one half-sample. Then the structure is investigated by carrying out CFA on the second half-sample. Applying this approach, the structure of the attitude scale identified by EFA is validated by performing CFA. In both theory development and theory testing, the validity and reliability of the resulting subscales (or overall scale) and their distributional properties are assessed, based on the EFA and the CFA results for the total sample.

In carrying out any statistical analysis, whether it is univariate, bivariate or multivariate, the first and most important consideration is to ascertain the level of measurement of the variable (or variables) and in this instance the defining items of the attitude in order to decide on the appropriateness of the methods to be used. Variables can be categorical or continuous (Field, 2009; Tabachnick & Fidell, 2007). A categorical variable consists of categories and in its simplest form it names just two different types of items, known as a binary variable. A continuous variable is measured on a scale that changes values smoothly rather than in steps and can in principle take on any value on the measurement scale that we are using. Following Stevens' (1946) classification, we further distinguish four levels of measurement: nominal, ordinal, interval and ratio (Moser & Kalton, 1975; Muruyama & Ryan,

2014; Blalock, 1979; Selltiz, Jahoda, Deutsch, & Cook, 1977). For instance, Blalock (1979) in his book Social Statistics based his presentation of statistical analyses on variables' level of measurement and organized the chapters accordingly. The term nominal scale refers to the simplest level of measurement and consists of two or more named categories, into which objects, individuals or responses are classified. There is no implication of gradation or distance between the categories. Numbers may be used only as a labeling device, as mathematical relations among numbers are inappropriate. An ordinal scale is at a somewhat higher level of measurement than that used in obtaining a nominal scale, since it is possible not only to group individuals into separate categories, but also to order the categories by rank on a continuum. Again there is no implication of distance between scale positions. On an interval scale, the positions are arranged in equal intervals. The numbers on the scale cannot be multiplied or divided because there is not a true zero point. The zero point on an interval scale is a matter of convenience. On a ratio scale, all types of statistical analyses are applicable. This constitutes the highest level of measurement which has the properties of an interval scale together with an absolute zero.

In the context of attitude scales, and in particular Likert scales, as Michalopoulou (2017, p. 8) pointed out, "the level of measurement of Likert scale items and the appropriateness of applying parametric or non-parametric analyses has been debated for many years". Many researchers considered the items as ordinal and therefore proposed that only non-parametric statistical analyses should be performed (Kuzon, Urbanchek, & McCabe, 1996; Jamieson, 2004; Göb, McCollins, & Ramalhoto, 2007). Others favoured the application of parametric methods, persuaded by the empirical evidence on the robustness of the methods commonly used (Carifio & Perla, 2007; Carifio & Perla, 2008; Norman; 2010). However, in applications where the number of response categories used for each item is at least five, Bartholomew et al. (2008) proposed that the ordinal categories can be taken to be interval and therefore statistical analyses may be performed using these pseudo-interval items.

In this dissertation, to demonstrate the importance of items' level of measurement in investigating the structure and assessing the psychometric properties of multidimensional constructs we use Schwartz's human values scale included in the

¹ The items comprising a Likert scale are commonly assigned five response categories scored from 1 to 5 and usually labeled strongly agree, agree, neither agree or disagree, disagree, strongly disagree.

European Social Survey (ESS) for 2002 to 2014 and the 2012 ESS measurement of personal and social wellbeing (European Social Survey, n.d.a; New Economics Foundation 2009). The items comprising Schwartz's scale of human values (European Social Survey, n.d.a) are Likert-type rating scales with six response categories and, therefore their level of measurement is ordinal. However, according to Bartholomew et al. (2008), we may perform statistical analyses using these as pseudo-interval variables. The 35 items of the 2012 (Round 6) ESS measurement of personal and social wellbeing were not defined according to attitude scaling theory as a different number of response categories was assigned to them: 1-4 (11 items); 1-5 (10 Likert items); 0-6 (3 items); 0-10 (11 items). Based on Bartholomew et al. (2008), the items' level of measurement was considered as both ordinal (1-4) and pseudo-interval (1-5, 0-6, 0-10). Although, this crucial methodological issue was dealt with in the statistical analyses, the problem of using different definitions for the response categories remains unresolved.

The ESS is a set of independent national multipurpose social sample surveys conducted every two years since 2002 and 36 countries have taken part in one or more rounds. Free access is provided to a rich variety of high quality data for more than 30 European countries. The data collected is based on methodologically sound methods allowing for over time and cross-national comparability.

The analysis of Schwartz's scale of human values was based on the European Social Survey Round 1 Data (2002), European Social Survey Round 2 Data (2004), European Social Survey Round 3 Data (2006), European Social Survey Round 4 Data (2008), European Social Survey Round 5 Data (2010), European Social Survey Round 6 Data (2012) and European Social Survey Round 7 Data (2014) for the following 16 countries that had participated in all seven rounds of the survey: Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland and United Kingdom. The analysis of personal and social wellbeing was based on the European Social Survey Round 6 Data (2012) for the same 16 countries that had also participated in Round 3 (2006), when the wellbeing module was first introduced in the questionnaire.

The following section provides clarification of the terms reliability and validity and the methods used for their assessment, as well as a brief presentation of

the theoretical basis of the two instruments used for the demonstration of the methodology and the formulation of the research questions.

Reliability and Validity

Moser and Kalton (1975, p. 535) pointed out that "whatever approach to attitude scaling one cares to adopt, there always remains the question (which ideally should be answered before a scale is put to research use) as to what extent the scale is reliable and valid".

Reliability concerns the extent to which an experiment, test or any measuring procedure performs in consistent ways by giving the same results on repeated trials (Moser & Kalton, 1975; Muruyama & Ryan, 2014; Carmines & Zeller, 1983; DeVellis, 2012). Based on the literature, we briefly present the main methods for assessing reliability.

In the test-retest method, the same test is given to the same individuals after a period of time under equivalent conditions and the results of the two measurements are compared (Moser & Kalton, 1975; Muruyama & Ryan, 2014; Carmines & Zeller, 1983; Selltiz et al., 1977; DeVellis, 2012). It is crucial to decide the balance between the memory effect and the effect of changes in views, as memory effects may lead to inflated reliability estimates and experience may influence responses in the second test (Moser & Kalton, 1975; Muruyama & Ryan, 2014; Carmines & Zeller, 1983; Selltiz et al., 1977).

The alternate forms method is similar to the test-retest method in that it also requires two testing situations with the same individuals, but within the same testing session. In this procedure, an alternative form of the same test is administered on the second testing (Carmines & Zeller, 1983; Selltiz et al., 1977; Moser & Kalton, 1975; DeVellis, 2012). The two forms contain different items but the items are intended to measure the same underlying characteristic. The basic limitation of this method is the practical difficulty of constructing parallel alternative forms (Carmines & Zeller, 1983; DeVellis, 2012).

In contrast with the two aforementioned methods, the split-half method can be conducted on one occasion. The items of the test are divided into two halves and the scores on the halves are correlated to provide an estimate of reliability (Muruyama & Ryan, 2014; Selltiz et al., 1977; Carmines & Zeller, 1983). The major problem is that

the correlation between the two halves will differ according how the total number of items is divided into halves (Carmines & Zeller, 1983). To avoid some of the pitfalls associated with item order, the most typical way is to place the even-numbered items in one group and the odd-numbered item in the other (Carmines & Zeller, 1983; DeVellis, 2012; Muruyama & Ryan, 2014).

Most psychological measures are constructed from a set of components. The measures yield scores that are composites or sum of the scores on their components. The composite reliability for congeneric measures model (CRCMM) is a method to evaluate composite reliability and is applicable to a general case of measures addressing a common dimension, such as congeneric tests (Raykov, 1997). One of the most frequently used methods of assessing composite reliability is Cronbach's coefficient alpha. Internal consistency is typically equated with Cronbach's alpha (DeVellis, 2012; Muruyama & Ryan, 2014). The interpretation of this coefficient is closely related to that given for reliability estimates based on the split-half sample, "...coefficient alpha for a test having 2N items is equal to the average value of the alpha coefficients obtained for all possible combinations of items into two half-tests" (Carmines & Zeller, 1983, p. 45). It should be computed for any multiple-item scale, it requires only a single test administration and can be expressed as follows (Carmines & Zeller, 1983, p. 44):

$$a = N/(N-1)[1 - \Sigma \sigma^2(Y_i)/\sigma_x^2]$$

where N is the number of items, $\Sigma \sigma^2(Y_i)$ is the sum of items variances and σ_x^2 is the variance of the total composite.

McDonald has proposed two ω coefficients, ω_t and ω_h (McDonald 1978 and McDonald 1999, Equation 6.20a). The former is based upon the sum of squared loadings on all the factors, whereas the latter is based upon the sum of squared loadings on the general factor (Revelle & Zinbarg, 2009; Revelle, 2013; Zinbarg, Revelle, Yowel, & Li, 2005; Zinbarg, Yowel, Revelle, & McDonald, 2006) and is defined by Zinbarg et al. (2005, p. 125) as follows:

$$\omega_{\rm h} = \frac{1cc'1}{V(x)},$$

where c is a $k \times 1$ vector of unstandardized general factor loadings and V(x) is the variance in the scale scores obtained by summing the k indicators comprising the scale.

By *validity* is meant the success of the scale in measuring what it was intended to measure (Moser & Kalton, 1975; Muruyama & Ryan, 2014; Carmines & Zeller, 1983; DeVellis, 2012; Oppenheim, 1984). If a scale is unreliable it also lacks validity. However, a reliable scale is not necessarily valid as it could be measuring something different from what it was designed to measure. There are several different types of validity. According to these types, we present the main methods for assessing validity.

Criterion-related validity is more a practical than a scientific issue, because it is concerned with predicting a process rather than understanding it (DeVellis, 2012). Researchers differentiate between two types of criterion-related validity. Concurrent validity concerns a criterion that exists in the present and is assessed by correlating a measure and the criterion at the same point in time. Predictive validity concerns the extent to which scores from a measure predict criteria that occur in the future (Muruyama & Ryan, 2014; Carmines & Zeller, 1983; DeVellis, 2012; Selltiz et al., 1977). The only difference between them involves the present or future existence of the criterion variable.

Content validity refers to the extent to which an empirical measurement represents a specific domain of content (Muruyama & Ryan, 2014). It is mainly a goal to be achieved in order to assess valid measurements of any type and less a specific type of assessing validity. However, a specific method or procedure in order to determine the extent to which this goal is achieved in practice does not exist (Carmines & Zeller, 1983). The assessment of content validity is mostly a matter of judgment (Moser & Kalton, 1975). Both content and criterion-related validity present limited usefulness for assessing validity of empirical measures focused on theoretical concepts.

The essence of construct validity is that it must be conceived of within a theoretical context (Moser & Kalton, 1975; Carmines & Zeller, 1983; DeVellis, 2012). The more elaborate the theoretical framework, the more demanding the

evaluation of the construct validity of the empirical measure. The researcher is interested in the test performance as a basis for inferring the degree to which some individuals' characteristics are actually reflected in the test performance (Selltiz et al., 1977). In contrast to content and criterion-related validity, construct validity has generalized applicability in the social sciences.

Face validity concerns measures which focus directly on behavior of the kind in which the researcher is interested (Selltiz et al., 1977). It is considered the least scientific means of evaluating construct validity because its evaluation is highly subjective (Muruyama & Ryan, 2014). Both face validity and content validity concern the extent to which item content appears to be relevant to the construct of interest, something that might prove confusing (DeVellis, 2012).

Another type of validity is discriminant validity. This type is useful when a new scale is being developed which is intended to be distinct from the existing one. If the correlation between the new and the existing scale is very high, they are too similar to detect the discrimination between them (Moser & Kalton, 1975).

Finally, convergent validity refers generally to the evidence of similarity between measures of theoretically related constructs (DeVellis, 2012). In cases of measures of a single conceptual variable, it also concerns the overlap between alternative measures which have different sources of systematic errors (Muruyama & Ryan, 2014).

Schwartz's Human Values Scale

The ESS aims to measure attitudes, beliefs and behaviour patterns of populations across Europe. One component that has been present in every round is Schwartz's human values scale, which is designed to classify respondents according to their value orientation. As with any scale, it is important to carry out detailed analysis of its psychometric properties and, in the case of a scale to be used in crossnational research, to establish that these are the same in each country.

In 1992, Schwartz developed the theory of basic human values which has been widely used by social and cross-cultural psychologists in order to study differences in values among individuals (European Social Survey, n.d.a). This theory includes the following ten motivationally distinct basic values which encompass the major value orientations recognized cross-culturally: 1) Power (PO): social status and

prestige, control or dominance over people and resources; 2) Achievement (AC): personal success through demonstrating competence according to social standards; 3) Hedonism (HE): pleasure and sensuous gratification for oneself; 4) Stimulation (ST): excitement, novelty, and challenge in life; 5) Self-direction (SD): independent thought and action-choosing, creating, exploring; 6) Universalism (UN): understanding, appreciation, tolerance, and protection for the welfare of all people and for nature; 7) Benevolence (BE): preservation and enhancement of the welfare of people with whom one is in frequent personal contact; 8) Tradition (TR): respect, commitment, and acceptance of the customs and ideas that traditional culture or religion provide the self; 9) Conformity (CO): restraint of actions, inclinations, and impulses likely to upset or harm others and violate social expectations or norms; and finally; 10) Security (SEC): safety, harmony, and stability of society, of relationships, and of self (Sagin & Schwartz, 2000; Davidov, 2008; see also Hopman, Winter, & Koops, 2014). Schwartz derived these values from three universal requirements of the human condition: needs of individuals as biological organisms, requisites of coordinated social interaction and requirement for the survival and welfare needs of group (Davidov et al., 2008; Datler et al., 2013; Knoppen & Saris, 2009).

Schwartz presented the ten basic values in a circular structure (Figure 1) based on the relations of conflict and congruity among the types of values (Davidov et al., 2008) and the motivational domains can be described as a motivational continuum (Schwartz, 2011; Schwartz & Boehnke, 2004; Schwartz & Butenko, 2014; Cieciuch, Davidov, Vecchione, Beierlein, & Schwartz, 2014; Hopman et al., 2014). More similar value types are close to each other in either direction around the circle and consequently have more similar underlying motivations. On the other hand, conflicting value types appear on opposite sides of the circle and have more antagonistic underlying motivations (Davidov et al., 2008; European Social Survey, n.d.; Barni & Knafo, 2012; Schwartz & Boehnke, 2004; , Davidov, et al., 2014; Hopman et al., 2014).

Fig. 1 Structural relations among the ten values and the two dimensions. Reproduced from "Bringing values back in: the adequacy of the European Social Survey to measure values in 20 countries," by E. Davidov, P. Schmidt and S. H. Schwartz, 2008, *Public Opinion Quarterly*, 72(3), p. 425. Copyright 2008 by Oxford Journals.

Moreover, the circular structure also summarizes two dimensions of relations between these values: the self-enhancement versus self-transcendence dimension opposes power and achievement values to universalism and benevolence values, and the openness to change versus conservation dimension opposes self-direction and stimulation values to security, conformity and traditional values; hedonism shares elements of both openness to change and self-enhancement (Davidov et al, 2008; European Social Survey, n.d.a; Cieciuch & Davidov, 2012; Barni & Knafo, 2012; Hopman et al, 2014).

Lilleoja and Saris (2014, 2015) pointed out that Schwartz first used a 57-item questionnaire with abstract value labels in his survey (Schwartz's value survey, SVS), which was later replaced by the 40-item Portrait value questionnaire (PVQ), which included 40 short verbal portraits of different people. The ESS human values scale was derived from the earlier 40-item PVQ, but because of space limitations, the number was reduced to 21 (PVQ-21) (Davidov et al., 2008). According to Knoppen and Saris (2009), ESS selected Schwartz's human values scale because it is considered as one of the most comprehensive models that had been widely validated across cultures.

The European Social Survey Measurement of Wellbeing

Achieving wellbeing has been the concern of philosophers since Aristotle, under the term of eudemonia, and constitutes in many respects the essence of human existence (New Economics Foundation 2009; Huppert & Cooper, 2014). The areas of application and definitions of wellbeing reflect the complexity of human life in parallel with disagreements about what aspects of life are of importance or more important than others (Halleröd & Seldén, 2013). In recent years, wellbeing has moved from the realm of philosophy to that of science.

Measures of various aspects of wellbeing have been widely used in social sciences research and more recently in economics. A shared belief among researchers is that it provides an important indicator of the welfare of nations and opportunities for policy making, supplementing "the national accounts and the headline measure GDP in particular" (Allin & Hand, 2017, p. 15; see also Allin & Hand, 2014). In this context, in 2006 (Round 3), a module on personal and social wellbeing was included in the ESS questionnaire. The theoretical structure of the ESS measurement of wellbeing, "a compromise between various theoretical models and the available data" (New Economics Foundation 2009, p. 59), was documented thoroughly (Huppert et al., 2009; European Social Survey, 2013).

A good starting point for the definition of "wellbeing" is that given under "welfare" in the Concise Oxford Dictionary: satisfactory state, health and prosperity, wellbeing. Based on this approach, at least two facets of wellbeing can be inferred:

- a) the subject, individual or group, whose wellbeing is being studied, and
- b) the area of life in which the wellbeing is assessed, such as the domain of health, economic prosperity etc. (Levy & Guttman, 1975, 1981).

More precisely, according to Levy and Guttman (1981), an item belongs to the sphere of wellbeing items solely in the case its domain asks for cognitive, affective or instrumental assessment of the level or treatment of the state of a social group in combination with a life area. The range of responses should be from "very satisfactory" to "very unsatisfactory" according to the normative criterion of the respondent for that specific life area (Levy & Guttman, 1975, 1981).

As Huppert and Cooper (2014) pointed out, some researchers refer to wellbeing just in terms of positive emotions or the balance of positive and negative emotions. However, this "hedonic" approach το wellbeing is only part of the whole, since emotions are by their nature transient, whereas the concept of wellbeing encompasses a more sustainable experience. On the other hand, other researchers have equated psychological facet of wellbeing with eudemonic wellbeing. Nevertheless, a more general definition of wellbeing combines both hedonic and eudemonic aspects (Huppert & Cooper, 2014).

Harrison (2016, p. 8) pointed out that "the wellbeing of individuals ... can be understood as a sustainable condition that allows an individual to develop and thrive. It is the combination of feeling good and functioning well; the experience of positive emotions such as happiness and contentment as well as the development of one's potential, having some control over one's life, having a sense of purpose, and experiencing positive relationships" (see also, Huppert, 2009). Based on theoretical and empirical studies, all approaches view wellbeing as a multidimensional concept (Halleröd & Seldén, 2013; Huppert & So, 2013; Jeffrey et al., 2015). All proposed measures include both an objective and a subjective dimension (Halleröd & Seldén, 2013). Objective wellbeing refers to the societal level, to something external to the individual which has an impact on their wellbeing, whereas subjective wellbeing relates to the way people actually experience their lives (Huppert & Cooper, 2014; Huppert et al., 2009; Allin & Hand, 2014).

Three main accounts of wellbeing have been documented (Dolan et al., 2011; Dolan & Metcalfe, 2012):

- a) Objective lists, which are based on assumptions about basic human needs and rights;
- b) Preference satisfaction, which is based on fulfilling our desires;
- c) Subjective wellbeing, which is generally measured by simply asking people about their happiness.

Focusing on subjective wellbeing, a very common term in the literature, the Encyclopaedia of Quality of Life Research defines it as the individual evaluation of quality of life (Abdallah & Mahony, 2012; European Commission, 2013).

Subjective wellbeing covers a broad category of phenomena that includes people's emotional responses, their satisfaction within each domain separately, and their global judgment of life satisfaction (Diener et al., 1999; Diener, 2000). It is a composite construct requiring a cognitive and an affective component for its assessment. The cognitive component refers to how individuals evaluate, in terms of satisfaction, their lives as a whole or in different aspects. The affective component includes the emotions experienced by individuals in their present situation (Maggino, 2014). Typically, the data are gathered by asking the respondents how happy or satisfied they are with certain aspects of their lives or with their lives in general (Kristoffersen, 2015).

According to the literature, three main approaches to subjective wellbeing measurement can be identified. These complement each other and should be used together in order to provide a complete view of wellbeing (Abdallah & Mahony, 2012; Dolan et al., 2011; Dolan & Metcalfe, 2012; European Commission, 2013):

- a) Evaluative wellbeing, which captures individuals' appraisals of their lives as a whole or with reference to specific aspects of it. Respondents are expected to provide cognitive judgments as opposed to feelings. The most common question is to ask people to report how satisfied they are with their lives, without a tight time frame.
- b) Hedonic wellbeing, which refers to people's feelings and moods at a given moment. Both positive and negative feelings are measured. The term "hedonic" has its origins in the philosophy of Aristippus of Cyrene (Panek, 2015).
- c) Eudemonic wellbeing, which aims to capture psychological functioning. The term can be traced back to Aristotle, who argued that the good life was not connected just with happiness, but also with doing good and being virtuous.

The personal and social wellbeing module was first included in the ESS questionnaire of Round 3 (2006), representing "one of the first systematic attempts to develop a coherent set of subjective well-being measures for use in national and cross-national studies" (Huppert et al., 2009, p. 303). This module was repeated with certain changes – mainly by omitting and adding more variables as well as reordering the items – in Round 6 (2012) of the survey (European Social Survey, 2015; Jeffrey,

Abdallah, & Quick, 2015). The theoretical structure of the ESS measurement of wellbeing, "a compromise between various theoretical models and the available data" (New Economics Foundation, 2009, p. 59), was documented thoroughly for both rounds of the survey (Huppert et al., 2009; European Social Survey, 2015). Personal wellbeing measures people's experiences of positive and negative emotions, satisfaction, vitality, resilience and self-esteem (New Economics Foundation, 2009). Social wellbeing includes both interpersonal and societal-level experiences and behaviors in line with the sense of support, trust and belonging (European Social Survey, 2015; New Economics Foundation, 2009).

Combining theoretical models and evidence from statistical analyses, the following six key dimensions were defined for the 2012 ESS measurement of personal and social wellbeing (European Social Survey, 2015; Jeffrey et al., 2015):

- a) Evaluative wellbeing was defined as people's overall estimation concerning their lives (satisfaction and happiness).
- b) Emotional wellbeing was determined by positive feelings within a tight time frame, such as happiness, and enjoyment of life, as much as the lack of negative feelings, such as anxiety and depression.
- c) Functioning was described by feelings of autonomy, competence, engagement, meaning and purpose, self-esteem, optimism and resilience.
- d) Vitality referred to sleeping well, feeling energized and feeling able to face the imminent challenges of life.
- e) Community wellbeing dealt with people's feelings about the community they live in.
- f) Supportive relationships related to individuals' feelings that there are people in their lives who surround them with support, companionship, appreciation and intimacy.

Research Questions

To demonstrate the importance of items' level of measurement in carrying out a psychometric validation of a multidimensional construct (theory testing), as mentioned before, we use Schwartz's human values scale which is comprised of pseudo-interval items and the 2012 ESS measurement of personal and social

wellbeing which is comprised of both ordinal and pseudo-interval items. Therefore, two research questions are formulated.

First research question. Davidov, Schmidt and Schwartz (2008, pp. 440-441) showed that Schwartz's human values scale "failed to exhibit scalar invariance across the 20 countries they considered (Table 1). Therefore, one should not compare the mean importance of the values across all 20 countries simultaneously. However, as illustrated for Denmark and Spain, one can compare means for values across subsets of countries where scalar invariance or partial scalar invariance are found." In each country, they found that there were at least two pairs of values which were dependent on each other that could not be separated. In order to solve the problem of non-positive definite covariance matrices of the constructs, Davidov, Schmidt and Schwartz (2008, pp. 430-432) unified in pairs the strongly associated values.

Table 1 Number of values found in each country after unifying values to solve the problem of non-positive definite matrices of the constructs in single-country CFAs

Country	Number of values	Unified values
Austria	8	POAC, COTR
Belgium	6	POAC, CORT, UNBE, STSD
Czech Republic	7	POAC, UNBE, COTR
Denmark	8	COTR, POAC
Germany	7	POAC,UNBE,COTR
Finland	8	COTR, POAC
France	7	COTR, POAC, UNBE
Great Britain	8	COTR, POAC
Greece	5	POAC, COTR, UNBE, HEST, STSD
Hungary	5	UNBE, COTR, POAC, SECUN, HESD
Ireland	6	POAC, COTR, UNBE, HEST
Israel	7	UNBE, POAC, STSD
Netherlands	8	COTR, POAC
Norway	8	POAC, COTR
Poland	6	UNBE, COTR, HEST, POAC
Portugal	7	COTR, UNBE, HEST
Slovenia	5	COTR, UNBE, HEST, POAC, STSD
Spain	8	COTR, POAC
Sweden	8	COTR, POAC
Switzerland	7	COTR, POAC, UNBE

POAC = power and achievement; COTR = conformity and tradition; UNBE = universalism and benevolence; STSD = stimulation and self-direction; HEST = hedonism and stimulation; HESD = hedonism and self-direction. Reproduced from "Bringing values back in: the adequacy of the European Social Survey to measure values in 20 countries," by E. Davidov, P. Schmidt and S. H. Schwartz, 2008, *Public Opinion Quarterly*, 72(3), p. 425. Copyright 2008 by Oxford Journals.

Their results showed that there were between five and eight distinct values in the different countries. They found that 69 out of 71 pairs of unified values across the 20 countries were adjacent in the circular structure of the Schwartz theory of values. However, these unified values are difficult to interpret. Therefore, a psychometric

validation of this scale would indicate how the values could be treated in countrylevel analyses.

In this respect, the first research question is formulated as follows: to demonstrate using the Schwartz's human values scale the complex sequence of decisions required in carrying out an investigation of the structure (dimensionality) and assessment of the psychometric properties of a multidimensional construct when items are considered as pseudo-interval. The research thus would represent how items may be combined to provide subscales suitable for use in analyses.

Second research question. Huppert et al. (2009, p. 306) recommended that the wellbeing items included in the 2012 ESS module could be used for descriptive analysis at the item level or in various multivariate analyses:

"At one extreme, Europe-wide responses to individual items will provide valuable descriptive, and often policy-relevant, information. At the other extreme, psychometric analysis of the data obtained from the survey will indicate how items can be combined into the most informative summary measures of well-being. At an intermediate level of analysis, examination of the relationship between these new measures and the single-item life satisfaction/happiness questions should also yield valuable insights into the meaning and validity of these latter widely used measures."

To the best of our knowledge, the literature contains no evidence on the structure (dimensionality) and psychometric properties of the 2012 ESS measurement of personal and social wellbeing. Ruggeri et al. (2016) — in line with the Huppert and So (2013) study on flourishing — selected ten items from the wellbeing module of both ESS rounds and presented overall results on comprehensive psychological wellbeing. Karim et al. (2015) validated the eight-item Center for Epidemiologic Studies depression scale (CESD) which is included in the wellbeing module. In this dissertation, all items are included in an investigation and assessment based on current theory and practice. Therefore, the second research question is formulated as follows: to demonstrate using the 2012 ESS measurement of wellbeing the complex sequence of decisions required in carrying out an investigation of the structure (dimensionality) and assessment of the psychometric properties of a multidimensional construct when items are considered as both ordinal and pseudointerval. The research thus would represent a methodological study aiming at indicating "how items can be combined into the most informative summary measures of well-being" (Huppert et al., 2009, p. 306).

Method

Participants

The analysis was based on the European Social Survey Round 1 to Round 7 Data (2002-2014) for the following 16 countries: Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland and the UK. These countries were selected from the 29 participants in Round 6 because they had also participated in Round 3 (2006), when the wellbeing module was first introduced in the questionnaire. In parallel, these 16 countries had also participated in all Rounds of the ESS under consideration.

The ESS implements all the strict methodological prerequisites for comparability over time and cross-nationally (Kish, 1994; Carey, 2000) by applying probability sampling, minimum effective achieved sample sizes in all participating countries, a maximum target non-response rate of 30% (European Social Survey, n.d.b,c and d; The ESS Sampling Expert Panel, 2014, 2016; The Sampling Expert Panel of the ESS, 2008, 2010, 2012) and rigorous translation strategies for the standardized questionnaire (Harkness et al., 2010).

The survey population was defined as all persons aged 15 and over residing within private households in each country, regardless of their nationality, citizenship or language. In Table 2, the realized sample sizes and a summary of the participants' demographic and social characteristics are presented.

Table 2 Participants' demographic and social characteristics: European Social Survey, 2002-2014

Country	N	Men (%)	Women (%)	Age Mean (SD)	Married (%)	Secondary education or lower (%)	In paid work* (%)
Belgium							
2002	1,899	50.7	47.8	45 (18.29)	53.0	72.1	49.5
2004	1,778	49.2	50.8	45 (18.31)	51.9	72.5	47.2
2006	1,798	46.7	53.3	46 (18.64)	54.1	72.2	48.2
2008	1,760	49.1	50.9	47 (18.73)	50.2	67.0	50.2
2010	1,704	48.1	51.9	47 (18.86)	50.4	68.0	48.7
2012	1,869	48.7	51.3	47 (19.08)	50.4	58.8	48.3
2014	1,769	50.7	49.3	47 (18.97)	47.0	74.2	48.9
Denmark							
2002	1,506	50.6	49.1	46 (17.64)	54.5	71.5	59.8
2004	1,487	48.6	51.4	47 (17.80)	54.1	60.9	55.1
2006	1,505	49.0	51.0	50 (17.51)	55.7	57.3	55.7
2008	1,610	49.6	50.4	49 (18.07)	56.4	60.0	56.6

Table 2 (continued)

		Men	Women	Age	Married	Secondary education or	In paid work*
Country	N	(%)	(%)	Mean (SD)	(%)	lower (%)	(%)
Denmark							
2010	1,576	51.3	48.7	49 (18.47)	53.4	61.8	52.3
2012	1,652	50.5	49.5	49 (19.02)	52.5	58.8	60.9
2014	1,502	51.9	48.1	48 (18.94)	50.3	57.1	52.1
Finland	1,002	01.7	.0.1	.0 (10.5.)	00.0	0,11	02.1
2002	1,730	47.3	52.7	46 (18.04)	52.0	73.8	53.8
2004	2,022	46.9	53.1	47 (18.64)	50.1	71.7	51.3
2006	1,896	48.5	51.5	49 (19.02)	50.8	70.0	51.5
2008	2,195	49.1	50.9	48 (18.76)	48.8	69.4	53.3
2010	1,878	48.5	51.5	49 (19.25)	- -	60.1	47.1
2010	2,197	48.9	51.1	50 (18.88)	48.2	58.7	49.9
2012	2,087	49.2	50.8	51 (19.07)	48.9	55.8	46.9
France	2,007	49.2	30.6	31 (19.07)	40.9	33.6	40.9
	1.502	160	52 1	15 (17 01)	57 0	74.0	170
2002	1,503	46.9	53.1	45 (17.84)	57.8 50.6	74.0	47.8
2004	1,806	46.6	53.4 53.2	49 (17.98)	50.6	74.6 73.6	50.1 52.6
2006	1,986	46.8		48 (17.74)	50.2		
2008	2,073	45.4	54.6	49 (18.72)	46.5	69.0	50.7
2010	1,728	46.4	53.6	49 (18.49)	43.8	72.3	49.9
2012	1,969	45.9	54.1	49 (18.17)	51.3	72.1	50.2
2014	1,917	47.6	52.4	50 (18.74)	44.8	65.3	47.9
Germany							
2002	2,919	48.1	51.9	47 (17.72)	56.1	68.8	47.8
2004	2,870	48.1	51.9	47 (17.87)	53.8	69.6	44.1
2006	2,916	49.3	50.7	48 (18.08)	52.1	71.2	46.0
2008	2,751	52.7	47.3	49 (17.43)	54.9	64.5	51.4
2010	3,031	51.3	48.7	48 (18.44)	53.8	65.5	49.7
2012	2,964	50.3	49.7	48 (18.55)	54.5	60.3	49.7
2014	3,045	50.7	49.3	50 (18.39)	55.6	56.0	51.4
Hungary							
2002	1,685	48.0	52.0	46 (18.25)	55.2	86.5	42.7
2004	1,498	43.1	56.9	47 (18.11)	54.8	76.8	44.3
2006	1,518	41.3	58.7	51 (18.64)	45.7	78.8	40.5
2008	1,544	45.5	54.5	48 (19.07)	49.9	77.3	40.9
2010	1,561	45.8	54.2	48 (18.34)	47.1	75.9	47.5
2012	2,020	44.9	55.1	47 (18.17)	44.3	76.5	45.9
2014	1,698	42.5	57.5	50 (18.34)	48.9	77.4	50.9
Ireland							
2002	2,046	45.6	54.4	45 (17.61)	55.3	70.6	50.8
2004	2,286	43.1	56.9	48 (17.89)	56.3	70.3	48.6
2006	1,800	43.9	52.4	46 (18.02)	48.6	60.8	47.5
2008	1,764	45.9	54.1	48 (17.99)	50.6	57.3	44.2
2010	2,576	46.2	53.8	46 (18.71)	42.3	64.2	36.7
2012	2,633	48.2	51.8	45 (17.63)	53.7	59.2	40.9
2014	2,390	46.1	53.9	49 (18.19)	47.8	60.8	43.1
Netherlands	,			. (/			
2002	2,364	45.7	54.3	46 (16.78)	63.1	72.4	47.7
2002	1,881	41.6	58.4	49 (17.40)	52.7	69.4	47.0
2004	1,889	46.0	54.0	49 (17.70)	47.2	68.1	49.8
2008	1,778	46.0	54.0 54.0	49 (17.70)	47.2	67.9	51.7
2008	1,778	45.7	54.0 54.3	50 (17.49)	48.9	67.7	51.7

Table 2 (continued)

Country	N	Men (%)	Women (%)	Age Mean (SD)	Married (%)	Secondary education or lower (%)	In paid work* (%)
Netherlands							
2012	1,845	46.9	53.1	49 (17.85)	55.8	67.4	51.3
2012	1,919	44.8	55.2	51 (18.25)	46.2	64.5	47.1
Norway	1,717	77.0	33.2	31 (10.23)	40.2	04.5	77.1
2002	2,036	54.2	45.8	46 (17.04)	51.2	69.3	62.3
2002	1,760	51.9	48.1	46 (17.04)	53.1	56.3	61.1
2004	1,750	50.9	49.1	46 (17.29)	49.2	54.4	61.9
2008	1,549	52.1	47.9	46 (17.85)	47.4	56.0	62.7
2010	1,548	52.0	48.0	46 (18.50)	47.2	54.8	59.3
2012	1,628	52.8	47.2	46 (18.17)	48.2	54.4	61.2
2014	1,436	53.2	46.8	47 (18.68)	44.3	52.0	58.9
Poland	1,430	33.2	40.0	47 (10.00)	77.5	32.0	30.7
2002	2,110	49.0	51.0	43 (18.65)	57.6	85.1	39.9
2002	2,110 1,716	49.0 48.5	51.0	43 (18.03) 42 (18.02)	57.6 57.9	83.1 83.9	39.9 43.8
2004	1,710	48.3 47.4	51.5 52.6	42 (18.02) 44 (18.57)	57.9 55.4	83.5	45.8 45.1
2008	1,619	47.4	52.8	45 (18.96)	56.3	76.9	46.9
2010	1,751	48.0	52.0	44 (18.91)	55.4	74.4	48.6
2012	1,903	47.9	52.1	46 (18.87)	58.4	76.4	48.1
2014	1,615	45.8	54.2	47 (18.80)	56.3	75.7	48.6
Portugal	1,015	75.0	37.2	47 (10.00)	30.3	13.1	- 0.0
2002	1,511	45.1	54.9	45 (18.62)	64.8	90.9	51.5
2002	2,052	40.0	60.0	49 (19.43)	56.3	89.5	42.4
2004	2,032	38.8	61.2	51 (19.14)	50.5 57.6	89.5	46.2
2008	2,222	39.1	60.9	53 (19.14)	55.0	87.8	40.2
2010	2,150	39.9	60.1	54 (19.21)	55.5	88.8	37.2
2010	2,150	39.9	60.1	50 (18.95)	55.7	89.4	40.4
2014	1,265	45.1	54.9	53 (19.33)	51.7	80.8	41.7
Slovenia	1,203	13.1	51.7	33 (17.33)	31.7	00.0	11.7
2002	1,519	47.6	52.3	44 (18.32)	53.3	85.2	39.1
2002	1,442	44.9	52.8	45 (18.99)	51.9	84.6	43.6
2004	1,476	45.2	54.8	47 (18.88)	49.5	80.2	41.9
2008	1,286	46.3	53.7	47 (18.91)	49.7	79.1	45.4
2010	1,403	46.5	53.5	47 (18.50)	49.7	79.1	43.8
2012	1,261	45.9	54.1	48 (18.85)	49.6	76.6	41.1
2014	1,224	46.0	54.0	50 (18.65)	51.1	76.0	41.7
Spain	1,221	10.0	31.0	30 (10.03)	31.1	70.0	11.7
2002	1,729	47.3	52.7	46 (19.03)	58.0	77.4	43.9
2002	1,729	51.1	48.9	46 (19.03)	57.8	73.0	52.2
2004	1,876	48.1	51.9	45 (18.72)	57.8 54.1	73.0 72.8	54.4
2008	2,576	47.4	52.6	40 (18.91)	54.7	76.8	52.3
2010	1,885	49.2	50.8	46 (19.26)	51.8	70.7	48.0
2012	1,889	48.3	51.7	48 (17.99)	54.9	73.1	43.7
2012	1,925	51.3	48.7	49 (18.65)	52.8	71.1	45.6
Sweden	-,>=5	51.5	,	.> (10.00)	22.0	, 1.1	15.0
2002	1,999	50.7	49.1	46 (18.59)	46.0	77.9	58.7
2002	1,999	30.7 49.9	50.1	46 (18.59) 47 (18.69)	46.0 44.7	76.5	58.7 58.2
2004	1,948	49.9 49.4	50.1	47 (18.09) 47 (18.70)	44.7	76.3 74.2	58.2 60.8
2008	1,927	50.2	49.8	47 (18.70) 48 (19.27)	45.7 45.0	73.5	60.8
2008	1,830	48.0	52.0	48 (19.27) 49 (19.24)	43.0	61.1	55.6
2010	1,497	51.3	32.0 48.7	49 (19.24) 48 (19.01)	42.7 45.9	57.4	53.0 54.1
2012	1,003	21.3	50.1	40 (17.U1 <i>)</i>	43.9	31.4	$\mathcal{I}_{+,1}$

Table 2 (continued)

Country	N	Men (%)	Women (%)	Age Mean (SD)	Married (%)	Secondary education or lower (%)	In paid work* (%)
Switzerland							
2002	2,040	49.6	50.4	45 (17.56)	58.9	73.5	54.4
2004	2,141	44.3	55.7	48 (18.18)	50.6	73.3	55.3
2006	1,804	45.2	54.8	50 (18.00)	52.9	71.1	54.4
2008	1,819	45.2	54.8	49 (18.34)	45.3	71.6	55.1
2010	1,506	51.3	48.7	48 (18.75)	54.5	68.2	56.7
2012	1,529	50.0	50.0	47 (18.70)	54.1	66.1	57.6
2014	1,532	50.0	50.0	47 (18.83)	53.5	67.4	56.1
UK							
2002	2,052	48.6	51.4	47 (18.29)	55.6	68.4	54.4
2004	1,897	45.5	54.4	48 (18.82)	43.9	75.3	48.1
2006	2,394	45.1	54.9	50 (19.08)	46.1	60.3	51.5
2008	2,352	45.6	54.0	49 (18.57)	45.5	55.6	50.7
2010	2,422	43.6	56.4	50 (18.98)	45.2	64.4	48.8
2012	2,287	43.4	56.6	49 (19.03)	55.3	62.9	48.1
2014	2,264	45.2	54.8	52 (18.39)	47.0	56.0	47.7

^{*}The reference period for the respondent's main activity was defined as during the last 7 days.

Instruments

Schwartz's Portrait Value Questionnaire (PVQ-21). The ESS PVQ-21 questionnaire (Appendix I.A) is worded according to the respondent's gender and is administered as a self-completion questionnaire after the end of the interview. Each item represents one of the ten values of the Schwartz human values scale and verbal portraits of 21 different people are provided. Each portrait describes a person's goals, aspirations or wishes that show implicitly the importance of a value (Davidov et al., 2008). Each value is represented by two items, apart from universalism which is expressed by three items (Table 3).

There are six possible response categories which are defined as follows: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Therefore, as mentioned in the Introduction (Attitude Scales: Theory Testing), the items' level of measurement was considered as pseudo-interval. The total score for each respondent is calculated by averaging his or her responses on the items defining each value, i.e. subscales are constructed by computing the mean of items that measure each one (Davidov et al., 2008). The scale was first introduced in Round 1 of the ESS conducted in 2002 and has been included in all subsequent rounds of the ESS.

Table 3 The short form of Schwartz's Portrait Value Questionnaire (PVQ-21): European Social Survey

No.	Item	Value	Label
1.	Thinking up new ideas and being creative is important to him. He likes to do things in his own original way.	Self-Direction (SD)	SD1
11. 3.	It is important to him to make his own decisions about what he does. He likes to be free and not depend on others. He thinks it is important that every person in the word should	Universalism (UN)	SD11
8.	be treated equally. He believes everyone should have equal opportunities in life. It is important to him to listen to people who are different from		UN3
0.	him. Even when he disagrees with them, he still wants to understand them.		UN8
19.	He strongly believes that people should care for nature. Looking after the environment is important to him.		UN19
12.	It's very important to him to help the people around him. He wants to care for their well-being.	Benevolence (BE)	BE12
18.	It is important to him to be loyal to his friends. He wants to devote himself to people close to him.		BE18
9.	It is important to him to be humble and modest. He tries not to draw attention to himself.	Tradition (TR)	TR9
20.	Tradition is important to him. He tries to follow the customs		
7.	handed down by his religion or his family. He believes that people should do what they're told. He thinks people should follow rules at all time, even when no-one is	Conformity (CO)	TR20
16.	watching. It is important to him always to behave properly. He wants to		CO7
	avoid doing anything people would say is wrong.		CO16
5.	It is important to him to live in secure surroundings. He avoids anything that might endanger his safety.	Security (SEC)	SEC5
14.	It is important to him that the government ensures his safety against all threats. He wants the state to be strong so it can defend its citizens.		SEC14
2.	It is important to him to be rich. He wants to have a lot of money and expensive things.	Power (PO)	PO2
17.	It is important to him to get respect from others. He wants people to do what he says.		PO17
4.	It's important to him to show his abilities. He wants people to admire what he does.	Achievement (AC)	AC4
13.	Being very successful is important to him. He hopes people will recognize his achievements.		AC13
10.	Having a good time is important to him. He likes to "spoil" himself.	Hedonism (HE)	HE10
21.	He seeks every chance he can to have fun. It is important to him to do things that give him pleasure.		HE21
6.	He likes surprises and is always looking for new things to do.	Stimulation (ST)	
15.	He thinks it is important to do lots of different things in life. He looks for adventure and likes to take risks. He wants to have		ST6
	an exciting life.		ST15

Item number indicates order as presented in the ESS questionnaire. Adapted from "Bringing values back in: the adequacy of the European Social Survey to measure values in 20 countries," by E. Davidov, P. Schmidt and S. H. Schwartz, 2008, *Public Opinion Quarterly*, 72(3), pp. 427-428. Copyright 2008 by Oxford Journals.

The ESS measurement of personal and social wellbeing. The ESS questionnaire for the measurement of personal and social wellbeing is presented in

Appendix I.B. Table 4 presents the 2012 (Round 6) ESS measurement of personal and social wellbeing (European Social Survey, 2013, 2015; Jeffrey et al., 2015; New Economics Foundation, 2009). Based on a combination of theoretical models and statistical analyses, it is comprised of 35 items defined in six key-dimensions: evaluative wellbeing (two items), emotional wellbeing (six items), functioning (14 items), vitality (four items), community wellbeing (five items) and supportive relationships (four items). The scoring of negatively worded items was reversed before the analysis in order to achieve correspondence between the ordering of the response categories.

Of these 35 items, 29 were located in the wellbeing module of the questionnaire (part D) and the other six in the core questionnaire (parts A, B and C). As mentioned before in the Introduction (Attitude Scales: Theory Testing), most importantly, note that the items were not defined according to attitude scaling theory as they were assigned various numbers of response categories: 1-4 (11 items); 1-5 (10 Likert items); 0-6 (three items); 0-10 (11 items). Therefore, the items' level of measurement was considered as both ordinal (1-4) and pseudo-interval (1-5, 0-6, 0-10). We emphasize that, although this crucial methodological issue was dealt with in the statistical analyses, the problem of using different definitions for the response categories remains unanswered.

In order to resolve this issue for the construction of the subscales, New Economics Foundation (2009) and Jeffrey et al. (2015) proposed first computing standardized z-scores for each item and then, by a process of aggregation, transforming the recoded z-scores into scores for each predetermined wellbeing dimension. However, this approach fails to take into account that it is inappropriate to use standardization for ordinal items. Furthermore, it changes the scale and the meaning of its values since the difference of one unit is a difference of one standard deviation, rendering interpretation difficult. In this respect, taking into consideration what Kalmijn (2015) proposed for the measurement of happiness, all items were rescaled into a 1-5 scale by applying the following simple transformation:

$$\left(\frac{max_{new}-min_{new}}{max_{old}-min_{old}}\right).\left(v-max_{old}\right)+max_{new}$$

where *v* represents the variable before the rescaling.

Table 4 The 2012 European Social Survey (ESS) measurement of personal and social wellbeing

Wellbeing dimensions, items and response categories	ESS quest.	Aligned scale	Item label
Evaluative wellbeing			
How satisfied with your life as a whole: extremely dis. (0)/satisfied (10)	B20	0-10	Evwb1
How happy would you say you are: extremely unhappy (0)/happy (10)	C1	0-10	Evwb2
Emotional wellbeing			
Felt sad: how often past week*	D11	1-4 (R)	Emwb1
Felt depressed: how often past week*	D5	1-4 (R)	Emwb2
Enjoyed life: how often past week*	D10	1-4	Emwb3
Was happy: how often past week*	D8	1-4	Emwb4
Felt anxious: how often past week*	D14	1-4 (R)	Emwb5
Felt calm and peaceful: how often past week*	D15	1-4	Emwb6
Functioning			
Free to decide how to live my life: strongly agree (1)/disagree (5)	D16	1-5 (R)	Fun1
Little chance to show how capable I am: strongly agree (5)/disagree(1)	D17	1-5	Fun2
Feel accomplishment from what I do: strongly agree (1)/disagree (5)	D18	1-5 (R)	Fun3
Interested in what I am doing: none (0)/all (10) of the time	D31	0-10	Fun4
Absorbed in what I am doing: none (0)/all (10) of the time	D32	0-10	Fun5
Enthusiastic about what I am doing: none (0)/all (10) of the time	D33	0-10	Fun6
Feel what I do in life is valuable: strongly agree (1)/disagree (5)	D23	1-5 (R)	Fun7
Have a sense of direction in my life: not at all (0)/completely (10)	D35	0-10	Fun8
Always optimistic about my future: strongly agree (1)/disagree (5)	D2	1-5(R)	Fun9
There are lots of things I feel I am good at: strongly agree (1)/dis. (5)	D25	1-5(R)	Fun10
Feel very positive about myself: strongly agree (1)/disagree (5)	D3	1-5 (R)	Fun11
At times I feel as if I am a failure: strongly agree (5)/disagree (1)	D4	1-5	Fun12
When things go wrong in my life it takes a long time to get back to			
normal: strongly agree (5)/disagree (1)	D19	1-5	Fun13
Deal with important problems: extremely difficult (0)/easy (10)	D30	0-10	Fun14
Vitality			
Felt that everything I did was an effort: how often past week*	D6	1-4 (R)	Vi1
Sleep was restless: how often past week*	D7	1-4 (R)	Vi2
Could not get going: how often past week*	D12	1-4 (R)	Vi3
Had a lot of energy: how often past week*	D13	1-4	Vi4
Community wellbeing			
Most people can be trusted (10) or you can't be too careful (0)	A3	0-10	Cowb1
Most people would try to take advantage of me (0)/try to be fair (10)	A4	0-10	Cowb2
Most of the time people try to be helpful (10)/orfor themselves (0)	A5	0-10	Cowb3
Feel people in local area help one another: not at all (0)/a great deal(6)	D21	0-6	Cowb4
Feel close to the people of local area: strongly agree (1)/disagree (5)	D27	1-5(R)	Cowb5
Supportive relationships			
Anyone to discuss intimate and personal matters with: how many**	C3	0-6	Sur1
To what extent feel appreciated: not at all (0)/completely (10)	D29	0-10	Sur2
Receive help and support: not at all (0)/completely (6)	D36	0-6	Sur3
Felt lonely: how often past week*	D9	1-4 (R)	Sur4

R =these items were reversed before analysis. The grouping of items into the wellbeing dimensions is based on Jeffrey et al. (2015).

^{*1} = none or almost none of the time; 2 = some of the time; 3 = most of the time; 4 = all or almost all of the time.

^{**}0 = none; 1 = 1; 2 = 2; 3 = 3; 4 = 4-6; 5 = 7-9; 6 = 10 or more.

Although this simple transformation in turn is not appropriate for ordinal items, it did produce scores that facilitated interpretation. The subscales were constructed by averaging their rescaled defining items based on their factor loadings so that low and high scores would indicate low and high wellbeing values, respectively.

Statistical Analyses

In both cases, when items are considered as pseudo-interval (Schwartz's Portrait value questionnaire, PVQ-21) and both ordinal and pseudo-interval (the 2012 ESS measurement of personal and social wellbeing), first the sample in each country was randomly split into two halves using an SPSS script taken from Raynald's SPSS Tools (Levesque, 2012). EFA was performed on the first half-sample in order to assess the construct validity of the scale. The structure suggested by EFA was subsequently validated by carrying out CFA on the second half-sample.

Tabachnick and Fidell (2007) proposed that a sample size of 300 cases or more is adequate for performing factor analysis. Since sample sizes (Table 2) ranged from 1,224 (Slovenia, 2014) to 3,045 (Germany, 2014), the half-samples ranged from 612 (Slovenia, 2014) to 1,522 (Germany, 2014) and were therefore considered large enough for carrying out factor analyses separately in each country.

Initially, missing data analysis was performed for both half-samples and the size and pattern of missing values for each item was investigated (Charalampi et al., 2016; Michalopoulou, 2017). The size and pattern of missing values for each item is investigated for the first half-sample. Little's MCAR test was conducted in order to ascertain if data was missing completely at random (MCAR) or missing at random (MAR). A non-significant *p*-value indicated that the data is probably missing completely at random. Missing at random (MAR) is inferred in the case of a significant *p*-value (Allison, 2002; Enders, 2010; Galati & Seaton, 2013; Potthoff, Tudor, Pieper, & Hasselblad, 2006; Seaman, Galati, Jackson, & Carlin, 2013). Direct maximum likelihood is currently considered the best method for dealing with missing data under the assumption of MCAR (Enders, 2010). However, SPSS does not provide this option and so the choice is among the following: mean substitution, regression imputation and expectation maximization (see for a detailed discussion Enders, 2010; Tabachnick and Fidell, 2007). In the case of missing values negligible

in size and with an appearing random pattern, list-wise exclusion may be adopted (Tabachnick and Fidell, 2007). Missing data analysis is then carried out on the second half-sample. Missing values are dealt with the same method for both half-samples.

Data screening for unengaged responses was performed for both half-samples. This involved calculating for each case the standard deviation of responses across the items defining each scale. Cases were eliminated if they exhibited low standard deviation (< 0.5), i.e. no variance in the responses (Gaskin, 2016). Data screening for outliers was performed for both half-samples based on the following background variables: gender (dichotomy), age (ratio) and education (pseudo-interval). Cases could be eliminated if they were shown in the boxplots as outliers (Gaskin, 2016; see also Brown, 2015; Tabachnick & Fidell, 2007; Thompson, 2005).

Methodology when items are considered as pseudo-interval. Schwartz (n.d., p. 3) pointed out that "Exploratory factor analysis [EFA] is not suitable for discovering the theorized set of relations among values because they form a quasi-circumplex, which EFA does not reveal. Factors obtained in an EFA with rotation will only partly overlap with the 10 values and will exploit chance associations". In this respect, EFAs were performed in order to try and combine adjoining items so as to be able to interpret the resulting factors based on the higher order values, as proposed by Feather (1995). The EFA results decided on the models to be tested in the separate CFAs.

For the data of the first half-sample, item analysis was carried out to examine their distributional properties and decide on the items to be included in the analysis. Also, EFAs were performed testing one to 10 factors using IBM SPSS Statistics Version 20. Then, the structures identified by EFA were validated by carrying out CFAs under various structural assumptions on the second half-sample using IBM SPSS AMOS Version 21. Finally, CFAs were performed on the total sample.

Exploratory Factor Analysis. First, Principal axis factoring (PAF) was performed to define factors as subscales and factor loadings were reported (Fabrigar, Wegener, MacCallum, & Strahan, 2009). In performing PAF, as we have considered in previous work (Charalampi et al., 2016; Michalopoulou, 2017), the following sequence of decisions was required (Tabachnick & Fidell, 2007; Thompson, 2005; Cabrera-Nguyen, 2010):

- 1. Initially, univariate statistics were computed for each item and their distributional properties were inspected (testing for normality) to decide on the appropriateness of the methods to be used. The criterion of corrected itemtotal correlations < .30 was used to decide which items to reject from analysis (Clark & Watson, 1995; Nunnally & Bernstein, 1994; see also Charalampi et al., 2016; Michalopoulou, 2017; Symeonaki, Michalopoulou, & Kazani, 2015).
- 2. Missing data analysis was performed because complete data sets are required for SPSS Amos.
- 3. As the items are considered pseudo-interval, the covariance matrix is employed as the matrix of associations since it is the most commonly used matrix of associations in conducting CFA (Thompson, 2005).
- 4. The decision on the number of factors to be extracted was based on the eigenvalue greater than 1.0 rule, scree test, parallel analysis and interpretability (Hayton, Allen, Scarpello, 2004; see also Symeonaki et al., 2015). Parallel analysis (Ledesma & Valero-Mora, 2007; O'Connor, 2000; Schmitt, 2011) was performed using the parallel analysis engine provided by Patil, Singh, Mishra and Donavan (Patil, Singh, Mishra, & Donavan, 2007, 2008).
- 5. Factor rotation method: Promax (oblique) rotation was applied (Fabrigar et al., 1999). Items with loadings greater than .30 on one factor and greater than .22 on another factor were considered as "cross-loading" items, i.e. items that loaded on multiple factors (Anagnostopoulos, Yfantopoulos, Moustaki, & Niakas, 2013; Stevens, 2002).

Confirmatory Factor Analysis. In performing CFA, as we have considered in previous work (Charalampi et al., 2016; Michalopoulou, 2017), the following sequence of decisions was required (Brown, 2015; Cabrera-Nguyen, 2010; Gillapsy, Lackson, & Purc-Stephenson, 2009; Thompson, 2005):

- 1. The decision on the items to be included in the analysis was based on the item analysis results carried out before performing EFA.
- 2. CFA was performed using the covariance matrix of associations and using maximum likelihood for estimation.

3. Rival models: It was decided to consider the following basic models: one first-order factor (model 1); two first-order correlated factors employing all items (model 2a); two first-order correlated factors employing all items (model 2b) with cross-loadings; three first-order correlated factors based on the EFA results (model 3a); three first-order correlated factors based on the EFA results (model 3b) with cross-loadings and the five first-order correlated factors model based on Davidov and Schwartz's (Davidov et al., 2008) results (model 4). In some cases, the results led to additional models: two first-order correlated factors based on the solution obtained from EFA with consideration of the subscales' reliability (model 2c); two first-order correlated factors based on the solution obtained from EFA with consideration of the subscales' reliability (model 2d) with cross-loadings; four first-order correlated factors based on the EFA results and four first-order correlated factors based on the EFA results with cross-loadings. The last model for each country was based on the paper of Davidov et al. (2008) and it was constructed according to the proposed unified values.

Lilleoja and Saris (2014, p. 157) pointed out that "Schwartz has criticized CFA approach, because it contradicts the view of values as arrayed on a continuum, as it seeks to confirm relatively pure factors and each item ideally loads on only one factor (Schwartz, 2011). The latter remark is not true because cross-loadings are in principle allowed in CFA, but in that case they have to be specified in the model. If they are ignored, the misspecification leads to improper estimates, like correlations larger than 1.0." Therefore, the presentation of cross-loadings in CFA is required and the models were run again by considering the respective cross-loadings resulting from EFA. Where necessary, error variances were correlated.

4. Model evaluation: In CFA, model fit was considered adequate if χ²/df <3, the Standardized root mean square residual (SRMR) < .08, the Comparative fit index (CFI), the Normed fit index (NFI) and the Tucker-Lewis index (TLI) were ≥ .90 and the Root-mean-square error approximation (RMSEA) < .08 with the 90% Confidence interval (CI) upper limit < .08 (Hu & Bentler, 1999; Marsh, Hau, & Wen, 2004; Cieciuch & Davidov, 2012; Cieciuch et al, 2014; Schwartz & Butenko, 2014; see also Cieciuch & Schwartz, 2012; Steinmetz, Schmidt, Tina-Booh, Wieczorek, & Schwartz, 2009).</p>

5. Model misspecification searches: searches for modification indices and further specifications were performed and, where necessary, correlations between error variances were introduced (Brown, 2015; Thompson, 2005).

Subscale construction and assessment. Subscales were constructed by averaging their defining items for the full sample. Descriptive statistics, Cronbach's alpha and Guttman split-half reliability coefficients of the subscales were computed. A subscale was considered reliable if these coefficients were ≥.70 (Nunnally & Bernstein, 1994). Average inter-item correlations in the recommended range of .15-.5 that clustered near their mean value were used as an indication of the unidimensionality of the subscales (Clark & Watson, 1995). To demonstrate whether or not subscales were warranted, the condition of average correlation between subscale items "significantly greater than zero but substantially less than the average within-subscale values (say, .20)" (Clark & Watson, 1995, p. 318) was used for justifying subscales. As Clark and Watson (1995) pointed out, "if this condition cannot be met, then the subscales should be abandoned in favor of a single overall score" (p. 318).

Descriptive statistics (mean and standard deviation) were computed after applying dweight (design weights). According to the European Social Survey (2014, p. 1): "The main purpose of the design weights is to correct for the fact that in some countries respondents have different probabilities to be part of the sample due to the sampling design used. Applying the weights allows to correct for this and obtain estimates that are not affected by a possible sample selection bias. The design weights are computed as the inverse of the inclusion probabilities and then scaled such that their sum equals the net sample size." Also, convergent and discriminant validity were assessed (Brown, 2015; Fornell & Larcker, 1981). Based on the CFA results for the total sample, the Average variance extracted (AVE) was computed for each subscale to assess the convergent validity of the respective construct. The formula for the calculation of the AVE according to Fornell and Larcker (1981, p. 45) is as follows:

$$\rho_{vc(\eta)} = \frac{\sum_{i=1}^{p} \lambda_{yi}^{2}}{\sum_{i=1}^{p} \lambda_{yi}^{2} + \sum_{i=1}^{p} Var(\varepsilon_{i})}$$

where p is the number of indicators of construct $\rho_{vc(\eta)}$, λ_{yi} is the factor loadings and $Var(\varepsilon_i)$ is the error variance of i indicator of construct $\rho_{vc(\eta)}$. A simpler calculation for computing the AVE was used as proposed by Anagnostopoulos et al. (2013, p. 1977) by averaging the sum of all squared standardized factor loadings.

Convergent validity was considered adequate if the average extracted variance was ≥.50 (Fornell & Larcker, 1981; see also Anagnostopoulos et al., 2013). Adequate discriminant validity of constructs was accepted "if the squared inter-construct correlations estimates associated with that ... [construct] were less than its AVE estimate" (Anagnostopoulos et al., 2013, p. 1977).

Methodology when items are considered as both ordinal and pseudo-interval. EFA was performed on the first half-sample in order to assess the construct validity of the scale. The structure suggested by EFA was subsequently validated by carrying out CFA on the second half. Statistical analyses were performed using Mplus Version 7.4 and IBM Statistics SPSS Version 20. Mplus was used for EFA and CFA because appropriate methods treating items considered as both ordinal and pseudo-interval are provided. Thus this crucial methodological issue was dealt with in the analysis.

Initially, missing data analysis was performed and the size and pattern of missing values for each item was investigated. In performing EFA and CFA, the default in Mplus is "to estimate the model under missing data theory using all available data" (Muthén & Muthén, 1998-2012, p. 43; see also, Enders 2010). Consequently, only cases with missing values on all items were excluded from the analysis. Data screening for unengaged responses and outliers was performed as mentioned before.

Exploratory Factor Analysis. In performing EFA, as mentioned in previous work (Charalampi et al., 2016; Michalopoulou, 2017), the following sequence of decisions was required (Brown, 2015; Cabrera-Nguyen, 2010; Tabachnick & Fidell, 2007; Thompson, 2005):

- 1. Initially, the items' frequency distributions were inspected for floor and ceiling effects, bearing in mind that percentages of responses in the range 1-15 are normally deemed acceptable (Anagnostopoulos et al., 2013). Next the items were rescaled into a 1-5 scale, univariate statistics were computed for each item and their distributional properties were inspected (testing for normality) to decide on the appropriateness of the methods to be used. The criterion of corrected item-total correlations < .30 was used to decide which items to exclude from the analysis (Clark & Watson, 1995; Nunnally & Bernstein, 1994).
- 2. As the items (before rescaling) were considered as both ordinal and pseudo-interval, the polychoric correlation matrix was employed as the appropriate matrix of associations (Brown, 2015; see also Anagnostopoulos et al., 2013).
- 3. Robust weighted least squares was applied as the appropriate method of factor extraction (Brown 2015) and also because it "performs well ... for variables with floor or ceiling effects" (Brown 2015, p. 355).
- 4. Based on the correlations among factors and the simple structure criterion, geomin rotation was used as the appropriate oblique factor rotation method (Brown, 2015; see also Fabrigar et al., 1999).
- 5. Considering the theoretical structure proposed for the 2012 ESS measurement of wellbeing, the decision on the number of factors to be extracted was based on the performance of six models with one to six factors tested for each country. Model fit was considered adequate if χ²/df < 3, CFI and TLI values were greater than or close to .95 and RMSEA ≤ .06 with the 90% CI upper limit ≤ .06 (Bollen, 1989; Brown, 2015; Hu & Bentler, 1999; Schmitt, 2011; Tabachnick & Fidell, 2007; Thompson, 2005). Model fit was considered acceptable if χ²/df < 3, CFI and TLI values were > .90 and RMSEA < .08 with the 90% CI upper limit < .08 (Hu & Bentler, 1999; Marsh et al., 2004; Cieciuch & Davidov, 2012; Cieciuch et al., 2014; Schwartz & Butenko, 2014; see also Cieciuch & Schwartz, 2012; Steinmetz et al., 2009).</p>
- 6. Items were considered salient if their factor loadings were >.30 and therefore the meaning of each dimension was inferred from these items (Fabrigar et al., 1999; Thompson, 2005). Items with loadings >.30 on one factor and >.22 on another factor were considered as "cross-loading" items, i.e. items that loaded on multiple factors (Stevens, 2002; see also Anagnostopoulos et al., 2013).

Items with loadings <.30 on all factors (i.e., low communalities) were excluded from the analysis. Also, factors with salient loadings for only two items were eliminated from the analysis as poorly defined (Brown, 2015).

Confirmatory Factor Analysis. In performing CFA, as mentioned in previous work (Charalampi et al., 2016; Michalopoulou, 2017), the following sequence of decisions was required (Brown, 2015; Cabrera-Nguyen, 2010; Tabachnick & Fidell, 2007; Thompson, 2005):

- 1. The decision on the inclusion of items in the analysis was based on the results of the item analysis carried out on the first half-sample and those of EFA.
- 2. The model indicated as best by the EFA results performed on the first half-sample was considered for testing.
- 3. CFA was performed with robust weighted least squares of the polychoric correlation matrix.
- 4. Model fit was considered adequate or acceptable as in EFA, i.e. if $\chi^2/df < 3$, CFI and TLI values greater than or close to .95 and RMSEA \leq .06 with the 90% CI upper limit \leq .06, or if $\chi^2/df < 3$, the CFI and TLI values were > .90 and RMSEA < .08 with the 90% CI upper limit < .08, respectively.
- 5. Searches for modification indices and further specifications were performed and, where necessary, correlations between error variances were introduced (Brown, 2015; Thompson, 2005).

Subscale construction and assessment. Subscales were constructed as described before for the full sample and descriptive statistics were computed. Based on the CFA results for the full sample, as in our previous work (Charalampi et al., 2016; Michalopoulou, 2017), the AVE was computed for each subscale by averaging the sum of all squared standardized factor loadings to assess the convergent validity of the respective construct. Convergent validity was considered adequate if AVE was above or around .50, i.e. a relaxed version of the Fornell and Larcker (1981) criterion for AVE \geq .50 (see also Anagnostopoulos et al., 2013). Average inter-item correlations in the recommended range of .15-.5 that cluster near their mean value were used as an indication of the unidimensionality of the subscales (Clark & Watson, 1995). To demonstrate whether subscales are warranted or not, the condition

of average correlation between subscale items "significantly greater than zero but substantially less than the average within-subscale values (say, .20)" (Clark & Watson, 1995, p. 318) was used for justifying subscales. As Clark and Watson (1995: 318) pointed out, "if this condition cannot be met, then the subscales should be abandoned in favor of a single overall score". Adequate evidence of discriminant validity was considered if the squared correlations between subscales were less than their AVE estimates (Anagnostopoulos et al., 2013). Furthermore, based on the CFA results for the full sample, composite reliability coefficients (Raykov, 1997) were computed using the calculator provided by Colwell (2016); these are more appropriate than the commonly used Cronbach's alpha coefficient (Brown, 2015; Raykov, 2007; see also Anagnostopoulos et al., 2013). A subscale was considered reliable if the composite reliability coefficients were above or around .70, i.e. using a more relaxed version of the Nunnally and Bernstein (1994) criterion for Cronbach's alpha coefficients ≥ .70.

Results

Data Screening for Unengaged Responses and Outliers

Data screening of the first half-samples for unengaged responses (standard deviation = .000) in all data sets (Table 5) identified a negligible number of cases ranging from one (Belgium, 2006; Finland, 2010; France, 2002, 2004; Hungary, 2002, 2014; Netherlands, 2014; Norway, 2002, 2008; Slovenia, 2002; Spain, 2008; Sweden, 2004) to 26 (UK, 2008) and it was decided not to reject them from analysis. In some half-samples, a negligible number of outlying cases with Higher Education degree were detected ranging from one (Norway, 2002) to 10 (Germany, 2002, 2006, 2010-2014; Hungary, 2010-2014; Slovenia, 2010-2014; Sweden, 2012, 2014; Switzerland, 2008-2014) and it was decided not to reject them from analysis. Similar results were obtained for the second half-samples and no case was excluded from the analysis.

Results When Items Are Considered as Pseudo-Interval

In order to demonstrate the full analysis, the detailed results for Belgium are presented first in Tables 6-12 and Figures 2-3. Summarized results for all 16 countries are presented in Tables 14-17. In Appendix II.A, the detailed results for the other 15 countries are presented in Tables A1-A750 and Figures A1-A222.

Results – **Belgium.** The full analysis is demonstrated for Belgium based on the European Social Survey Round 6 Data (2012).

EFA results. The majority of the responses were clustered close to the lower end of the scale in the second and the third response categories (Table 6). Low mean responses were found for items defining Benevolence (BE12 and BE18), Universalism (UN3 and UN19) and Self-Direction (SD11). Relatively high mean responses were found for items defining Power (PO2 and PO17), Stimulation (ST15), Conformity (CO7) and Achievement (AC4 and AC13).

As shown in Table 6, the proportion of missing values for all the items was negligible, ranging from 0.3 to 0.9%. Testing for randomness indicated that the data was probably missing at random (Little's MCAR test: $\chi^2 = 385.6$, df = 253, $p \le 0.001$). Non-normality was not severe for any item (skewness>2; kurtosis>7), as the skewness and kurtosis values ranged from -0.30 to 1.24 and -0.76 to 4.25, respectively.

 Table 5 Unengaged responses and outliers based on the first half-samples: European Social Survey

			Unenga	aged res	ponses						Outliers			
Country	2002	2004	2006	2008	2010	2012	2014	2002	2004	2006	2008	2010	2012	2014
Belgium	18	2	1	3	2	2	0	0	0	0	0	0	0	0
Denmark	9	11	21	12	8	8	3	4 (hd.)	0	4 (hd.)	4 (hd.)	0	0	4 (hd.)
Finland	0	3	0	2	1	8	11	0	0	0	0	0	0	4 (hd.)
France	1	1	2	4	3	0	2	0	0	0	0	0	0	6 (hd.)
Germany	0	4	8	3	11	7	3	10 (hd.)	4 (hd.)	10 (hd.)	4 (hd.)	10 (hd.)	10 (hd.)	10 (hd.)
Hungary	1	0	3	6	6	3	1	Ò	0	0	0	10 (hd.)	10 (hd.)	10 (hd.)
Ireland	4	3	3	5	3	7	2	0	0	0	0	Ò	Ò	ò
Netherlands	11	6	14	18	11	9	1	0	0	0	0	0	0	0
Norway	1	3	2	1	9	6	4	1 (hd.)	0	4 (hd.)				
Poland	10	4	7	6	6	9	8	0	0	0	0	0	0	0
Portugal	5	6	8	14	4	5	4	4 (hd.)	0	0	0	0	0	0
Slovenia	1	15	6	8	16	4	5	0	0	0	0	10 (hd.)	10 (hd.)	10 (hd.)
Spain	17	15	5	1		2	3	0	0	0	0	Ò	Ò	ò
Sweden	5	1	0	0	13	3	8	0	0	0	0	0	10 (hd.)	10 (hd.)
Switzerland	4	2	4	14	5	0	4	0	4 (hd.)	0	10 (hd.)	10 (hd.)	10 (hd.)	10 (hd.)
UK	7	11	12	26	18	12	15	0	0	0	0	0	0	0

hd. = Higher education.

Table 6 Item analysis of Schwartz scale values of the European Social Survey, 2012: Belgium (first half-sample: n=934)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.66 (1.149)	2.58-2.73	15.1	33.2	30.6	13.3	5.1	1.8	0.9	0.59	0.14	.333
SD11	2.11 (0.968)	2.05-2.17	26.2	47.3	18.8	3.9	2.7	0.6	0.4	1.17	1.97	.355
UN3	2.02 (0.854)	1.97-2.08	26.0	52.0	16.7	2.9	1.5	0.3	0.5	1.13	2.41	.240
UN8	2.35 (0.924)	2.29-2.41	14.5	48.2	28.3	5.4	2.4	0.7	0.6	0.96	1.73	.320
UN19	2.09 (0.950)	2.03-2.15	28.1	44.2	20.4	5.2	0.9	0.9	0.3	1.03	1.76	.259
BE12	2.05 (0.790)	2.00-2.10	23.0	53.5	19.4	2.7	0.9	0.1	0.4	0.79	1.49	.341
BE18	1.76 (0.719)	1.71-1.81	37.2	51.7	9.3	0.7	0.3	0.3	0.4	1.24	4.25	.420
TR9	2.42 (1.025)	2.35-2.48	14.1	48.6	23.9	7.6	4.3	1.0	0.5	1.02	1.17	.176
TR20	2.66 (1.202)	2.59-2.74	15.5	35.9	25.1	14.3	7.0	1.7	0.5	0.61	-0.16	.228
CO7	3.20 (1.295)	3.12-3.28	6.4	29.1	24.8	19.7	14.9	4.2	0.9	0.32	-0.75	.265
CO16	2.57 (1.059)	2.50-2.64	11.9	42.9	28.2	10.1	5.6	0.9	0.5	0.78	0.45	.271
SEC5	2.42 (1.079)	2.35-2.49	17.8	43.4	24.3	8.4	5.1	0.7	0.3	0.86	0.56	.294
SEC14	2.46 (0.990)	2.39-2.52	13.3	45.5	26.6	9.4	4.4	0.1	0.7	0.73	0.33	.337
PO2	4.10 (1.206)	4.02-4.17	1.9	8.4	18.8	32.0	25.6	12.7	0.5	-0.30	-0.39	.301
PO17	3.15 (1.193)	3.08-3.23	6.5	24.7	32.1	22.1	10.9	3.1	0.5	0.30	-0.39	.414
AC4	3.10 (1.224)	3.03-3.18	7.5	27.6	28.8	20.1	12.7	2.5	0.7	0.30	-0.59	.417
AC13	3.10 (1.209)	3.03-3.18	7.4	27.2	29.8	20.6	12.6	2.1	0.3	0.27	-0.59	.529
HE10	2.60 (1.108)	2.53-2.67	13.5	39.7	27.6	12.1	5.4	1.3	0.4	0.71	0.26	.406
HE21	2.58 (1.072)	2.52-2.65	11.9	42.1	28.8	10.3	4.9	1.4	0.6	0.82	0.64	.323
ST6	2.81 (1.239)	2.73-2.89	13.7	31.3	27.9	15.2	9.5	1.9	0.4	0.47	-0.41	.413
ST15	3.77 (1.355)	3.68-3.85	5.5	14.2	21.3	25.1	24.2	9.3	0.4	-0.22	-0.76	.330

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.160, respectively.

Based on the criterion of corrected item-total correlations > .30, the following seven items were rejected from the analysis: UN3, UN19, TR9, TR20, CO7, CO16 and SEC5.

EFA, performed with Principal Axis Factoring and applying promax rotation, resulted in a four-factor solution that was supported by the eigenvalue >1.0 rule and the scree test. Parallel analysis confirmed this result as the actual eigenvalues (5.155, 1.852, 1.499, 1.219) were greater than the randomly generated ones for both the average (1.208, 1.160, 1.124, 1.093) and the 95th percentile (1.249, 1.193, 1.151, 1.117) eigenvalue criteria. These four factors explained 31, 11, 9 and 7% of the variance, respectively, amounting to a cumulative 58%.

Table 7 presents the structure of the four-factor solution obtained by Principal Axis Factoring. Almost all the 14 items had strong factor loadings (≥ .45) on at least one factor. As shown, a simple structure was provided with three cross-loading items (UN8, SEC14 and ST15). The first factor was defined by four items (PO2, PO17, AC4 and AC13) referring mostly to self-enhancement and therefore the underlying

construct was labeled as such. The second factor was defined by five items (SD11, UN8, BE12, BE18 and SEC14) expressing self-transcendence and consequently the

Table 7 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Belgium (first half-sample: n = 934)

		Principal axis f	actor analysis		
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Self-	Hedonism	Openness to	variance
	enhancement	transcendence		change	
SD1	.062	.102	206	.632	.672
SD11	.030	.243	.177	.172	.785
UN8	143	.410	036	.311	.732
BE12	027	.663	058	.060	.563
BE18	.010	.496	.212	029	.668
SEC14	.233	.371	061	130	.825
PO2	.560	199	.008	.106	.623
PO17	.449	.133	.037	089	.779
AC4	.682	006	002	.031	.517
AC13	.739	.132	011	.048	.375
HE10	.020	.070	.723	091	.516
HE21	007	021	.668	045	.611
ST6	026	.003	.173	.625	.454
ST15	.110	157	.260	.441	.531
Factors		Correlations be	etween factors		
Self-enhancement					
Self-transcendence	.171	_			
Hedonism	.535	.243	_		
Openness to change	.470	.237	0.667	_	

Factor loadings >.22 are in boldface.

underlying construct was labeled accordingly. The third factor was defined by two items of the hedonism dimension (HE10 and HE21) and so this name was retained. The fourth factor was defined by three items (SD1, ST6 and ST15) referring mostly to openness to change and therefore the underlying construct was labeled as such.

Subscales were constructed by averaging the defining items of each factor based on the first half-sample, univariate statistics were computed and their psychometric properties were inspected. As shown in Table 8, Cronbach's alpha reliability coefficients for the subscales Self-enhancement Self-transcendence, Hedonism and Openness to change were .710, .562, .616 and .657, respectively, indicating that three out of four subscales were not reliable. Split-half reliabilities were .722, .546, .616 and .657, respectively. Average inter-item correlations were .379, .219, .445 and .389 within subscales and .186, .304, .299, .196, .196 and .335 between subscales, indicating that the values were within the recommended range for unidimensionality.

Table 8 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Belgium (first half-sample: n = 934)

		Subso	cale	
	Self- enhancement	Self- transcendence	Hedonism	Openness to change
Number of items	4	5	2	3
Mean (standard error)	3.36 (0.029)	2.14 (0.017)	2.59 (0.030)	3.08 (0.032)
95% Confidence interval	3.31-3.42	2.11-2.18	2.53-2.65	3.02-3.14
Standard deviation	0.883	0.533	0.927	0.963
Skewness (standard error)	0.201 (0.080)	0.552 (0.080)	0.583 (0.080)	0.262 (0.080)
Kurtosis (standard error)	-0.218 (0.160)	1.509 (0.160)	0.387 (0.160)	-0.091 (0.160)
Cronbach's alpha reliability coeff.	.710	.562	.616	.657
Split-half reliability coefficient	.722	.546	.616	.620
Average inter-item correlations	.379	.219	.445	.389
Minimum-maximum correlations	.257575	.102369	.445445	.290502
Range of correlations	.318	.267	.000	.212
	Average	inter-item correla	tions between s	subscales
Self-enhancement	_			
Self-transcendence	.186	_		
Hedonism	.304	.196	_	
Openness to change	.299	.196	.335	_

CFA results. In performing CFA on the second half-sample, seven different models were tested: one first-order uncorrelated factor based on the 14 observed variables (model 1); two first-order correlated factors based on the 13 remaining observed variables as indicated by the factor analysis results (model 2) – one item (SEC14) was rejected because it exhibited low factor loading; three first-order correlated factors based on the 14 observed variables (model 3a); three first-order correlated factors based on the 14 observed variables with cross-loadings (model 3b); four first-order correlated factors based on the EFA results (model 4a); four first-order correlated factors with cross-loadings (model 4b); and four first-order correlated factors of unified values (model 5) as proposed by Davidov et al. (2008).

For the justification of the models 2, 3a and 3b, Principal axis factoring was performed on the first half-sample (Tables 9 and 10). The three factors of model 3b explained 30, 11 and 9% of the variance, respectively, amounting to a cumulative 50%. Parallel analysis confirmed this result as the actual eigenvalues (5.155, 1.852, 1.499) were greater than randomly generated ones for both the average (1.208, 1.160, 1.124) and the 95th percentile (1.249, 1.193, 1.151) eigenvalue criteria.

Table 9 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 Factors): European Social Survey 2012, Belgium (first half-sample: n = 934)

	Princ	cipal axis factor a	nalysis	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	enhancement	transcendence	
SD1	.414	.008	.105	.788
SD11	.299	.034	.256	.783
UN8	.239	160	.422	.747
BE12	041	024	.679	.559
BE18	.115	.039	.505	.682
SEC14	203	.247	.368	.825
PO2	.142	.539	211	.626
PO17	050	.455	.122	.782
AC4	.047	.672	018	.517
AC13	.048	.727	.121	.377
HE10	.468	.107	.079	.684
HE21	.481	.067	.002	.783
ST6	.752	066	.028	.472
ST15	.685	.076	150	.513
Factors	Corr	elations between	factors	
Openness to change	_			
Self-enhancement	.542	_		
Self-transcendence	.302	.204	_	

Factor loadings >.22 are in boldface.

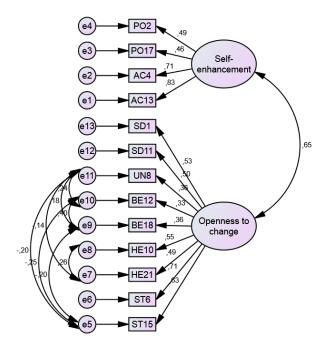
Table 10 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 Factors): European Social Survey 2012, Belgium (first half-sample: n = 934)

	Principal axis fa	ctor analysis	
Variables	Factor I Openness to change	Factor II Conservation	_ Unique variance
SD1	.032	. 445	.784
SD11	.022	.422	.810
UN8	200	.467	.856
BE12	111	.317	.930
BE18	021	.378	.866
PO2	.625	076	.662
PO17	.455	042	.815
AC4	.766	098	.495
AC13	.753	.007	.427
HE10	.147	.468	.676
HE21	.121	.435	.732
ST6	.003	.717	.484
ST15	.194	.489	.607
	Correlations bet	ween factors	
Openness to change	_		
Conservation	.611	_	

Factor loadings >.22 are in boldface.

The two factors of model 2 explained 32 and 12% of the variance, respectively, amounting to a cumulative 44%. This also was confirmed by parallel analysis, as the actual eigenvalues (5.131, 1.832) were greater than the randomly generated ones for both the average (1.196, 1.149) and the 95th percentile (1.238, 1.180) eigenvalue criteria.

As shown in Table 11, the fit of model 1 was acceptable; model 2 had an adequate fit to the data; model 3a presented acceptable fit to the data and using all cross-loadings indicated by EFA (model 3b) improved model fit; model 4a had also an acceptable fit to the data and using all cross-loadings indicated by EFA (model 4b) improved model fit; model 5 resulted in an acceptable model fit. Therefore, model 2 (Figure 2) provided a better fit to the data than all other models.


Table 11 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2012, Belgium (second half-sample: n = 935)

Models Tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.78	.051	.902	.920	.882	.064 (.056071)
2	2 first-order correlated factors						
	(13 items)	3.38	.041	.934	.952	.933	.050 (.043058)
3a	3 first-order correlated factors	4.79	.053	.884	.905	.882	.064 (.057071)
3b	3 first-order correlated factors						
	with cross-loadings	4.24	.048	.901	.922	.899	.059 (.052066)
4a	4 first-order correlated factors	4.88	.053	.887	.907	.879	.064 (.058071)
4b	4 first-order correlated factors						
	with cross-loadings	4.67	.051	.896	.916	.886	.063 (.056070)
5	4 first-order correlated factors						
	of unified values	4.48	.063	.862	.888	.865	.061 (.056067)

df degrees of freedom; SRMR = standardized root mean square residual;; NFI = normed fit index; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation. CI = confidence interval.

a Higher values indicate better model fit

b Lower values indicate better model fit

Fig. 2 Standardized solution for the 2 first-order correlated factors (model 2-13 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Belgium (second half-sample: n = 935)

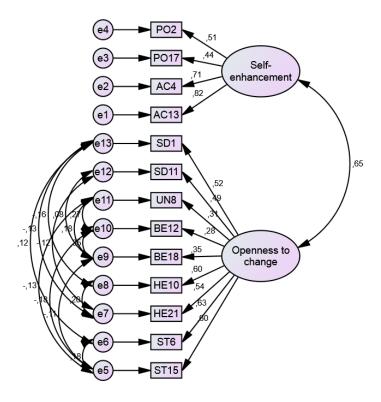

Subscale construction and assessment. In Table 12, descriptive statistics, reliability coefficients and internal consistencies of the subscales based on the two-factor solution are presented for Belgium for the full sample.

Table 12 Descriptive statistics, reliability coefficients and internal consistencies of the subscales (full sample): European Social Survey 2012, Belgium (N = 1,869)

	Sub	scale
	Self-enhancement	Openness to change
Number of items	4	9
Mean (standard error)	3.34 (0.020)	2.50 (0.014)
95% Confidence interval	3.30-3.38	2.47-2.53
Standard deviation	0.885	0.603
Skewness (standard error)	0.243 (0.057)	0.347 (0.057)
Kurtosis (standard error)	-0.261 (0.113)	0.470 (0.113)
Cronbach's alpha reliability coeff.	.713	.744
Split-half reliability coefficient	.721	.729
Average inter-item correlations	.382	.244
Minimum-maximum correlations	.263582	.027482
Range of correlations	.318	.455
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Openness to change	.227	_

As shown, Cronbach's alpha reliability coefficients for the subscales Self-enhancement and Openness to change were .713 and .744, respectively (Table 12). Split-half reliabilities were .721 and .729, respectively. Average inter-item correlations within subscales were .382 and .244 and between subscales .227, indicating that the values were within the recommended range for unidimensionality.

Based on the CFA results for the full sample (Figure 3), the AVE was computed for each subscale. The two subscales demonstrated inadequate convergent validity (AVE above or around .50). The squared correlations between subscales were smaller than the AVE estimates, indicating adequate discriminant validity. The average inter-item correlations of the subscales were within the recommended range for unidimensionality (.15-.5). The individual inter-item correlations clustered well around their respective mean values as indicated by their range. As average inter-item correlations between subscale items were less than the respective average correlations within-subscale values, all subscales were justified. The analysis thus produced two subscales, both reliable but of problematic convergent validity.

Fig. 3 Standardized solution for the 2 first-order correlated factors (model 2-13 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Belgium (N = 1,869)

Results – all 16 countries. Based on the data screening of both half-samples for unengaged responses and outliers, it was decided to include all cases in the analysis. In Table 13, the results of testing missing values for randomness are presented.

Table 13 Missing data analysis of the Schwartz's human values items based on the first half-samples: European Social Survey

	Lit	tle's M	CAR test		_	Lit	tle's MC	AR test	
Country	Chi-Square	df	Sig.	Result	Country	Chi-Square	df	Sig.	Result
Belgium					Ireland				
2002	988.955	719	.000	MAR	2002	212.697	154	.001	MAR
2004	620.957	454	.000	MAR	2004	675.836	530	.000	MAR
2006	286.300	194	.000	MAR	2006	1020.570	782	.000	MAR
2008	272.059	209	.002	MAR	2008	364.452	215	.000	MAR
2010	119.590	117	.416	MCAR	2010	760.756	663	.005	MAR
2012	385.606	253	.000	MAR	2012	799.645	526	.000	MAR
2014	275.134	193	.000	MAR	2014	597.715	520	.010	MAR
Denmark	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Netherlan				
2002	712.945	571	.000	MAR	2002	153.327	117	.014	MAR
2004	847.729	712	.000	MAR	2004	537.456	450	.003	MAR
2006	623.162	503	.000	MAR	2006	387.307	285	.000	MAR
2008	806.663	610	.000	MAR	2008	399.676	259	.000	MAR
2010	398.888	330	.006	MAR	2010	357.242	269	.000	MAR
2012	690.907	534	.000	MAR	2012	434.965	300	.000	MAR
2014	455.228	363	.001	MAR	2014	611.300	392	.000	MAR
Finland	733.220	303	.001	WIAIX	Norway	011.500	372	.000	MIMIX
2002	542.025	449	.002	MAR	2002	348.306	236	.000	MAR
2004	840.489	632	.002	MAR	2004	424.836	459	.872	MCAR
2004	679.065	549	.000	MAR	2004	690.226	609	.012	MAR
2008	728.382	584	.000	MAR	2008	583.110	446	.000	MAR
2010	865.026	572	.000	MAR	2010	267.533	203	.002	MAR
2010	743.771	468	.000	MAR	2010	155.828	142	.202	MCAR
2012	935.812	594	.000	MAR	2012	217.657	188	.068	MAR
France	933.012	394	.000	MAK	Poland	217.037	100	.008	MAK
2002	202 125	207	.563	MCAR	2002	657 501	527	.000	MAR
2002	203.135 600.513	520	.008	MAR	2002	657.591 1153.194	966	.000	MAR
2004	358.769		.109		2004				
		327		MCAR		1044.678	863	.000	MAR
2008	608.767	438	.000	MAR	2008	1096.107	904	.000	MAR
2010	364.077	333	.116	MCAR	2010	1090.573	932		MAR
2012	459.451	384	.005	MAR	2012	1091.442	938	.000	MAR
2014	702.462	539	.000	MAR	2014	1094.454	861	.000	MAR
Germany	602.070	450	000	MAD	Portugal	270.462	100	000	MAD
2002	602.970	450	.000	MAR	2002	279.463	190	.000	MAR
2004	1093.383	922	.000	MAR	2004	868.028	659	.000	MAR
2006	858.866	728	.001	MAR	2006		1027	.008	MAR
2008	755.911	573	.000	MAR	2008	857.326	654	.000	MAR
2010	1087.044	739	.000	MAR	2010	677.816	497	.000	MAR
2012	683.316	583	.003	MAR	2012	909.613	611	.000	MAR
2014	662.038	490	.000	MAR	2014	708.194	534	.000	MAR
Hungary	-0	4.50	000		Slovenia	488 - 100	267	000	3.6.5
2002	635.197	458	.000	MAR	2002	472.688	305	.000	MAR
2004	557.645	405	.000	MAR	2004	352.652	319	.094	MAR
2006	764.298	588	.000	MAR	2006	_ *	_	_	-
2008	604.250	490	.000	MAR	2008	627.058	442	.000	MAR
2010	530.688	425	.000	MAR	2010	589.234	478	.000	MAR
2012	331.695	235	.000	MAR	2012	738.89	580	.000	MAR
2014	369.930	342	.143	MCAR	2014	714.374	591	.000	MAR

Table 13 (continued)

	Lit	ttle's Mo	CAR test	t	Little's MCAR test					
Country	Chi-Square	df	Sig.	Result	Country	Chi-Square	df	Sig.	Result	
Spain					Switzerlan	d				
2002	214.371	232	.791	MCAR	2002	522.940	460	.022	MAR	
2004	839.738	657	.000	MAR	2004	1221.340	1054	.000	MAR	
2006	678.143	462	.000	MAR	2006	674.627	628	.096	MAR	
2008	822.279	694	.001	MAR	2008	746.464	723	.265	MCAR	
2010	486.385	369	.000	MAR	2010	672.019	491	.000	MAR	
2012	339.458	363	.807	MCAR	2012	515.236	404	.000	MAR	
2014	1332.349	1126	.000	MAR	2014	582.417	425	.000	MAR	
Sweden					UK					
2002	597.962	349	.000	MAR	2002	486.320	373	.000	MAR	
2004	380.596	388	.596	MCAR	2004	518.411	498	.255	MCAR	
2006	397.156	356	.065	MAR	2006	752.085	666	.011	MAR	
2008	387.362	370	.257	MCAR	2008	432.421	408	.194	MCAR	
2010	563.882	448	.000	MAR	2010	666.436	557	.001	MAR	
2012	457.178	363	.001	MAR	2012	546.451	510	.128	MCAR	
2014	778.171	580	.000	MAR	2014	547.349	405	.000	MAR	

^{*} The same seven cases did not respond to any of the items and were deleted.

Testing missing values for randomness (Table 13) indicated that the data was probably missing at random (MAR) in most first half-samples and missing completely at random (MCAR) in the following half-samples: Belgium (2012); France (2002, 2006, 2010); Hungary (2014); Norway (2004, 2012); Spain (2002, 2012); Sweden (2004, 2008); Switzerland (2008); and the UK (2004, 2008, 2012). Similar results were obtained for the second half-samples. In both half-samples, missing data was replaced by the mean values (which for most items coincided with the median).

EFA results. In every country, respondents had used the full range of possible responses for all items. Non-normality was not severe for any item (skewness>2; kurtosis>7). Based on the criterion of corrected item-total correlations > .30, a number of items were excluded from the analysis. Principal axis factoring was performed to define factors as subscales for the first half-samples and promax rotation was applied. In every country, the number of factors to be extracted was based on the eigenvalue greater than 1.0 rule, scree test, parallel analysis and interpretability. Based on the initial EFA results, items with loadings < .22 were excluded from the analysis. Table 14 lists the items rejected from the analysis for each country.

Table 14 Items rejected from the analysis based on first half-samples: European Social Survey

Country	2002	2004	2006	2008	2010	2012	2014
Belgium	UN3, UN19, TR9,	UN19, TR9, TR20,	SD1, SD11, UN3,	UN3, UN19, TR9,	UN3, UN8, UN19,	UN3, UN19, TR9,	SD1, UN3, BE18,
	TR20, CO7, CO16,	CO7, SEC5, PO2,	UN19, TR9, CO7,	TR20, CO7, CO16,	TR9, TR20, CO7,	TR20, CO7,	TR9, TR20, CO7,
	SEC5, PO2, ST15	ST15	TR20, CO16,	PO2, ST15	CO16, PO2, ST15	CO16, SEC5	CO16, PO2,
			PO2, PO17,				PO17, HE21,
			HE21, ST15				ST15
Denmark	SD11, UN3, UN19,	SD1, UN3, UN19,	SD1, SD11, UN3,	UN3, UN19, TR9,	SD11, UN3, UN8,	UN3, UN19, TR9,	SD1, SD11, UN3,
	TR9, TR20, CO7,	TR9, TR20, CO7,	UN19, TR9, PO2,	TR20, CO7, PO2	UN19, BE18,	TR20, CO7, SEC5,	UN8, UN19, TR9,
	CO16, SEC5, PO2,	CO16, PO2, ST15	TR20, CO7,		TR9, TR20, CO7,	PO2	TR20, CO7, PO2,
	PO17		CO16, SEC5		CO16, SEC5, PO2		CO16, SEC5
Finland	UN3, UN8, UN19,	UN3, UN19, TR9,	SD11, UN3, UN8,	UN3, UN8, TR9,	SD1, UN3, TR9,	SD1, SD11, UN3,	SD1, SD11, UN3,
	TR9, TR20, CO7,	TR20, CO7, PO2	UN19, TR9,	TR20, CO7, CO16,	TR20, PO2	UN19, TR9,	UN19, TR9,
	CO16, SEC5		TR20, CO7,	SEC5, PO2		TR20, SEC5, PO2	TR20, CO7,
_			CO16, PO2				SEC5, PO2, ST15
France	UN3, TR9, PO2,	SD1, UN3, TR20,	SD11, TR20,	TR9, CO7, PO2,	SD11, TR20,	UN3, TR9, CO7,	SD11, UN3, UN8,
	ST15	PO2, ST15	CO7, PO2, ST15	ST15	PO2, ST15	PO2, ST15	TR9, TR20, CO7,
	1010 1010 DOG	1010 1010 10110	TD0 TD40 C07	ADIA ADIA EDA	17110 FD0 FD00	and this this	PO2, ST15
Germany	UN3, UN8, PO2,	UN3, UN8, UN19,	TR9, TR20, CO7,	UN3, UN19, TR9,	UN19, TR9, TR20,	SD1, UN3, UN8,	SD1, SD11, UN3,
	UN19, TR9, TR20,	TR9, TR20, CO7,	CO16, PO2, ST15	CO7, SEC5, PO2,	SEC5, PO2, ST15	UN19, TR9, TR20,	UN19, TR9, PO2,
	CO7, ST15	SEC5, PO2, ST15		ST15		CO7, SEC5, PO2,	TR20, SEC5,
**	ED0 COE D02	ED 0 COZ DO2	TD0 TD40 CO7	EDO EDOS COS	COT 0715	ST15 TR9, CO7,	ST15, CO7, ST15
Hungary	TR9, CO7, PO2,	TR9, CO7, PO2,	TR9, TR20, CO7,	TR9, TR20, CO7,	CO7, ST15	TR9, CO7, ST15	TR9, CO7, ST15
T11	ST15	ST15	ST15	PO2, ST15	DO2	TD0 D02 CT15	DO2 CT15
Ireland	TR20, CO7, PO2	TDO TDOO DOO	PO2	UN3, PO2, ST15	PO2	TR9, PO2, ST15	PO2, ST15
Netherlands	TR9, TR20, CO7,	TR9, TR20, PO2,	UN3, TR9, TR20,	TR9, ST15	TR9, TR20, CO7	UN3, UN8, TR9,	UN3, UN19, TR9,
	PO2, PO17, ST15	ST15	CO7, PO2, HE21, ST15			TR20, CO7, SEC5, PO2	TR20, PO2
Norway	UN3, UN19, TR9,	UN3, UN19, TR9,	UN19, TR9,	UN3, UN8, UN19,	SD1, SD11, UN3,	SD1, UN19, TR9,	SD1, SD11, UN3,
1 tol way	TR20, CO7, CO16,	TR20, CO7, SEC5	CO7, CO16	TR9, TR20, CO7	UN19, TR9, TR20,	TR20, PO2	UN19, TR9, PO2,
	SEC5, PO2	1K20, CO7, SEC3	CO7, CO10	110, 110, 007	CO7, ST15	11,20,102	TR20, SEC5,
	5LC5, 1 O2				CO1, 5113		1 K20, BEC3,

Table 14 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Norway							ST15
Poland	TR9, TR20, SEC5, PO2, PO17	TR9, TR20, CO7, PO2	TR9, TR20, CO7, PO2	TR9, CO7, PO2	TR9, TR20, CO7	TR9, CO7, PO2	TR9, TR20
Portugal	TR20, CO7, PO2	ST15	TR20, CO7, HE21, ST15	PO2, ST15	PO2	PO2	CO7, PO2, ST15
Slovenia	TR9, TR20, CO7, PO2, ST15	TR20, PO2, ST15	TR9, TR20, CO7, PO2, ST15	TR20, CO7, PO2, ST15	TR9, TR20, CO7	UN3, UN19, TR9, TR20, CO7, SEC5, SEC14, PO2, ST15	SD11, UN3, CO7, UN19, TR9, PO2, TR20, CO16, ST15
Spain	TR20, CO7, PO2, ST15	TR20, CO7, PO2, ST15	TR20, CO7, PO2, ST15	UN3, UN19, TR9, TR20, CO7, CO16, SEC5	SD11, UN3, UN8, UN19, BE12, TR9, TR20, CO7, CO16, SEC5, SEC14, PO2	UN3, TR9, TR20, CO7, ST15	UN3, UN19, TR9, TR20, CO7, PO2 CO16, SEC5,
Sweden	UN3, UN19, TR9, TR20, CO7, SEC5, PO2	UN3, UN19, TR9, TR20, CO7, SEC5	UN3,UN8, UN19, TR9, TR20, CO7, SEC5	UN3, UN8, UN19, TR9, TR20, CO7, SEC5	SD1, SD11, UN3, UN8, UN19, TR9, TR20, CO7, ST15, SEC5, PO2, AC4,	UN3, TR9, TR20, PO2, ST15	SD1, SD11, UN3, UN19, TR9, TR20, PO2, ST15
Switzerland	SD1, UN3, UN8, UN19, TR9, TR20, CO7, PO2, ST15	SD1, SD11, UN3, TR9, TR20, CO7, PO2, ST15	SD1, SD11, UN3, UN8, UN19, TR9, TR20, CO7, PO2, ST15	SD1, SD11, UN3, UN8, UN19, BE12, TR9, TR20, CO7, CO16, SEC5, PO2, HE21, ST15	SD1, UN3, TR9, TR20, CO7, PO2, ST15	SD1, UN3, UN8, UN19, TR9, TR20, CO7, ST15	SD1, SD11, UN3, TR9, CO7, PO2, ST15
UK	UN3, TR9, CO7	TR9	SD1, UN3, UN19, TR9, TR20, CO7, SEC5, PO2	SD11, UN3, UN19, TR9, TR20, PO2	TR9	UN3, UN8, TR9, PO2	UN3, TR9, PO2

Items rejected based on the criterion of corrected-item-total correlations <.30.

As shown in Table 14, from zero (Ireland, 2004) to 14 items (Switzerland, 2008) were rejected. In this respect, the analysis provided evidence on the performance of the items. The items HE10 and AC13 performed well overall. The items AC4 and BE12 were retained in most cases except in Sweden (2010) and Spain (2010), respectively. The item BE18 was only excluded in Belgium (2014) and Denmark (2010). The item HE21 was retained in most cases except in Belgium (2006, 2014), the Netherlands (2006), Portugal (2006) and Switzerland (2008). The item PO17 was also mainly retained in the analyses except in Belgium (2006, 2014), Denmark (2002), the Netherlands (2002, 2004) and Poland (2002). The item TR9 was rejected in 89 out of 112 cases and in every round of Belgium, Denmark, Finland, Germany, the Netherlands, Norway, Poland, Sweden, Switzerland and the UK. The item PO2 was omitted in 85 cases and in every round of Denmark, France and Germany. The item TR20 was rejected in 81 cases and in every round of Belgium, Denmark, Finland, Slovenia, Spain and Sweden. Finally, the item CO7 was also rejected in 81 cases and in every round of Belgium, Denmark, Germany, Hungary, Spain and Sweden.

EFA resulted variously in two, three and four factors solutions. The corresponding factors and items are presented according to their factor loadings in Table 15. The factors were labeled based on their dominant defining items as follows: Openness to change, self-transcendence, self-enhancement, conservation, achievement, benevolence, hedonism, power, security and stimulation. However, the items comprising a factor differ among countries. Only the self-enhancement factor defined by three items (AC4, AC13 and PO17) is the same in 32 half-samples: Belgium (2004, 2008, 2010), Denmark (2006, 2010, 2012, 2014), Finland (2004, 2006, 2010, 2012, 2014), France (2014), Germany (all rounds except 2012), Ireland (2002), the Netherlands (2004), Norway (2002, 2014), Slovenia (2002), Spain (2002, 2006, 2010), Switzerland (2004, 2014) and the UK (2002, 2006, 2014).

 Table 15 Factors and items presented according to their factor loadings: European Social Survey

Country	2002	2004	2006	2008	2010	2012	2014
Belgium							
Openness to change	ST6, HE10,HE21, SD11, SD1	ST6, HE21,HE10, SD1, SD11		ST6, HE10,HE21, SD1, SD11	SD1, ST6, SD11	ST6, ST15, HE10, UN8, SD1, HE21,	ST6, UN8, SD11, HE10, BE12
Self-transcendence	BE12, UN8,BE18	CO16, BE12, BE18, UN3, SEC14, UN8	BE12, BE18, UN8, ST6,HE10			SD11, BE18, BE12	
Self-enhancement	AC4, PO17, AC13, SEC14	AC13, AC4,PO17		AC4, AC13,PO17	AC4, AC13,PO17	AC4, AC13, PO2, PO17	
Conservation	,			BE12,BE18,UN8, SEC5, SEC14	SEC14, SEC5, BE12, BE18		
Achievement Hedonism			AC4, AC13		HE10, HE21		AC4, AC13
Security			SEC5, SEC14	SEC5, SEC14	11110, 111121		SEC5, SEC14
Denmark			SECS, SECT	5263, 52611			5263, 52611
Openness to change	ST15, ST6, HE21, SD1, HE10		HE21, ST6, ST15, HE10, BE18, BE12,	ST15, ST6, HE10, HE21, AC13, SD11, SD1, AC4, PO17, BE18, BE12, UN8	ST6, ST15,HE21, HE10, SD1, BE12	ST15, ST6, HE21, HE10, SD11, SD1	
Self-transcendence	BE12, BE18,UN8					BE12, BE18, CO16, SEC14,UN8	
Self-enhancement		AC13, HE10, AC4, ST6, HE21, PO17, SD11, BE18	AC13, AC4, PO17		AC13, AC4,PO17	AC4, AC13, PO17	AC13, AC4,PO17

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Denmark							
Conservation				SEC5, CO16, SEC14			
Achievement Hedonism	AC13, AC4						HE21, HE10, BE18, BE12
Security		SEC5, SEC14					DE10, DE12
Stimulation Finland							ST15, ST6
Openness to change	HE10, HE21, ST15, ST6, BE12, BE18	HE10, HE21, ST15, ST6	SD1, ST6,BE12		ST15, ST6, HE10, HE21, SD11	HE21, HE10, ST15, ST6	HE10, HE21, ST6, UN8, BE12, BE18, SEC14
Self-transcendence				ST6, BE12,UN19, BE18			
Self-enhancement	AC4, AC13, PO17, PO2	AC4, AC13,PO17	AC4, AC13, PO17	AC4, AC13, PO17, HE21, HE10, ST15, SD1, SD11	PO17, AC13,AC4	AC4, AC13, PO17	AC13, AC4,PO17
Conservation		SEC5, CO16, SEC14, BE18		,	CO16, BE12, CO7, SEC5, BE18, UN19, UN8, SEC14	CO16, CO7, BE18, BE12, SEC14	
Hedonism Security			HE10, HE21 SEC5, SEC14, BE18		,		

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
France							
Openness to change	HE10, ST15, HE21, SD1, UN8, UN19, SD11, BE18, BE12	HE21, HE10, ST6, UN8, BE18, BE12, UN19, SED11	HE21, HE10, ST6, SD1	HE21, HE10,ST6, SD11		HE10, HE21, SD11	HE10, HE21,ST6, SD1
Self-transcendence			TR9, UN8, UN19, BE18, BE12, UN3, SEC14	UN8, UN3, BE12, SD1, BE18, UN19	UN8, BE12, BE18, SD1, UN3, ST6, UN19	UN8, BE12, SD1, ST6	
Self-enhancement			SEC5,AC4,PO17				AC4, AC13,PO17
Conservation	CO16, SEC14, SEC5, CO7, TR9, PO17	SEC14, SEC5, CO16, CO7, TR20		SEC14, CO16, TR20, SEC5, PO17	CO16, SEC5, SEC14, CO7, PO17, TR9	CO16, SEC5, SEC14, TR20, PO17, BE18, UN19	CO16, SEC14, SEC5, BE18, BE12, UN19
Achievement Hedonism		AC13, AC4		AC4, AC13	AC4, AC13 HE21, HE10	AC4, AC13	
Germany					111121, 111110		
Openness to change	HE10, HE21, ST6, SD11, SD1	HE10, ST6, HE21, SD11, SD1	HE21, HE10, ST6, SD11	HE21, HE10, ST6	HE21, HE10, ST6	HE10, HE21, ST6, SD11	HE10, HE21, ST6, BE18, UN8
Self-transcendence	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , ,	UN8,UN3,BE12, BE18,UN19,SD1	BE12, UN8,BE18	BE12,UN8,BE18, UN3, SD1, SD11		., ., .,
Self-enhancement	AC4, PO17,AC13	AC4, AC13,PO17	AC4,AC13,PO17	AC4, AC13,PO17	AC4, AC13,PO17	PO17, AC13,CO16, AC4, SEC14	AC4, A13, PO17
Conservation	SEC14, CO16, SEC5	CO16, SEC14, BE18, BE12		CO16, SEC14, TR20	CO16, CO7, SEC14		CO16, CO7, SEC14
Security			SEC14, SEC5				

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Hungary							
Self-transcendence	UN19, SEC5, BE18, CO16, SEC14, BE12, TR20, UN8, UN3	BE18, CO16, UN19, TR20, SEC14, SEC5, BE12, PO17, UN8, UN3		UN19, SEC5, BE18, CO16, SEC14, BE12, UN8, UN3	UN19, TR9, CO16, BE18, TR20, SEC5, SEC14, UN8, BE12, UN3	UN8, BE12	UN19, BE18, SEC5, SEC14, CO16, TR20, BE12
Self-enhancement	AC13, HE10, HE21, PO17	AC13, AC4, ST6, SD1, SD11, HE10, HE21	AC4, AC13, ST6, SD1, HE21, SD11	AC13, AC4, ST6, SD1, HE21, HE10, SD11, PO17	AC13, AC4, ST6, SD1, HE21, HE10, SD11	AC13, AC4, PO2, HE10, ST6, SD1, HE21, SD11	AC13, PO2, SD1, AC4, ST6, HE10, HE21, SD11
Conservation			SEC5, SEC14, UN19, BE18, CO16,UN3,UN8			CO16, PO17, TR20, BE18	
Security						SEC5, SEC14, UN3, UN19	
Ireland							
Openness to change	ST15, HE21, HE10, ST6, SD1		ST15, HE10, AC13, AC4, HE21, ST6		ST15, AC13, HE10, HE21,ST6, AC4	HE10, ST6, AC13, HE21, AC4, SD1	
Self-transcendence	BE12, UN8, UN3, UN19, SEC14, BE18, TR9,SEC5, CO16, SD11	UN8, UN3, BE12, BE18, UN19,SD1	UN8, BE12, UN3, UN19, SD11, BE18, TR9, SD1	BE12, UN8, SD11, UN19,SD1	UN3, BE12, UN19,SD11,UN8, BE18, SEC5, SEC14, SD1		UN3, BE12, BE18, UN8, UN19, SD11, SEC14
Self-enhancement	PO17, AC13,AC4	AC13, ST15, HE10, AC4, ST6, HE21, PO2		AC13, HE10, AC4, HE21, ST6			HE10, HE21, AC13, ST6, AC4, SD1

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Ireland							_
Conservation		CO16, CO7, SEC14, SEC5, TR20, PO17, TR9	CO16, PO17, CO7, TR20, SEC14, SEC5	CO16, CO7, TR20, SEC14, PO17, SEC5, TR9, BE18	CO16, CO7, PO17, TR9, TR20	SEC14,CO16,TR20, SEC5,BE18,UN19, CO7, BE12, UN8, PO17, UN3, SD11	CO7, CO16, TR20, PO17, SEC5, TR9
Netherlands							
Self-transcendence	BE12,UN19,CO16, BE18,SEC5,SEC14, UN3, UN8	SD1, BE12,UN3, UN8, UN19, BE18,SD11, ST6	ST6,UN8,BE12, SD1, SD11, BE18, UN19	UN3, UN8, SD1, BE12, UN19, BE18, ST6, SD11	UN19,UN3,UN8, BE12, BE18, ST6	BE12,UN19,BE18, SD1, SD11	BE12, BE18,UN8
Self-enhancement	AC13, AC4, ST6, HE10, SD1, HE21, SD11	AC13,AC4,PO17	AC4, AC13, PO17, HE10	AC13, AC4,PO2, PO17	AC13,AC4,PO17, PO2, ST15	AC13, AC4, ST15, HE10, HE21, ST6	AC13,ST15,AC4, ST6, PO17,HE10, HE21, SD1,SD11
Conservation		CO16, SEC5, SEC14, CO7	CO16, SEC14, SEC5	SEC14, CO7, CO16,SEC5,TR20		SEC14, CO16	CO16, CO7, SEC5, SEC14
Hedonism		HE21, HE10		HE21, HE10	HE21, HE10		
Norway	CT (CT (C C)			GE14 7 XXE24	******************************	CTIATE A CIA TYPICA	TYPOA OTC
Openness to change	ST6, ST15, SD1, HE21, HE10, SD11, UN8,BE12			ST15, HE21, ST6, HE10, SD11, SD1	HE21, ST6, HE10	ST15, AC4, HE21, AC13, HE10, ST6, SD11	HE21, ST6, HE10, UN8
Self-transcendence		BE12, BE18,UN8	UN8,BE12,UN3, BE18			UN8, BE12, BE18, UN3	
Self-enhancement	AC13, AC4,PO17	ST15, PO2,HE10, AC13,AC4,HE21, ST6, PO17,SD11, SD1	AC13,PO2,AC4, ST15, HE10, HE21, PO17, ST6, SD11	AC4, AC13, PO17, PO2	AC4, AC13, PO2, PO17		AC13, AC4, PO17
Conservation		CO16, SEC14	SEC5, SEC14, TR20		CO16, SEC14, BE12, SEC5, BE18, UN8	SEC5, SEC14, CO16, CO7	CO16, CO7, SEC14, BE12, BE18

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Poland							
Openness to change	SD1, ST6, AC13, AC4, SD11	ST15,HE10,HE21, AC13, ST6, AC4, SD1, SD11	HE10, HE21, ST15, ST6		HE21, HE10, ST15, ST6, SD1	HE21,ST15, HE10, AC13, ST6, AC4, SD1, SD11	ST15,HE21,HE10, AC13, ST6, AC4, PO2, SD1, SD11
Self-transcendence			BE18, UN19, CO16, SEC5, SEC14, UN8, UN3, BE12, SD11				
Self-enhancement				AC4, SD1, AC13, ST6	AC4, PO2, PO17, AC13, SD1		
Conservation	CO16, UN19, SEC14, BE18, CO7, UN3, BE12, UN8	CO16, BE12, BE18, SEC5, UN19, SEC14, UN3, UN8		UN19, TR20, CO16, SEC14, BE18, SEC5, BE12, UN3, UN8	CO16, BE18, SEC14, BE12, UN19, UN8, SEC5, UN3	SEC5, CO16, UN19, TR20, SEC14, BE18, BE12, UN3, UN8, PO17	CO16, CO7, SEC14, UN3, UN19, UN8, SEC5, BE18, BE12
Hedonism Portugal	HE21,HE10,ST15			HE10, HE21			
Openness to change	ST15, HE21, HE10, AC13, ST6, SD11, AC4	ST6, HE21, HE10, SD1		HE21, HE10, ST6, AC13, AC4, SD1	ST15, HE21, ST6, HE10, AC13, AC4, SD1	HE21, HE10, ST15, ST6, AC13, SD1, AC4, SD11	
Self-transcendence	BE18, BE12, UN3, SEC5, SEC14, TR9, UN19, UN8, SD1	UN3, BE18, BE12, SD11, UN8,UN19,SEC5	BE12, BE18, UN3, TR9, SEC5, SEC14, UN8, UN19	BE18, BE12, SEC5, TR9, UN3, UN8, UN19, SEC14, SD11	,	ŕ	BE12, TR9, BE18, UN19, UN3, SEC14, UN8,SD11, TR20

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Portugal							
Self-enhancement		PO2, AC4, AC13, SEC14, PO17	AC13, HE10, AC4, ST6, SD1, PO2, SD11				AC4, AC13, ST6, HE21, HE10,SD1
Conservation		CO16, CO7, TR20, TR9			SEC5, BE12, BE18,TR9,SEC14, UN3,UN19,SD11, TR20,UN8, CO16, PO17, CO7	CO16, TR9, TR20, BE18, SEC5, BE12, PO17, CO7, SEC14, UN3, UN19, UN8	CO16, PO17, SEC5
Slovenia							
Openness to change	HE21, HE10, ST6, SD1, SD11			HE21, ST6, AC13, HE10, AC4, SD11,SD1	HE21, ST15 HE10, AC13, ST6, SD11, SD1		SD1, ST6, UN8
Self-transcendence	BE12, CO16, UN19, SEC5, SEC14, UN3, BE18, UN8		UN19, CO16, SEC14, UN3, SEC5, BE12, UN8, BE18			UN8, BE12, BE18	
Self-enhancement	PO17, AC13, AC4	HE10, ST6, HE21, AC13, AC4, SD11, SD1, BE18, PO17	HE10, HE21, AC13, ST6, AC4, SD1			AC13, AC4, HE21, HE10, ST6, SD1, SD11	HE21, HE10, AC13
Conservation		CO16, TR9, UN19, CO7, SEC14, SEC5, BE12, UN8, UN3		TR9,CO16,BE12, SEC5, SEC14, UN19,UN3,PO17, UN8, BE18	BE12, SEC5, SEC14, UN19, CO16, UN3, UN8, BE18		SEC5, PO17, SEC14, AC4
Power				•	,	PO17, CO16	

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Spain							
Openness to change	ST6, HE10, HE21, SD1, SD11	HE10, ST6, HE21,SD1, SD11	HE21, HE10, ST15, ST6, SD11, SD1	HE21, HE10,ST6 ST15,SD11,UN8 BE18, BE12, SD	, ST6, ST15, SD1	HE21, ST6, HE10, SD11, SD1	HE21, ST15, ST6, HE10, SD11, SD1, UN8
Self-transcendence			BE12,UN3,BE18, UN19,UN8,SEC5 CO16, SEC14			BE12,CO16, BE18, SEC5,SEC14,UN8, UN19	
Self-enhancement	PO17, AC4, AC13		AC4, AC13,PO17	AC4, AC13, PO2 PO17	2, AC13,AC4,PO17	AC13, AC4, PO17, PO2	AC13, AC4, PO17, SEC14
Conservation	TR9,CO16,UN19, SEC14,UN8,SEC5, BE12, UN3, BE18	TR9,C016,SEC14, BE18,SEC5,BE12, UN8, UN3, UN19					,
Sweden							
Openness to change		ST15, ST6, HE10, HE21, SD1, SD11	HE10, HE21, ST6, ST15, SD11	ST6,HE21, BE12, ST15, BE18, HE10, SD1, SD11	HE10, HE21, ST6		HE21,HE10, ST6, BE12,UN8, BE18
Self-transcendence	BE12, BE18, UN8	BE12, BE18, UN8, SEC14				BE12, UN8, BE18, UN19	
Self-enhancement	AC13, AC4, PO17, SD1, ST15, ST6, SD11	AC13, AC4, PO17, PO2	AC13, AC4, PO17, PO2	AC13, PO2, AC4, PO17	PO17, CO16, AC13	AC13, AC4, ST6, HE10, HE21, SD1, SD11	
Conservation	CO16, SEC14			CO16, SEC14		CO16,CO7, SEC14, SEC5, PO17	CO16,CO7,SEC5, SEC14, PO17
Achievement							AC13, AC4
Hedonism Benevolence	HE21, HE10				BE12, BE18		

Table 15 (continued)

Country	2002	2004	2006	2008	2010	2012	2014
Switzerland							_
Openness to change	HE10, HE21, ST6, SD11	HE21, HE10, ST6	HE21, HE10, ST6,BE18,BE12	ST6, HE10	HE21, ST6, HE10, AC13,AC4	HE10, ST6, HE21, SD11	HE21, HE10, ST6
Self-transcendence	,	UN8,BE18,BE12, UN19	, ,		, ,		BE18, BE12, UN8, UN19
Self-enhancement		AC13, AC4, PO17		AC13, AC4, PO17, SEC14		AC13, AC4, PO2, PO17	AC4, AC13, PO17
Conservation	SEC5, SEC14, CO16	SEC5, SEC14, CO16	SEC5, CO16, SEC14, PO17	,	SEC5, CO16, SEC14, PO17, BE12, UN19	CO16, SEC5, SEC14, BE18, B12	SEC14, TR20, SEC5, CO16
Achievement UK	AC4, AC13		AC4, AC13		,		
Openness to change	SD1, ST6, SD11, UN8	ST15, HE10, HE21, AC13, PO2, ST6, AC4	HE21, ST15, ST6, HE10, SD11	ST15, AC13, HE10, AC4, ST6, HE21, SD1	HE21, HE10, ST15, ST6	HE10, HE21, ST15	HE21, HE10, ST15
Self-transcendence		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		BE12, UN8,BE18	UN8, BE12, , UN19, UN3, SD1 BE18, SD11	UN19, BE12, BE18, SEC14	UN8, BE12, SD1, SD11, UN19, BE18, ST6
Self-enhancement	AC4, AC13,PO17		AC4,AC13,PO17		AC13, AC4, PO2	AC13, AC4, SD1	AC13, AC4,PO17
Conservation	C016, SEC14, TR20,BE18,SEC5	CO16, CO7, TR20, SEC5, SEC14, PO17	CO16, BE18, SEC14, BE12, UN8	CO16, CO7, SEC5, SEC14, PO17	CO16, CO7, PO17, SEC14, SEC5, TR20	CO7, PO17, CO16, TR20	CO16,CO7,TR20, SEC5, SEC14
Hedonism	HE10, HE21						

CFA results. The structure indicated by EFA as providing the best model for each country was validated by performing CFA on the second half-samples (Table 16).

Table 16 Confirmatory factor analysis performed with maximum likelihood of the covariance matrix on the second half-sample of each country: Goodness-of-fit indices, European Social Survey

Country	Structure (no of items)	χ^2/df	SRMR	NFI	CFI	TLI	RMSEA (90% CI)
Belgium	` ,	70 5					` '
2002	3 first-order correlated factors* (12)	2.71	.034	.938	.959	.939	.042 (.033052)
2004	3 first-order correlated factors* (14)	4.50	.049	.859	.885	.842	.063 (.056070)
2006	3 first-order correlated factors* (9)	2.59	.026	.963	.977	.953	.042 (.027057)
2008	3 first-order correlated factors* (13)	3.89	.043	.897	.920	.885	.058 (.050067)
2010	4 first-order correlated factors*(12)	2.89	.043	.928	.951	.929	.047 (.038057)
2012	2 first-order correlated factors (13)	3.38	.043	.934	.952	.933	.050 (.043058)
2014	3 first-order correlated factors* (9)	3.66	.035	.913	.935	.898	.055 (.043068)
Denmark	3 mst-order correlated factors (7)	3.00	.033	.713	.733	.070	.033 (.043000)
2002	3 first-order correlated factors* (10)	3.06	.033	.948	.964	.948	.052 (.040065)
2002	2 first-order correlated factors (10)	3.08	.033	.927	.949	.923	.052 (.040065)
2004	2 first-order correlated factors (10) 2 first-order correlated factors (9)	2.37	.042	.966		.923 .969	.043 (.028057)
	· ·				.980		,
2008	2 first-order correlated factors* (15)	3.69	.049	.884	.912	.882	.058 (.051065)
2010	2 first-order correlated factors* (9)	2.51	.023	.960	.976	.963	.044 (.030058)
2012	3 first-order correlated factors* (14)	4.05	.052	.880	.906	.877	.061 (.054068)
2014	3 first-order correlated factors (9)	3.07	.036	.946	.962	.941	.052 (.039067)
Finland	0.61	4 0	0.10	0.50	0.42	0.44	0.57 (0.74 0.75)
2002	2 first-order correlated factors (10)	4.62	.043	.952	.962	.941	.065 (.054076)
2004	3 first-order correlated factors (11)	4.55	.050	.936	.949	.925	.064 (.055074)
2006	4 first-order correlated factors* (11)	2.42	.030	.959	.975	.961	.041 (.030053)
2008	2 first-order correlated factors (12)	8.02	.056	.901	.912	.855	.086 (.077095)
2010	3 first-order correlated factors* (16)	5.49	.060	.890	.908	.861	.072 (.065079)
2012	3 first-order correlated factors* (12)	5.26	.055	.928	.941	.909	.062 (.054070)
2014	2 first-order correlated factors (10)	4.75	.043	.943	.954	.920	.060 (.050071)
France							
2002	2 first-order correlated factors* (14)	2.69	.040	.921	.948	.931	.050 (.041059)
2004	3 first-order correlated factors* (16)	4.41	.053	.878	.902	.869	.063 (.057070)
2006	3 first-order correlated factors* (14)	3.89	.037	.907	.928	.901	.054 (.047061)
2008	4 first-order correlated factors* (17)	3.15	.038	.901	.929	.911	.046 (.040051)
2010	3 first-order correlated factors* (17)	3.34	.044	.884	.915	.891	.052 (.046058)
2012	4 first-order correlated factors* (16)	3.84	.044	.897	.921	.896	.054 (.048060)
2014	3 first-order correlated factors* (13)	5.56	.054	.890	.911	.874	.061 (.053069)
Germany							
2002	3 first-order correlated factors* (11)	5.92	.041	.942	.951	.923	.059 (.051067)
2004	3 first-order correlated factors* (12)	5.48	.043	.919	.933	.901	.056 (.049063)
2006	4 first-order correlated factors* (15)	5.02	.044	.910	.926	.904	.053 (.047058)
2008	4 first-order correlated factors* (12)	4.92	.039	.928	.941	.914	.053 (.047061)
2010	4 first-order correlated factors* (15)	8.25	.058	.837	.853	.812	.069 (.064074)
2012	2 first-order correlated factors* (9)	3.71	.028	.968	.977	.958	.043 (.033053)
2014	3 first-order correlated factors* (11)	6.47	.050	.915	.927	.892	.060 (.053068)
Hungary	3 mst order correlated factors (11)	0.17	.050	.,,10	.,,_,	.0,2	.000 (.022 .000)
2002	2 first-order correlated factors* (13)	6.75	.041	.908	.921	.903	.059 (.054065)
2004	2 first-order correlated factors* (17)	3.24	.050	.882	.914	.895	.055 (.049062)
2004	2 first-order correlated factors* (17)	2.86	.041	.919	.946	.930	.050 (.042059)
2008	2 first-order correlated factors* (15) 2 first-order correlated factors* (16)	3.66	.041	.894	.920	.930	.061 (.054067)
2008	` ,					.875	` '
	2 first-order correlated factors (17)	4.52	.063	.869	.895		.067 (.061073)
2012	4 first-order correlated factors* (18)	4.87	.048	.898	.917	.890	.063 (.058068)
2014	2 first-order correlated factors* (15)	3.14	.045	.931	.952	.937	.053 (.046060)
Ireland	2.6	4 2 4	0.051	000	012	004	060 (054,065)
2002	3 first-order correlated factors* (18)	4.24	0.051	.890	.912	.884	.060 (.054065)
2004	3 first-order correlated factors* (20)	2.87	0.049	.884	.921	.902	.056 (.050062)

Table 16 (continued)

Country	Structure (no of items)	χ^2/df	SRMR	NFI	CFI	TLI	RMSEA (90% CI)
Ireland	,	70 3					, , ,
2006	3 first-order correlated factors* (20)	3.95	0.052	.880	.907	.884	.060 (.055065)
2008	3 first-order correlated factors* (18)	4.08	0.057	.872	.899	.869	.059 (.054065)
2010	3 first-order correlated factors* (20)	5.82	.054	.904	.919	.897	.063 (.059067)
2012	2 first-order correlated factors* (18)	5.57	.052	.916	.929	.900	.059 (.054064)
2014	3 first-order correlated factors* (19)	4.66	.048	.901	.920	.901	.055 (.051060)
Netherlands	· · · · · · · · · · · · · · · · · · ·			.,	., _,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2002	2 first-order correlated factors* (15)	4.66	.049	.898	.917	.889	.056 (.050062)
2004	4 first-order correlated factors* (17)	4.80	.061	.869	.892	.860	.064 (.058069)
2006	3 first-order correlated factors* (14)	4.81	.050	.887	.907	.870	.064 (.057071)
2008	4 first-order correlated factors* (19)	5.26	.070	.838	.864	.832	.069 (.064074)
2010	4 first-order correlated factors* (16)	4.21	.048	.891	.914	.887	.059 (.053065)
2012	3 first-order correlated factors* (13)	4.93	.050	.911	.927	.889	.065 (.057073)
2014	3 first-order correlated factors* (16)	5.12	.050	.886	.905	.862	.067 (.061074)
Norway	(10)	0.12	.000		., 00	.002	1007 (1001 107 1)
2002	2 first-order correlated factors* (11)	4.35	.039	.943	.955	.931	.061 (.051071)
2004	3 first-order correlated factors* (15)	3.30	.039	.923	.945	.921	.054 (.046061)
2006	3 first-order correlated factors* (16)	3.43	.048	.907	.932	.906	.056 (.049063)
2008	2 first-order correlated factors* (10)	2.67	.035	.957	.973	.960	.049 (.036062)
2010	3 first-order correlated factors* (13)	4.05	.056	.883	.908	.869	.063 (.054072)
2012	3 first-order correlated factors* (15)	3.46	.048	.900	.926	.901	.055 (.048062)
2014	3 first-order correlated factors* (12)	5.63	.061	.846	.869	.811	.080 (.071090)
Poland	3 first order contended factors (12)	3.03	.001	.040	.007	.011	.000 (.071 .070)
2002	3 first-order correlated factors* (16)	5.01	.056	.898	.916	.897	.062 (.056067)
2002	2 first-order correlated factors* (16)	4.53	.069	.869	.894	.869	.064 (.058070)
2004	2 first-order correlated factors* (13)	3.53	.049	.913	.935	.916	.054 (.046062)
2008	3 first-order correlated factors* (15)	3.59	.049	.916	.938	.916	.057 (.049064)
2010	3 first-order correlated factors* (13)	5.02	.060	.861	.884	.861	.068 (.063073)
2010	2 first-order correlated factors* (18)	4.58	.069	.874	.898	.872	.061 (.056067)
2012	2 first-order correlated factors (18)	4.62	.009	.874	.894	.872 .869	.067 (.061073)
Portugal	2 first-order correlated factors (18)	4.02	.071	.670	.094	.809	.007 (.001073)
2002	2 first-order correlated factors* (16)	3.57	051	.931	040	.934	.058 (.052065)
2002	4 first-order correlated factors* (20)	4.46	.051 .044		.949 .935	.934	.058 (.054063)
2004	2 first-order correlated factors* (15)			.918			,
2008	2 first-order correlated factors* (13) 2 first-order correlated factors* (15)	3.58 6.05	.041	.947	.961 .942	.949 .920	.048 (.042054)
2010	· · ·		.049	.932			.065 (.060071)
2010	2 first-order correlated factors* (20)	5.95	.055	.902	.916	.892	.068 (.064072)
	2 first-order correlated factors* (20)	5.90	.055	.890	.906	.878	.068 (.063072) .063 (.056069)
2014	3 first-order correlated factors* (18)	3.49	.049	.881	.911	.888	.003 (.030009)
Slovenia	2 first and an assumption of factors * (16)	1 10	051	0.17	076	920	069 (061 074)
2002	3 first-order correlated factors* (16)	4.48	.051	.847	.876	.839	.068 (.061074)
2004	2 first-order correlated factors* (18)	4.17	.065	.827	.861	.832	.066 (.061072)
2006	2 first-order correlated factors* (14)	3.78	.051	.882	.910	.886	.061 (.054069)
2008	2 first-order correlated factors* (17)	3.89	.058	.867	.896	.870	.067 (.060074)
2010	2 first-order correlated factors* (15)	2.10	.052	.905	.933	.917	.055 (.047062)
2012	3 first-order correlated factors* (12)	3.17	.041	.927	.948	.916	.059 (.048070)
2014	3 first-order correlated factors* (10)	4.04	.048	.889	.913	.860	.071 (.057084)
Spain	2 first and an asympleted factors 4 (17)	2 25	044	024	052	024	052 (046 050)
2002	3 first-order correlated factors* (17)	3.35	.044	.934	.952	.934	.052 (.046058)
2004	2 first-order correlated factors* (14)	2.88	.043	.935	.956	.943	.048 (.040055)
2006	3 first-order correlated factors* (17)	3.45	.048	.923	.944	.925	.051 (.045057)
2008	2 first-order correlated factors* (13)	5.28	.043	.943	.953	.933	.058 (.051064)
2010	2 first-order correlated factors (8)	3.06	.030	.973	.982	.970	.047 (.033062)
2012	3 first-order correlated factors* (16)	3.49	.045	.892	.920	.892	.051 (.045058)
2014	2 first-order correlated factors (11)	5.61	.043	.913	.927	.897	.069 (.060078)

Table 16 (continued)

Country	Structure (no of items)	χ^2/df	SRMR	NFI	CFI	TLI	RMSEA (90% CI)
Sweden							
2002	4 first-order correlated factors* (14)	2.96	.037	.939	.958	.932	.049 (.040057)
2004	3 first-order correlated factors* (14)	3.78	.045	.915	.935	.912	.058 (.051066)
2006	2 first-order correlated factors (9)	2.42	.027	.971	.983	.973	.043 (.028057)
2008	3 first-order correlated factors* (14)	3.53	.047	.914	.936	.908	.057 (.049066)
2010	3 first-order correlated factors* (8)	2.68	.033	.958	.973	.953	.047 (.030065)
2012	3 first-order correlated factors* (16)	4.61	.056	.891	.912	.882	.063 (.057069)
2014	3 first-order correlated factors* (13)	3.29	.050	.921	.943	.920	.051 (.043059)
Switzerland							
2002	3 first-order correlated factors* (9)	3.23	.031	.944	.960	.940	.047 (.035059)
2004	4 first-order correlated factors* (13)	3.86	.039	.917	.937	.913	.052 (.045059)
2006	3 first-order correlated factors* (11)	3.44	.042	.931	.949	.925	.052 (.042062)
2008	2 first-order correlated factors (6)	3.92	.032	.960	.969	.934	.057 (.035080)
2010	2 first-order correlated factors* (11)	4.66	.053	.877	.900	.859	.070 (.060080)
2012	3 first-order correlated factors* (13)	3.97	.048	.884	.909	.878	.063 (.055072)
2014	4 first-order correlated factors* (14)	3.53	.046	.880	.910	.881	.058 (.050065)
UK							
2002	4 first-order correlated factors* (14)	4.13	.049	.909	.929	.905	.059 (.052066)
2004	2 first-order correlated factors* (13)	2.88	.047	.927	.944	.925	.056 (.048063)
2006	3 first-order correlated factors* (13)	5.81	.045	.910	.923	.891	.063 (.057070)
2008	3 first-order correlated factors* (15)	4,76	.044	.909	.926	.899	.057 (.051062)
2010	4 first-order correlated factors* (20)	4.39	.047	.879	.903	.878	.053 (.049057)
2012	4 first-order correlated factors* (14)	3.62	.039	.934	.951	.930	.048 (.041055)
2014	4 first-order correlated factors* (18)	4.45	.045	.871	.896	.866	.055 (.050060)

df = degrees of freedom; SRMR = standardized root-mean-square residual; NFI = normed fit index; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered adequate if $\chi^2/df < 3$, SRMR $\leq .08$, NFI, CFI and TLI values greater than or close to .95 and RMSEA $\leq .06$ with the 90% CI upper limit $\leq .06$. Model fit is considered acceptable if $\chi^2/df < 3$, SRMR $\leq .08$, NFI > .90, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.

As shown, these analyses produced models with adequate model fit for 29 cases and acceptable model fit for 80 cases. Therefore, the structure identified by EFA was supported by the CFA results. In the following three cases model fit was inadequate: Finland (2008), Norway (2014) and Slovenia (2014). However, the full sample results for these cases provided acceptable model fit: Finland (2008: $\chi^2/df = 10.74$, SRMR = .047, NFI = .942, CFI = .947, TLI = .900, RMSEA = .072 with the 90% CI upper limit = .078); Norway (2014: $\chi^2/df = 8.09$, SRMR = .055, NFI = .884, CFI = .896, TLI = .854, RMSEA = .070 with the 90% CI upper limit = .077); Slovenia (2014: $\chi^2/df = 5.73$, SRMR = 0.042, NFI = .922, CFI = .934, TLI = .895, RMSEA = .062 with the 90% CI upper limit = .072). The models of 14 cases were determined without using cross-loading items: Belgium (2012), Denmark (2004, 2006, 2014), Finland (2002, 2004, 2008, 2014), Hungary (2010), Poland (2014), Spain (2010, 2014), Sweden (2006) and Switzerland (2008).

^{*} Models defined with cross-loading items.

Subscale construction and assessment. Subscales were constructed by averaging their defining items based on the full samples. In Table 17, Cronbach's alpha and split-half reliability coefficients and convergent and discriminant validity of the subscales are presented for each country.

Table 17 Cronbach's alpha (α) and split-half reliability coefficients and convergent and discriminant validity of Schwartz's human values subscales based on the full sample of each country: European Social Survey

Country & year		Subscale	Reli	iability	Convergent	Disc	crimina	nt validi	ty
			α	Split-half	validity	I	II	III	IV
BE	2002	Conservation (I)	.673	.643	.290	_			
		Self-transcendence (II)	.567	.438	.310	.088			
		Self-enhancement (III)	.576	.443	.443	.187	.021	_	
	2004	Openness to change (I)	.674	.665	.320	_			
		Self-transcendence (II)	.636	.556	.228	.054	_		
		Self-enhancement (III)	.615	.450	.327	.145	.051	_	
	2006	Achievement (I)	.688	.688	.530	_			
		Self-transcendence (II)	.584	.428	.244	.084	_		
		Security (III)	.600	.600	.430	.031	.043	_	
	2008	Openness to change (I)	.668	.628	.288	_			
		Conservation (II)	.616	.687	.280	.083	_		
		Self-enhancement (III)	.619	.442	.343	.157	.073	_	
	2010	Self-enhancement (I)	.663	.467	.407	_			
		Conservation (II)	.558	.664	.250	.090	_		
		Hedonism (III)	.610	.610	.440	.121	.029	_	
		Openness to change (IV)	.550		.303	.136	.035	.165	_
	2012	Self-enhancement (I)	.713		.405	_			
		Openness to change (II)	.744		.247	.211	_		
	2014	Achievement (I)	.687	.687	.530	_			
		Openness to change (II)	.560		.206	.098	_		
		Security (III)	.547	.547	.380	.061	.032	_	
DK	2002	Openness to change (I)	.737		.296	_			
		Self-transcendence (II)	.580		.330	.132	_		
		Achievement (III)	.643	.643	.490	.167	.018	_	
	2004	Self-enhancement (I)	.731	.689	.260	_			
		Security (II)	.564		.395	.029	_		
	2006	Openness to change (I)	.731	.653	.298	_			
		Self-enhancement (II)	.688	.508	.453	.161	_		
	2008	Openness to change (I)	.780		.215	_			
		Conservation (II)	.601	.510	.336	.047	_		
	2010	Openness to change (I)	.711	.775	.277	_			
		Self-enhancement (II)	.671		.423	.154	_		
	2012	Openness to change (I)	.745	.796	.312	_ _			
		Self-enhancement (II)	.701	.549	.453	.178	_		
		Self-transcendence (III)	.565	.515	.258	.070	.040	_	
	2014	Hedonism (I)	.606		.278				
		Stimulation (II)	.667	.658	.430	.117			
T	2002	Self-enhancement (III)	.710		.550	.177	.138	_	
FI	2002	Self-enhancement (I)	.804		.507	_			
	2004	Openness to change (II)	.741	.648	.343	.247			
	2004	Openness to change (I)	.788	.810	.447	_			
		Self-enhancement (II)	.772	.624	.413	.275	_		
	2005	Conservation (III)	.660		.330	.000	.016	_	
	2006	Self-enhancement (I)	.790		.557	_			
		Hedonism (II)	.707	.707	.590	.206	_		
		Security (III)	.471	.328	.227	.022	.095	_	

Table 17 (continued)

FI 2006 Openness to change (IV) .549 .331 .267 .013 .0				Reliability		Convergent	Discriminant validity			
2008 Self-enhancement (I) .805 .727 .311	Count	try & year	Subscale	α	Split-half	validity	I	II	III	IV
2008 Self-enhancement (I) .805 .727 .311	FI	2006		.549	.331	.267	.013	.077	.046	_
Self-transcendence (II) .571 .608 .267 .298 .298 .2010 .2010 .782 .796 .302 .298 .2010 .2012 .2012 .2012 .2012 .2012 .2014 .20		2008			.727	.311	_			
Conservation (I)						.267	.298	_		
Self-enhancement (III)		2010	Conservation (I)	.782	.796	.302	_			
Self-enhancement (III)			Openness to change (II)	.739	.757	.368	.029	_		
Self-enhancement (III)				.735	.596	.393	.017	.246	_	
Conservation (III) .626 .675 .228 .006 .6 Self-enhancement (I) .713 .551 .470 Openness to change (II) .658 .436 .193 .112 FR 2002 Openness to change (I) .734 .680 .227 Conservation (II) .736 .683 .350 .135 2004 Conservation (I) .731 .735 .297 Openness to change (II) .741 .740 .224 .168 Achievement (III) .704 .704 .545 .076 .1 2006 Self-transcendence (I) .740 .704 .276 Openness to change (II) .631 .514 .387 .143 Self-enhancement (III) .543 .492 .267 .110 .6 2008 Conservation (I) .684 .633 .296 Self-transcendence (II) .689 .639 .262 .138 Openness to change (III) .636 .680 .302 .036 .1 Achievement (IV) .656 .656 .490 .089 .6 2010 Self-transcendence (I) .710 .717 .213 Conservation (II) .701 .704 .267 .144 Achievement (III) .661 .661 .495 .043 .0 Hedonism (IV) .605 .605 .415 .175 .0 2012 Conservation (I) .711 .609 .204 Achievement (III) .675 .675 .520 .104 Achievement (III) .664 .504 .217 .147 .0 Openness to change (IV) .567 .569 .350 .070 .0 2014 Openness to change (IV) .567 .569 .350 .070 .0 Conservation (II) .664 .504 .208 .087 DE 2002 Openness to change (I) .739 .734 .384 Conservation (II) .666 .558 .400 .203 .0 Self-enhancement (III) .676 .558 .400 .203 .0 2004 Openness to change (I) .722 .702 .376 2006 Self-transcendence (I) .693 .676 .330 .300 Self-enhancement (III) .664 .521 .3390 .036 .1 Self-enhancement (III) .664 .521 .3390 .		2012	Openness to change (I)	.765	.795	.382	_			
2014 Self-enhancement (I) .713 .551 .470			Self-enhancement (II)	.740	.583	.497	.170	_		
Openness to change (II) .658 .436 .193 .112			Conservation (III)	.626	.675	.228	.006	.048	_	
FR 2002 Openness to change (I) .754 .680 .227 — Conservation (II) .736 .683 .350 .135 — 2004 Conservation (I) .731 .735 .297 — Openness to change (II) .741 .740 .224 .168 — Achievement (III) .704 .704 .545 .076 .1 2006 Self-transcendence (I) .740 .704 .276 — Openness to change (II) .631 .514 .387 .143 — Self-enhancement (III) .543 .492 .267 .110 .6 2008 Conservation (I) .684 .633 .296 — Self-transcendence (II) .689 .639 .262 .138 — Openness to change (III) .636 .680 .302 .036 .1 Achievement (IV) .656 .656 .490 .089 .6 2010 Self-transcendence (I) .710 .717 .213 — Conservation (II) .701 .704 .267 .144 — Achievement (III) .661 .661 .495 .043 .6 Hedonism (IV) .605 .605 .415 .175 .6 2012 Conservation (I) .711 .609 .204 — Achievement (III) .664 .549 .217 .147 .6 Openness to change (IV) .567 .569 .350 .070 .6 2014 Openness to change (IV) .567 .569 .350 .070 .6 2014 Openness to change (IV) .566 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .664 .504 .208 .087 . Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .272 — Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .666 .583 .407 .010 . Self-enhancement (III) .679 .558 .400 .203 .6 Conservation (III) .537 .610 .195 .013 .6 Conservation (III) .537 .610 .195 .013 .6 Openness to change (I) .723 .760 .370 .120 . Self-enhancement (III) .664 .521 .390 .036 .1 Seurity (IV) .587 .587 .410 .049 .6		2014	Self-enhancement (I)	.713	.551	.470	_			
FR 2002 Openness to change (I) .754 .680 .227 — Conservation (II) .736 .683 .350 .135 — 2004 Conservation (I) .731 .735 .297 — Openness to change (II) .741 .740 .224 .168 — Achievement (III) .704 .704 .545 .076 .1 2006 Self-transcendence (I) .740 .704 .276 — Openness to change (II) .631 .514 .387 .143 — Self-enhancement (III) .543 .492 .267 .110 .6 2008 Conservation (I) .684 .633 .296 — Self-transcendence (II) .689 .639 .262 .138 — Openness to change (III) .636 .680 .302 .036 .1 Achievement (IV) .656 .656 .490 .089 .6 2010 Self-transcendence (I) .710 .717 .213 — Conservation (II) .701 .704 .267 .144 — Achievement (III) .661 .661 .495 .043 .6 Hedonism (IV) .605 .605 .415 .175 .6 2012 Conservation (I) .711 .609 .204 — Achievement (III) .664 .549 .217 .147 .6 Openness to change (IV) .567 .569 .350 .070 .6 2014 Openness to change (IV) .567 .569 .350 .070 .6 2014 Openness to change (IV) .566 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .664 .504 .208 .087 . Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .217 .147 .6 Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .614 .549 .272 — Conservation (II) .666 .583 .407 .010 . Self-enhancement (III) .666 .583 .407 .010 . Self-enhancement (III) .679 .558 .400 .203 .6 Conservation (III) .537 .610 .195 .013 .6 Conservation (III) .537 .610 .195 .013 .6 Openness to change (I) .723 .760 .370 .120 . Self-enhancement (III) .664 .521 .390 .036 .1 Seurity (IV) .587 .587 .410 .049 .6				.658	.436	.193	.112	_		
Conservation (II)	FR	2002				.227	_			
2004 Conservation (I) .731 .735 .297							.135	_		
Openness to change (II) 741 740 .224 .168 .4chievement (III) .704 .704 .545 .076 .1 .2006 Self-transcendence (I) .740 .704 .276		2004					_			
Achievement (III)			` '				.168	_		
2006 Self-transcendence (I) .740 .704 .276 — Openness to change (II) .631 .514 .387 .143 .58lf-enhancement (III) .543 .492 .267 .110 .088 .633 .296 — Self-transcendence (II) .684 .633 .296 .78							.076	.117	_	
Openness to change (II)		2006					_			
Self-enhancement (III) .543 .492 .267 .110 .608 .633 .296			* /				.143	_		
2008 Conservation (I) .684 .633 .296 Self-transcendence (II) .689 .639 .262 .138 Openness to change (III) .636 .680 .302 .036 .1 Achievement (IV) .656 .656 .490 .089 .0 2010 Self-transcendence (I) .710 .717 .213 Conservation (II) .701 .704 .267 .144 Achievement (III) .661 .661 .495 .043 .0 Hedonism (IV) .605 .605 .415 .175 .0 2012 Conservation (I) .711 .609 .204 Achievement (II) .675 .675 .520 .104 Self-transcendence (III) .614 .549 .217 .147 .0 Openness to change (IV) .567 .569 .350 .070 .0 2014 Openness to change (I) .626 .661 .272 Conservation (II) .664 .504 .208 .087 Self-enhancement (III) .614 .447 .380 .094 .0 DE 2002 Openness to change (I) .739 .734 .384 Conservation (II) .661 .583 .407 .010 Self-enhancement (III) .666 .558 .400 .203 .0 2004 Openness to change (I) .722 .702 .376 Self-enhancement (III) .537 .610 .195 .013 .0 Self-enhancement (III) .537 .610 .195 .013 .0 Self-enhancement (III) .723 .760 .370 .120 Self-enhancement (III) .723 .760 .370 .120 Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0								.079	_	
Self-transcendence (II) .689 .639 .262 .138 .00enness to change (III) .636 .680 .302 .036 .1 .1 .2 .2 .2 .2 .2 .2		2008					_			
Openness to change (III) .636 .680 .302 .036 .104 .656 .656 .490 .089 .							.138	_		
Achievement (IV) .656 .656 .490 .089 .0 2010 Self-transcendence (I) .710 .717 .213 — Conservation (II) .701 .704 .267 .144 - Achievement (III) .661 .661 .495 .043 .0 Hedonism (IV) .605 .605 .415 .175 .0 2012 Conservation (I) .711 .609 .204 — Achievement (II) .675 .675 .520 .104 - Achievement (III) .614 .549 .217 .147 .0 Openness to change (IV) .567 .569 .350 .070 .0 2014 Openness to change (I) .626 .661 .272 — Conservation (II) .664 .504 .208 .087 - Self-enhancement (III) .661 .447 .380 .094 .0 DE 2002 Openness to change (I) .739 .734 .384 — Conservation (II) .661 .583 .407 .010 - Self-enhancement (III) .676 .558 .400 .203 .0 2004 Openness to change (I) .722 .702 .376 — Self-enhancement (III) .537 .610 .195 .013 .0 2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0								.183	_	
2010 Self-transcendence (I) .710 .717 .213 —								.046	.158	
Conservation (II)		2010					_	.0.0		
Achievement (III)		2010	. ,				.144	_		
Hedonism (IV)								.097	_	
Conservation (I)								.043	.081	
Achievement (II)		2012					_	.0.2	.001	
Self-transcendence (III)							.104	_		
Openness to change (IV) .567 .569 .350 .070 .0 2014 Openness to change (I) .626 .661 .272 — Conservation (II) .664 .504 .208 .087 - Self-enhancement (III) .614 .447 .380 .094 .0 DE 2002 Openness to change (I) .739 .734 .384 — Conservation (II) .661 .583 .407 .010 - Self-enhancement (III) .676 .558 .400 .203 .0 2004 Openness to change (I) .722 .702 .376 — Self-enhancement (II) .643 .484 .397 .166 - Self-enhancement (III) .537 .610 .195 .013 .0 2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0			* *					.083		
2014 Openness to change (I) .626 .661 .272 — Conservation (II) .664 .504 .208 .087 .087 .094 .088 .094 .088 .094 .094 .094 .098 .094 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .094 .098 .0								.071	.188	_
Conservation (II)		2014					_			
Self-enhancement (III)		201.					087	_		
DE 2002 Openness to change (I) .739 .734 .384 — Conservation (II) .661 .583 .407 .010 — Self-enhancement (III) .676 .558 .400 .203 .0 2004 Openness to change (I) .722 .702 .376 — Self-enhancement (III) .643 .484 .397 .166 — Conservation (III) .537 .610 .195 .013 .0 2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 — Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0								.095	_	
Conservation (II)	DE	2002						.075		
Self-enhancement (III)	DL	2002					010	_		
2004 Openness to change (I) .722 .702 .376 — Self-enhancement (II) .643 .484 .397 .166 - Conservation (III) .537 .610 .195 .013 .0 2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0								.051	_	
Self-enhancement (II) .643 .484 .397 .166 - Conservation (III) .537 .610 .195 .013 .0 2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0		2004					.203	.031		
Conservation (III) .537 .610 .195 .013 .0 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0		2004	1				166			
2006 Self-transcendence (I) .693 .676 .300 — Openness to change (II) .723 .760 .370 .120 — Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0			* *					.037		
Openness to change (II) .723 .760 .370 .120 - Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0		2006					.013	.037	_	
Self-enhancement (III) .664 .521 .390 .036 .1 Security (IV) .587 .587 .410 .049 .0		2000					120			
Security (IV) .587 .587 .410 .049 .0								<u> </u>	_	
			* *						.025	
2009 Openness to shange (I) 724 674 462		2009					.049	.000	.023	_
2008 Openness to change (I) .734 .674 .463 —		2008	1				1 / 1			
Self-enhancement (II) .664 .519 .400 .141 Self-transcendence (III) .627 .524 .360 .047 .0								.002		

Table 17 (continued)

Country & year Subscale		Reliability		Convergent	Discriminant validity				
		Subscale	α	Split-half	validity	I	II	III	IV
DE 2008	2008	Conservation (IV)	.583	.499	.317	.033	.038	.085	_
	2010	Self-transcendence (I)	.670	.656	.255	_			
		Openness to change (II)	.685	.663	.377	.127	_		
		Conservation (III)	.622	.591	.363	.035	.004		
		Self-enhancement (IV)	.621	.472	.340	.046	.108	.057	_
	2012	Openness to change (I)	.678	.634	.387	_			
		Self-enhancement (II)	.578	.508	.248	.126	_		
	2014	Openness to change (I)	.623	.637	.286	_			
		Self-enhancement (II)	.641	.498	.387	.094	_		
		Conservation (III)	.591	.571	.333	.007	.063	_	
HU	2002	Self-transcendence (I)	.797	.767	.320	_			
		Self- enhancement (II)	.702	.628	.362	.147	_		
	2004	Self-transcendence (I)	.777	.722	.285	_			
		Self-enhancement (II)	.783	.720	.293	.186	_		
	2006	Self-enhancement (I)	.778	.746	.338	_			
		Conservation (II)	.726	.704	.290	.134	_		
	2008	Self-enhancement (I)	.805	.800	.337	_			
		Self-transcendence (II)	.794	.782	.337	.188	_		
	2010	Self-transcendence (I)	.819	.787	.312	_			
		Self- enhancement (II)	.809	.792	.373	.138	_		
	2012	Self-enhancement (I)	.841	.836	.391	_			
		Security (II)	.710	.681	.375	.156	_		
		Conservation (III)	.672	.655	.330	.099	.208	_	
		Self-transcendence (IV)	.575	.575	.430	.131	.213	.257	_
	2014	Self-transcendence (I)	.790	.768	.361	_			
		Self-enhancement (II)	.831	.831	.386	.144	_		
Œ	2002	Self-transcendence (I)	.792	.732	.259	_			
		Openness to change (II)	.762	.777	.358	.094	_		
		Self-enhancement (III)	.701	.525	.280	.113	.256	_	
	2004	Self-enhancement (I)	.852	.788	.444	_			
		Conservation (II)	.777	.724	.356	.072	_		
		Self-transcendence (III)	.696	.618	.187	.121	.310	_	
	2006	Openness to change (I)	.824	.777	.420	_			
		Conservation (II)	.760	.745	.358	.052	_		
		Self-transcendence (III)	.746	.709	.225	.124	.257	_	
	2008	Conservation (I)	.776	.782	.277	_			
		Self-enhancement (II)	.758	.782	.374	.054	_		
		Self-transcendence (III)	.612	.579	.206	.211	.093	_	
	2010	Self-transcendence (I)	.856	.817	.349	_			
	- •	Openness to change (II)	.815	.764	.413	.159	_		
		Conservation (III)	.760	.731	.362	.335	.051	_	
	2012	Conservation (I)	.834	.681	.312	_			
	-	Openness to change (II)	.792	.736	.375	.095	_		
	2014	Self-transcendence (I)	.796	.772	.341	_			
		Self-enhancement (II)	.775	.703	.347	.133	_		
		Conservation (III)	.745	.744	.285	.268	.062		

Table 17 (continued)

			Reli	ability	Convergent	Disc	crimina	nt validi	ty
Count	ry & year	Subscale	α	Split-half	validity	I	II	III	IV
NL	2002	Self-transcendence (I)	.724	.711	.246				
		Self-enhancement (II)	.848		.238	.078	_		
	2004	Self-transcendence (I)	.725		.260	_			
		Conservation (II)	.717		.375	.098			
		Self-enhancement (III)	.708	.546	.463	.082	.054	_	
		Hedonism (IV)	.588	.588	.400	.109	.020	.118	_
	2006	Self-transcendence (I)	.701	.561	.216	_			
		Self-enhancement (II)	.712	.715	.400	.120	_		
		Conservation (III)	.667	.574	.363	.067	.039	_	
	2008	Self-transcendence (I)	.752	.710	.269	_			
		Conservation (II)	.757	.702	.374	.097	_		
		Self-enhancement (III)	.734	.741	.422	.065	.058	_	
		Hedonism (IV)	.616	.616	.445	.141	.031	.170	_
	2010	Self-enhancement (I)	.778	.699	.424	_			
		Self-transcendence (II)	.686		.288	.055	_		
		Conservation (III)	.646	.538	.377	.023	.071	_	
		Hedonism (IV)	.604	.504	.440	.192	.130	.031	_
	2012	Self-enhancement (I)	.782		.430	_			
		Self-transcendence (II)	.651		.252	.216	_		
		Conservation (III)	.559		.395	.023	.091	_	
	2014	Self-enhancement (I)	.786		.274	_			
		Conservation (II)	.694		.337	.021	_		
		Self-transcendence (III)	.570		.290	.066	.111	_	
NO	2002	Self-enhancement (I)	.742		.500	_			
		Openness to change (II)	.773		.287	.228	_		
	2004	Self-enhancement (I)	.827		.323	_			
		Self-transcendence (II)	.613		.357	.094	_		
		Conservation (III)	.520		.375	.014	.094	_	
	2006	Self-enhancement (I)	.836		.381	_			
		Conservation (II)	.624		.363	.024	_		
		Self-transcendence (III)	.643		.265	.099	.142	_	
	2008	Openness to change (I)	.781		.368	_			
	2010	Self-enhancement (II)	.762		.455	.292	_		
	2010	Self-enhancement (I)	.678		.347	_			
		Conservation (II)	.643		.203	.083	_		
	2012	Openness to change (III)	.678		.397	.142	.044	_	
	2012	Openness to change (I)	.772		.314	-010			
		Conservation (II)	.680		.310	.018	_		
	2014	Self-transcendence (III)	.648		.330	.129	.141	_	
	2014	Conservation (I)	.635		.248	_			
		Openness to change (II)	.630		.325	.066	121		
DI	2002	Self-enhancement (III)	.709		.460	.078	.131	_	
PL	2002	Conservation (I)	.767		.291	100			
		Openness to change (II)	.724		.336	.100	200		
	2004	Hedonism (III)	.825		.563	.002	.299	_	
	2004	Openness to change (I)	.807		.342	022			
		Conservation (II)	.762	.754	.291	.033			

Table 17 (continued)

			Reli	ability	Convergent	Dis	crimina	nt valid	ity
Coun	try & year	Subscale	α	Split-half	validity	I	II	III	IV
PL	2006	Self-transcendence (I)	.740	.683	.245	_			
		Openness to change (II)	.798	.804	.507	.034	_		
	2008	Conservation (I)	.822	.798	.330	_			
		Self-enhancement (II)	.702	.745	.375	.081	_		
		Hedonism (III)	.778	.778	.635	.008	.241	_	
	2010	Conservation (I)	.785	.756	.309	_			
		Openness to change (II)	.780	.752	.360	.015	_		
		Self-enhancement (III)	.694	.693	.344	.091	.349	_	
	2012	Openness to change (I)	.814	.702	.335	_			
		Conservation (II)	.783	.752	.285	.061	_		
	2014	Openness to change (I)	.848	.785	.393	_			
		Conservation (II)	.784	.779	.285	.038	_		
PT	2002	Self-transcendence (I)	.839	.808	.387	_			
		Openness to change (II)	.848	.840	.437	.171	_		
	2004	Self-transcendence (I)	.856	.839	.427	_			
		Openness to change (II)	.798	.787	.547	.235	_		
		Conservation (III)	.709	.699	.340	.238	.024		
		Self-enhancement (IV)	.733		.236	.370	.362	.107	_
	2006	Self-transcendence (I)	.853	.832	.432	_			
		Self-enhancement (II)	.808		.368	.118			
	2008	Self-transcendence (I)	.867	.869	.405				
		Openness to change (II)	.803		.370	.184			
	2010	Conservation (I)	.883		.345	_			
		Openness to change (II)	.831		.408	.225	_		
	2012	Conservation (I)	.856		.320	_			
		Openness to change (II)	.845		.391	.166	_		
	2014	Self-transcendence (I)	.813		.293	_			
		Self-enhancement (II)	.768		.300	.229			
		Conservation (III)	.597		.313	.214	.083	_	
SI	2002	Openness to change (I)	.713		.332	_			
		Self-transcendence (II)	.729		.238	.111	_		
		Self-enhancement (III)	.683	.547	.263	.261	.138		
	2004	Self-enhancement (I)	.801	.780	.272	_			
		Conservation (II)	.781		.293	.141	_		
	2006	Self-transcendence (I)	.750	.687	.254	_			
		Self-enhancement (II)	.754		.322	.143	_		
	2008	Conservation (I)	.806		.287	_			
		Openness to change (II)	.780	.783	.290	.142	_		
	2010	Openness to change (I)	.796		.384	_			
		Conservation (II)	.763		.276	.055	_		
	2012	Self-enhancement (I)	.789		.253	_			
		Self-transcendence (II)	.569		.333	.223	_		
		Power (III)	.492		.275	.069	.132	_	
	2014	Conservation (I)	.573	.481	.227	_			
		Openness to change (II)	.494		.280	.055	_		
		Self-enhancement (III)	.627		.300	.178	.182		
ES	2002	Conservation (I)	.833		.311	_			

Table 17 (continued)

			Reliabi	lity	Convergent	Disc	crimina	nt validi	ity
Coun	try & year	Subscale	α Sp	olit-half	validity	I	II	III	IV
ES	2002	Openness to change (II)	.786	.765	.362	.144	_		
		Self-enhancement (III)	.668	.513	.240	.088	.222	_	
	2004	Conservation (I)	.815	.704	.322	_			
		Openness to change (II)	.741	.733	.326	.102	_		
	2006	Openness to change (I)	.802	.828	.387	_			
		Self-transcendence (II)	.788	.787	.315	.070	_		
		Self-enhancement (III)	.659	.483	.297	.238	.055	_	
	2008	Self-enhancement (I)	.686	.696	.300	_			
		Openness to change (II)	.794	.613	.278	.207	_		
	2010	Openness to change (I)	.766	.746	.380	_			
		Self-enhancement (II)	.694	.673	.457	.171	_		
	2012	Self-transcendence (I)	.714	.702	.201	_			
		Openness to change (II)	.706	.724	.266	.055	_		
		Self-enhancement (III)	.672	.700	.322	.046	.165	_	
	2014	Openness to change (I)	.769	.785	.330	_			
		Self-enhancement (II)	.634	.549	.352	.168	_		
SE	2002	Self-enhancement (I)	.755	.756	.260	_			
		Self-transcendence (II)	.662	.560	.383	.096	_		
		Hedonism (III)	.704	.704	.540	.238	.074	_	
		Conservation (IV)	.445	.445	.305	.033	.052	.012	_
	2004	Openness to change (I)	.769	.748	.342	_			
		Self-enhancement (II)	.759	.777	.420	.281	_		
		Self-transcendence (III)	.578	.564	.307	.126	.025	_	
	2006	Self-enhancement (I)	.770	.793	.472	_			
		Openness to change (II)	.754	.783	.382	.244	_		
	2008	Self-enhancement (I)	.777	.789	.445	_			
		Openness to change (II)	.741	.756	.261	.240	_		
		Conservation (III)	.454	.454	.360	.093	.040	_	
	2010	Openness to change (I)	.679	.602	.430	_			
		Self-enhancement (II)	.535	.588	.367	.065	_		
		Benevolence (III)	.612	.612	.455	.121	.043	_	
	2012	Self-enhancement (I)	.758	.684	.248	_			
		Conservation (II)	.728	.710	.336	.102	_		
		Self-transcendence (III)	.689	.703	.357	.127	.154	_	
	2014	Conservation (I)	.691	.621	.312	_			
		Openness to change (II)	.673	.471	.237	.042	_		
		Achievement (III)	.684	.684	.520	.092	.098	_	
CH	2002	Openness to change (I)	.652	.611	.357				
		Conservation (II)	.621	.514	.370	.008			
	2061	Achievement (III)	.630	.630	.470	.108	.034	_	
	2004	Self-transcendence (I)	.677	.677	.350	_			
		Conservation (II)	.643	.542	.377	.083	_		
		Openness to change (III)	.675	.651	.397	.061	.003		
		Self-enhancement (IV)	.643	.507	.363	.039	.075	.116	_
	2006	Conservation (I)	.680	.636	.315	_			
		Openness to change (II)	.645	.699	.294	.019			
		Achievement (III)	.623	.623	.470	.113	.105	_	

Table 17 (continued)

			Reli	iability	Convergent	Discr	iminan	t validit	.y
Coun	try & year	Subscale	α	Split-half	validity	I	II	III	IV
СН	2008	Self-enhancement (I)	.609	.502	.300	_			
		Openness to change (II)	.537	.537	.380	.051			
	2010	Conservation (I)	.703	.659	.285	_			
		Openness to change (II)	.684	.649	.286	.092	_		
	2012	Openness to change (I)	.653	.717	.368	_			
		Self-enhancement (II)	.712	.740	.348	.151			
		Conservation (III)	.619	.609	.230	.059	.171	_	
	2014	Conservation (I)	.634	.598	.312	_			
		Openness to change (II)	.661	.636	.413	.030			
		Self-transcendence (III)	.645	.626	.327	.089	.072	_	
		Self-enhancement (IV)	.643	.498	.337	.170	.118	.031	_
GB	2002	Conservation (I)	.689	.617	.318	_			
		Self-enhancement (II)	.725	.559	.460	.099			
		Openness to change (III)	.744	.744	.590	.036	.233	_	
		Hedonism (IV)	.615	.603	.330	.082	.143	.129	
	2004	Openness to change (I)	.817	.837	.407	_			
		Conservation (II)	.709	.704	.283	.051	_		
	2006	Openness to change (I)	.742	.765	.370	_			
		Conservation (II)	.601	.617	.246	.034	_		
		Self-enhancement (III)	.682	.507	.353	.227	.084	_	
	2008	Openness to change (I)	.770	.792	.323	_			
		Conservation (II)	.704	.678	.324	.060	_		
		Self-transcendence (III)	.603	.497	.333	.061	.106	_	
	2010	Conservation (I)	.708	.698	.267	_			
		Self-enhancement (II)	.703	.721	.503	.081			
		Self-transcendence (III)	.666	.607	.213	.166	.081	_	
		Openness to change (IV)	.752	.783	.510	.018	.294	.107	_
	2012	Self-transcendence (I)	.631	.649	.280	_			
		Conservation (II)	.660	.641	.230	.207			
		Openness to change(III)	.698	.604	.393	.044	.016	_	
		Self-enhancement (IV)	.618	.645	.400	.063	.070	.215	_
	2014	Conservation (I)	.680	.682	.300	_			
		Self-transcendence (II)	.671	.586	.187	.088			
		Self-enhancement (III)	.697	.524	.427	.116	.108		
		Openness to change (IV)	.672	.628	.533	.015	.144	.219	_

Reliability and convergent validity values above or around .70 and .50, respectively, are in boldface.

As shown, Cronbach's alpha was above or around .70 in 227 out of 315 subscales, whereas split-half reliability coefficient in 182 subscales. Both Cronbach's alpha and split-half reliability coefficients showed reliable subscales in Belgium (2012), France (2002, 2004), Hungary (2004, 2006, 2008, 2010, 2014), Ireland (2006, 2010, 2012, 2014), the Netherlands (2002), Norway (2008), Poland (all rounds), Portugal (2002, 2006, 2008, 2010, 2012), Slovenia (2004, 2006, 2008, 2010), Spain (2004, 2010, 2012), Sweden (2006, 2012) and the UK (2004). Only 34 subscales demonstrated adequate convergent validity (AVE values above and around .50): one

in the Netherlands (self-enhancement, 2004), Portugal (openness to change, 2004) and Spain (self-enhancement, 2010); two in Belgium (achievement, 2006; achievement, 2014) and Switzerland (achievement, 2002; achievement, 2006); three in Norway (self-enhancement, 2002; self-enhancement, 2008; self-enhancement, 2014), Poland (hedonism, 2002; openness to change, 2006; hedonism, 2008) and Sweden (hedonism, 2002; self-enhancement, 2006; achievement, 2014); four in France (achievement, 2008; achievement, 2010; achievement, 2012); and five in Denmark (achievement, 2002; self-enhancement, 2016; self-enhancement, 2012; stimulation and self-enhancement, 2014), Finland (self-enhancement, 2002; self-enhancement and hedonism, 2006; self-enhancement, 2012; self-enhancement and openness to change, 2002; self-enhancement and openness to change, 2010; openness to change, 2014). However, all the subscales exhibited adequate evidence of discriminant validity since the squared correlations between subscales were less than their AVE estimates.

Results When Items Are Considered as Both Ordinal and Pseudo-Interval

In order to demonstrate the full analysis, the detailed results for Poland are presented first in Tables 18-21 and Figures 4-5. Summarized results for all 16 countries are presented in Tables 22-27. In Appendix II.B, the detailed results for the other 15 countries are presented in Tables B1-B60 and Figures B1-B30.

Results – Poland. The full analysis is demonstrated for Poland based on the European Social Survey Round 6 Data (2012).

EFA results. Univariate statistics, frequencies and distributional properties of items based on the first half-sample were first inspected (Table 18). The full range of possible responses was used for all items. However, in most cases, the majority of the responses were clustered at the higher end of each scale. Strong ceiling effects were detected for items defining emotional wellbeing (Emwb1, Emwb2 and Emwb5), functioning (Fun1, Fun3, Fun7, Fun9, Fun10, Fun11, Fun12 and Fun13), vitality (Vi1, Vi2 and Vi3) and supportive relationships (Sur3 and Sur4). Floor effects were not observed. Relatively low mean responses were found for items defining community wellbeing (Cowb1, Cowb2 and Cowb3). Relatively high mean responses were found for items defining supportive relationships (Sur3 and Sur4) and emotional wellbeing (Emwb5).

Table 18 Item analysis of the 2012 European Social Survey measurement of wellbeing for Poland (first half-sample: n = 949)

							Freq	uency p	ercent o	of respon	nse cate	gories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.87	0.879	3.81-3.93	2.1	1.1	1.1	4.4	4.0	12.4	7.2	18.0	23.0	12.5	13.5	0.7	-0.83	0.40	.463
Evwb2	3.94	0.792	3.88-4.00	0.8	0.9	1.1	2.2	3.2	14.3	8.5	15.1	25.7	13.8	13.8	0.5	-0.87	0.83	.538
Emwb1	4.23	1.001	4.16-4.30	-	4.4	8.0	31.3	55.2	-	-	-	-	-	-	1.1	-1.34	1.59	.571
Emwb2	4.25	0.956	4.19-4.32	-	3.8	7.7	33.1	54.7	-	-	-	-	-	-	0.7	-1.27	1.47	.544
Emwb3	3.70	1.239	3.61-3.79	-	8.2	20.2	36.1	33.8	-	-	-	-	-	-	1.6	-0.60	-0.59	.597
Emwb4	3.52	1.210	3.43-3.61	-	8.5	23.4	39.8	27.0	-	-	-	-	-	-	1.3	-0.45	-0.61	.632
Emwb5	4.31	0.995	4.23-4.38	-	3.0	8.5	27.3	59.3	-	-	-	-	-	-	1.9	-1.44	1.67	.517
Emwb6	3.24	1.244	3.15-3.33	-	11.5	29.1	37.1	20.4	-	-	-	-	-	-	1.9	-0.23	-0.81	.439
Fun1	4.05	0.808	3.99-4.11	-	0.5	6.0	13.0	53.7	26.0	-	-	-	-	-	0.7	-0.88	0.93	.339
Fun2	3.12	1.066	3.05-3.20	-	5.2	29.3	22.3	35.6	6.0	-	-	-	-	-	1.6	-1.01	-0.08	.302
Fun3	3.81	0.870	3.75-3.87	-	0.8	7.9	17.8	55.0	16.3	-	-	-	-	-	2.1	-0.76	0.44	.459
Fun4	4.11	0.740	4.06-4.17	0.9	0.2	0.4	1.6	2.2	9.6	9.1	15.7	22.0	13.5	22.9	1.9	-0.68	0.20	.419
Fun5	4.18	0.716	4.13-4.23	0.6	0.1	0.5	1.2	1.6	8.3	7.1	14.5	23.8	15.1	25.3	1.9	-0.96	1.23	.416
Fun6	4.05	0.788	3.99-4.10	0.8	0.5	1.4	1.5	2.2	10.0	9.9	15.3	21.8	15.0	19.7	1.9	-0.88	0.76	.470
Fun7	4.04	0.698	3.99-4.09	-	0.5	2.5	13.0	60.0	22.4	-	-	-	-	-	1.6	-0.79	1.89	.371
Fun8	3.98	0.793	3.92-4.03	0.6	0.1	0.8	2.0	2.6	11.4	8.4	19.5	20.1	14.8	16.1	3.5	-0.81	0.78	.475
Fun9	3.74	0.877	3.67-3.80	-	0.9	10.1	20.5	52.5	15.1	-	-	-	-	-	0.8	-0.63	0.05	.466
Fun10	3.90	0.742	3.84-3.95	-	0.9	4.0	16.2	61.9	14.8	-	-	_	_	-	2.2	-0.82	1.47	.340
Fun11	3.95	0.717	3.90-4.00	-	0.1	4.3	14.0	61.9	18.0	-	-	-	-	-	1.7	-0.74	1.12	.488
Fun12	3.73	1.060	3.65-3.80	-	1.3	14.2	15.0	46.0	22.6	-	-	-	-	-	0.9	-0.60	-0.60	.473
Fun13	3.36	1.042	3.29-3.44	-	5.0	19.5	19.5	46.7	7.5	-	-	_	_	-	1.9	-0.52	-0.65	.374
Fun14	3.59	0.785	3.53-3.64	1.5	1.1	2.7	4.6	5.5	17.1	12.1	20.5	19.7	8.3	5.7	1.2	-0.47	-0.06	.556
Vi1	4.14	1.040	4.06-4.21	-	4.1	9.9	33.4	51.5	_	-	-	-	-	-	1.1	-1.17	1.03	.471
Vi2	4.11	1.262	4.02-4.20	-	7.8	11.2	22.4	57.6	_	-	-	_	_	-	0.9	-1.25	0.40	.385
Vi3	4.25	0.982	4.18-4.32	-	3.8	9.2	29.5	55.8	-	-	-	_	-	-	1.7	-1.34	1.62	.517
Vi4	3.36	1.212	3.28-3.45	-	11.6	27.9	35.9	23.4	-	-	-	_	-	-	1.2	-0.21	-0.81	.598
Cowb1	2.64	0.979	2.57-2.71	10.0	7.2	9.6	13.0	11.6	22.6	7.5	9.1	6.4	1.8	1.2	0.2	0.01	-0.66	.216
Cowb2	2.95	0.941	2.89-3.02	5.1	4.4	6.7	12.1	9.1	25.4	9.0	12.4	9.6	3.2	2.1	0.9	-0.20	-0.39	.228
Cowb3	2.49	0.958	2.42-2.55	9.3	8.6	15.7	15.4	10.3	18.1	7.2	6.4	4.1	1.7	1.3	1.9	0.37	-0.39	.167

Table 18 (continued)

							Freq	uency p	ercent (of respon	ise cate	gories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.31	1.047	3.24-3.39	5.9	7.8	11.8	23.4	22.1	18.9	7.4	_	_	_	_	2.7	-0.42	-0.42	.251
Cowb5	3.69	0.956	3.62-3.75	-	2.3	12.3	19.9	47.7	16.6	-	-	-	_	-	1.1	-0.71	0.14	.157
Sur1	3.05	0.988	2.98-3.12	6.6	11.2	16.4	22.3	29.2	6.7	5.6	-	-	-	-	1.9	-0.09	-0.35	.206
Sur2	4.18	0.712	4.13-4.23	0.2	0.2	0.5	1.3	2.0	7.4	6.7	12.5	24.0	20.1	23.5	1.5	-0.98	0.71	.444
Sur3	4.38	0.821	4.32-4.43	1.7	1.3	2.4	6.3	11.1	29.4	47.2	_	-	-	-	0.6	-1.82	3.59	.301
Sur4	4.46	1.004	4.38-4.53	-	4.1	6.3	18.9	69.9	-	-	-	-	-	-	0.8	-1.96	3.26	.352

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.088 and 0.177, respectively.

As shown, the proportion of missing values was negligible, exceeding 2.2% only for the items Fun8 (3.5%) and Cowb4 (2.7%). There were no cases with missing values on all items. Testing for randomness indicated that the data was probably missing at random (Little's MCAR test: $\chi^2 = 1,815.2$, df = 1,449, $p \le 0.001$). No cases were excluded for unengaged responses or as outliers. Non-normality was not severe (skewness>2; kurtosis>7) for any item as the skewness and kurtosis values ranged from -1.96 to 0.37 and -0.81 to 3.59, respectively. Based on the criterion of corrected item-total correlations >.30, the following six items were rejected from analysis: all the items defining community wellbeing (Cowb1-Cowb5); and one item defining supportive relationships (Sur1). Therefore, five theoretical dimensions were investigated.

EFA was performed with robust weighted least squares of the polychoric correlation matrix calculated from the first half-sample and geomin rotation was applied. Five different models were tested. Because three items defining functioning (Fun2, Fun13 and Fun14) had factor loadings <.30 on all factors, they were excluded from the analysis. Therefore, twenty six items were retained in the analysis. Table 19 presents the results of testing the five models. The five-factor model provided an acceptable model fit: $\chi^2/df = 4.14$, CFI = .939, TLI = .903, RMSEA (95% CI) = .058 (.054-.062).

Table 19 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Poland (n = 949): Goodness-of-fit indices

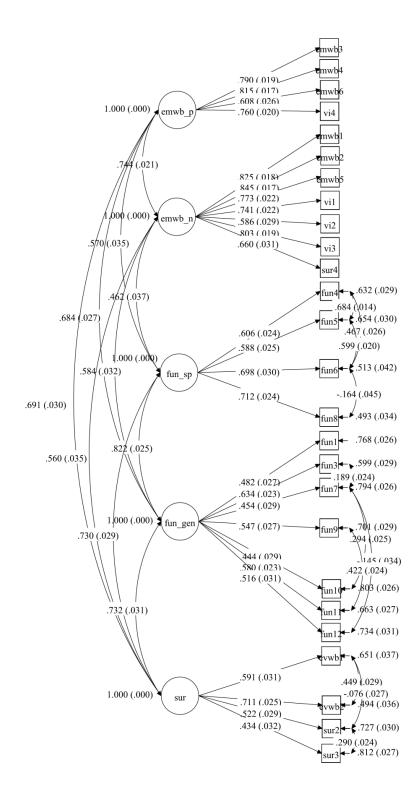
No. of factors	χ^2/df	CFI	TLI	RMSEA (90% CI)
1	13.66	.639	.608	.116 (.112119)
2	8.36	.808	.772	.088 (.085091)
3	6.92	.859	.817	.079 (.075082)
4	5.66	.899	.856	.070 (.066074)
5	4.14	.939	.903	.058 (.054062)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered acceptable if χ^2/df < 3, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.

Table 20 shows the structure of the five-factor solution obtained by performing EFA. The correlations between the factors were low to moderate, ranging from .339 to .948. All items exhibited strong factor loadings (≥.40) with the exception

of two items — two defining functioning (Fun8 and Fun12). Simple structure was achieved without cross-loading items.

Table 20 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Poland (n = 949)


Item	Factor I EMWB (+)	Factor II EMWB (-)	Factor III FUN (specific)	Factor IV FUN (general)	Factor V SUR
Evwb1	.016	.189	016	.090	.508
Evwb2	.134	.117	.015	.106	.527
Emwb1	.001	.836	040	051	.177
Emwb2	.061	.763	031	.102	.026
Emwb3	.715	007	.022	018	.214
Emwb4	.804	.035	.012	032	.085
Emwb5	.058	.742	009	.036	.002
Emwb6	.630	.071	044	.000	054
Fun1	.069	.070	.021	.422	.021
Fun3	025	.095	.196	.505	.074
Fun4	.047	008	.851	012	.020
Fun5	044	.048	.948	037	.020
Fun6	.053	041	.843	.061	.008
Fun7	058	.083	.177	.528	040
Fun8	.049	040	.358	.162	.283
Fun9	.194	050	056	.493	.105
Fun10	016	.019	.213	.543	097
Fun11	.273	086	041	.540	.076
Fun12	.132	.124	.034	.339	.045
Vi1	019	.748	.030	.134	028
Vi2	.058	.598	.027	.010	097
Vi3	.074	.689	.069	.000	002
Vi4	.625	.102	.121	.117	110
Sur2	005	023	.117	.127	.569
Sur3	010	.054	.063	069	.511
Sur4	022	.610	.012	107	.256
Factors			Correlation	s between facto	ors
EMWB (+)	_				
EMWB (-)	.670				
FUN (specific)	.302	.264			
FUN (general)	.403	.311	.412	_	
SUR	.402	.283	.337	.375	_

EMWB = emotional wellbeing; FUN = functioning; SUR = supportive relationships. Factor loadings > .30 are in boldface. Goodness of fit indices for this model: $\chi^2/df = 4.14$, CFI = .939, TLI = .903, RMSEA (90% CI) = .058 (.054-.062).

The first factor was defined by four items — three from the emotional wellbeing dimension (Emwb3, Emwb4 and Emwb6) and one from the vitality dimension (Vi4). As these items referred mostly to positive emotional wellbeing, the underlying construct was labeled as such. The second factor was defined by seven items — three from the emotional wellbeing dimension (Emwb1, Emwb2 and

Emwb5), three from the vitality dimension (Vi1, Vi2 and Vi3) and one from the supportive relationships dimension (Sur4). Based on the interpretation suggested by the dominant items, the underlying construct was labeled as negative emotional wellbeing. The third factor was defined by four items of the functioning dimension (Fun4, Fun5, Fun6 and Fun8) referring to specific functioning and therefore the underlying construct was labeled accordingly. The fourth factor was defined by seven items of the functioning dimension (Fun1, Fun3, Fun7, Fun9, Fun10, Fun11 and Fun12) referring to general functioning and consequently the underlying construct was labeled as such. The fifth factor was defined by four items — two from the evaluative wellbeing dimension (Evwb1 and Evwb2) and two from the supportive relationships dimension (Sur2 and Sur3). According to factor loadings, the dominant item represented supportive relationships and therefore the underlying construct was labeled accordingly.

CFA results. The results of data screening and examination of the distributions of items in the second half-sample were similar to those of the first half-sample. No cases were excluded from analysis. The five-factor model indicated as best by the EFA results was tested by CFA of the polychoric correlation matrix using robust weighted least squares. Modification searches were conducted and, where necessary, correlations between error variances were introduced. The CFA results (Figure 4) showed adequate model fit for the five first-order correlated factors solution: $\chi^2/df = 3.75$, CFI = .926, TLI = .914, RMSEA (90% CI) = .054 (.050-.057). Therefore, the CFA findings supported the five-dimensional structure confirming the EFA solution.

Fig. 4 Standardized solution for the model with 5 first-order correlated factors and without cross-loading items based on CFA analysis performed on the second half-sample of Poland (n = 947). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model: $\chi^2/df = 3.75$, CFI = .926, TLI = .914, RMSEA (90% CI) = .054 (.050-.057).

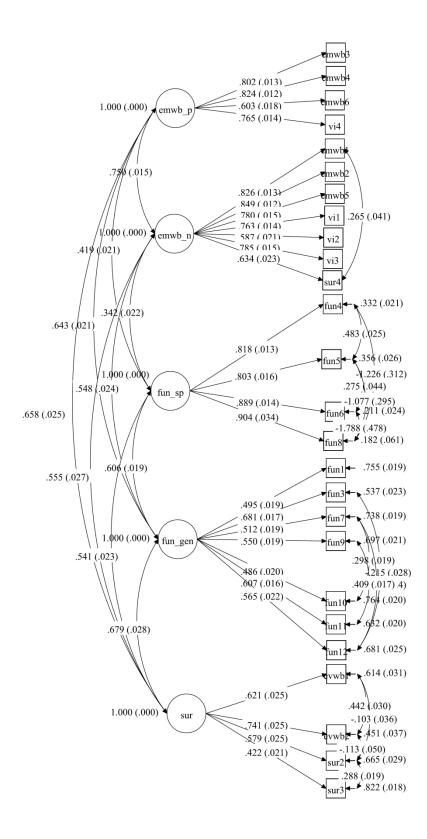

Subscale construction and assessment. Table 21 presents descriptive statistics, composite reliability, convergent and discriminant validity, and internal consistencies for the full sample.

Table 21 Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Poland (N = 1,898)

		Subscale								
	Emotional	Emotional	Functioning	Functioning	Supportive					
	Wellb. (+)	Wellb. (-)	(specific)	(general)	relationships					
Number of items	4	7	4	7	4					
Mean (standard error)	3.45 (0.024)	4.26 (0.018)	4.09 (0.016)	3.89 (0.013)	4.10 (0.015)					
95% Confidence interval	3.40-3.50	4.22-4.29	4.06-4.12	3.86-3.91	4.07-4.13					
Standard deviation	0.964	0.743	0.639	0.523	0.599					
Skewness	-0.363	-1.308	-0.759	-0.638	-0.935					
Kurtosis	-0.473	1.573	0.733	1.167	0.822					
Convergent validity	.568	.565	.730	.313	.362					
Composite Reliability	.838	.900	.915	.760	.686					
Average inter-item correl.	.485	.452	.600	.313	.395					
Minmax. correlations	.414606	.278588	.424814	.184600	.269694					
Range of correlations	.192	.310	.389	.417	.425					
	Average	inter-item corre	lations between	subscales						
Emotional wellbeing (+)	_									
Emotional wellbeing (-)	.399									
Functioning (specific)	.368	.328	_							
Functioning (general)	.298	.274	.325							
Supportive relationships	.341	.324	.368	.271	_					
	Sqı	uared correlation	is between subsc	cales						
Emotional wellbeing (+)	_				_					
Emotional wellbeing (-)	.159									
Functioning (specific)	.135	.108	_							
Functioning (general)	.089	.075	.106	_						
Supportive relationships	.116	.105	.135	.073	_					

Standard errors for skewness and kurtosis were 0.060 and 0.120, respectively.

In order to compute descriptive statistics and discriminant validity, the wellbeing items were rescaled into a 1-5 scale. Subscales were constructed by averaging their rescaled defining items. Based on the CFA results for the full sample (Figure 5), the AVE was computed for each subscale. With the exceptions of the general functioning and the supportive relationships subscales, the other three subscales demonstrated adequate convergent validity (AVE above or around .50). The squared correlations between subscales were smaller than the AVE estimates, indicating adequate discriminant validity. The average inter-item correlations of the subscales were within the recommended range for unidimensionality (.15-.5). The individual inter-item correlations clustered well around their respective mean values

Fig. 5 Standardized solution for the model with 5 first-order correlated factors and without cross-loading items based on CFA analysis performed on the full sample of Poland (N = 1,896). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices: $\chi^2/df = 5.82$, CFI = .937, TLI = .925, RMSEA (90% CI) = .050 (.048-.053).

as indicated by their range. As average inter-item correlations between subscale items were less than the respective average correlations within-subscale values, all subscales were justified. All five subscales were reliable with composite reliability values ranging from .686 to .915 (above or around .70). Therefore, the analysis produced three reliable and valid subscales and two — the general functioning and the supportive relationships subscales — reliable but of problematic convergent validity.

Results – **all 16 countries.** Based on the data screening of both half-samples for unengaged responses and outliers, it was decided to include all cases in the analysis. Consequently, only cases with missing values on all items were excluded from the analysis: one case in Denmark, Spain and the UK; two in Portugal; three in Ireland; four in Norway and Slovenia; five in Poland; six in Germany, Hungary and the Russian Federation; seven in France; 16 in Sweden; and 36 in Switzerland.

EFA results. In every country, respondents had used the full range of possible responses for all items. However, the responses were mainly clustered at the higher end of their respective scales, indicating the presence of ceiling effects ranging well above 1-15%. Non-normality was not severe for any item (skewness>2; kurtosis>7). Several items were rejected from the analysis based on the criterion of corrected itemtotal correlations < .30. EFA was performed with robust weighted least squares of the polychoric correlation matrix computed from the first half-samples and geomin rotation was applied. In every country, six different models were tested with one to six factors. Based on the initial EFA results, items with loadings < .30 were excluded from the analysis. Also, factors with only two items having salient loadings were eliminated from the analysis as poorly defined. Table 22 lists the items rejected from the analysis for each country.

As shown, from four (Denmark) to 15 items (Spain, Switzerland) were rejected. All the items defining evaluative wellbeing (two items) and emotional wellbeing (six items) were retained in the analysis everywhere except in Spain (Evwb1 and Evwb2 omitted) and Finland (Emwb3 and Emwb4 omitted) and therefore performed quite well overall. Of the 14 items defining functioning, only three (Fun4-Fun6) performed well overall and the other items were rejected from one to 15 countries' half-samples: Fun1 (seven countries); Fun2 (14 countries); Fun3 (two countries); Fun7 (one country); Fun 8 (four countries); Fun9 (one country); Fun10 (four countries); Fun11 (one country); Fun12 (eight countries); Fun13 (seven

countries); Fun14 (nine countries). The four items defining vitality performed well overall since only two items were excluded from the analyses of any half-samples: Vi1 in Portugal and Vi2 in Norway. All five items defining community wellbeing were rejected in nine countries' half-samples (Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland and the UK). Each item of the community wellbeing dimension was excluded in more than half of the countries' half-samples: Cowb1 (13 countries); Cowb2 (10 countries); Cowb3 (13 countries); Cowb4 (14 countries); Cowb5 (16 countries). Only one item (Sur4) of the supportive relationships dimension performed well overall: Sur1 was rejected in 15 countries, Sur2 in five and Sur3 in six.

Table 22 Items rejected from the analysis: European Social Survey, 2012

		Subscale	
		Community	Supportive
Country	Functioning	Wellbeing	relationships
Belgium	Fun2, Fun8, Fun13, Fun14	Cowb1*, Cowb2*, Cowb3*, Cowb5*	
Denmark	Fun1	Cowb4, Cowb5*	Sur1*
Finland ^a	Fun2, Fun12-Fun14	Cowb3*, Cowb4*, Cowb5*	Sur1*
France	Fun2*, Fun8, Fun12, Fun14	Cowb1*, Cowb3-Cowb5*	Sur1*, Sur2-Sur3
Germany	Fun1, Fun2, Fun8, Fun10*	Cowb1*, Cowb3*, Cowb4*, Cowb5*	Sur1*
Hungary	Fun2*, Fun12, Fun13	Cowb5*	Sur1*
Ireland	Fun1, Fun2, Fun12, Fun13	Cowb1*, Cowb4, Cowb5	Sur1*, Sur3
Netherlands	Fun2, Fun3, Fun8, Fun10*	Cowb1, Cowb2, Cowb3*,	Sur1*
		Cowb4*, Cowb5*	
Norway ^b	Fun1, Fun12	all 5 items*	Sur1*, Sur2-Sur3
Poland	Fun2, Fun13, Fun14	all 5 items*	Sur1*
Portugal ^b	Fun1-Fun3, Fun13, Fun14	all 5 items*	Sur1*
Slovenia	Fun2, Fun12, Fun14	all 5 items*	Sur1*, Sur2-Sur3
Spain ^c	Fun2, Fun10*, Fun12-Fun14	all 5 items*	Sur1* Sur2-Sur3*
Sweden	Fun2,* Fun14	Cowb1*, Cowb2*, Cowb3*,	Sur1*
		Cowb4, Cowb5*	
Switzerland	Fun1*, Fun2, Fun7, Fun9*,Fun10,	Cowb1*, Cowb2*, Cowb3*,	Sur1*
	Fun11*, Fun12,* Fun13, Fun14	Cowb4, Cowb5	
UK	Fun1, Fun2, Fun12, Fun14	Cowb1, Cowb2, Cowb3*,	Sur1*, Sur2-Sur3
		Cowb4*, Cowb5*	

^a Items Emwb3, Emwb4 were rejected from the emotional wellbeing dimension for Finland.

Table 23 presents the final EFA results. Adequate model fit was obtained for eight half-samples (Belgium, Denmark, France, Germany, Norway, Spain, Sweden

^bItems Vi2 and Vi1 were rejected from the vitality dimension based on the criterion of corrected-itemtotal correlations <.30 for Norway and Portugal, respectively.

^cItems Evwb1, Evwb2 were rejected from the evaluative wellbeing dimension for Spain.

^{*}Items rejected based on the criterion of corrected-item-total correlations <.30.

and Switzerland) and acceptable model fit for eight half-samples (Finland, Hungary, Ireland, Netherlands, Poland, Portugal, Slovenia and the UK).

Table 23 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix (geomin rotation) on the first half-sample of each country: Goodness-of-fit indices

Country	n	Items	no of factors	χ^2/df	CFI	TLI	RMSEA (90% CI)
Belgium	934	27	5	3.15	.950	.923	.048 (.044052)
Denmark	825	31	6	3.17	.920	.873	.051 (.048055)
Finland	1,098	25	5	5.30	.913	.859	.063 (.059066)
France	984	24	5	2.96	.961	.935	.045 (.040049)
Germany	1,479	26	4	5.57	.915	.878	.056 (.053059)
Hungary	1,007	30	6	5.14	.920	.871	.064 (.061067)
Ireland	1,314	26	5	5.93	.929	.888	.061 (.058065)
Netherlands	922	25	4	4.46	.931	.900	.061 (.057065)
Norway	812	24	5	3.57	.932	.886	.057 (.051061)
Poland	949	26	5	4.14	.939	.903	.058 (.054062)
Portugal	1,075	23	4	5.52	.932	.897	.065 (.061069)
Slovenia	628	24	4	3.28	.937	.907	.060 (.055066)
Spain	943	20	4	3.26	.976	.960	.049 (.044055)
Sweden	923	27	5	3.37	.947	.918	.051 (.047055)
Switzerland	746	20	4	3.25	.957	.929	.055 (.049061)
UK	1,143	23	4	6.01	.931	.895	.066 (.062070)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered adequate if χ^2/df < 3, CFI and TLI values greater than or close to .95 and RMSEA \leq .06 with the 90% CI upper limit \leq .06. Model fit is considered acceptable if χ^2/df < 3 CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.

EFA resulted variously in four, five and six factors solutions (Table 23). The corresponding wellbeing factors and items are presented according to their factor loadings in Table 24. The factors were labeled based on their dominant defining items as follows: Evaluative wellbeing, emotional wellbeing, positive emotional wellbeing, negative emotional wellbeing, general functioning, specific functioning, personal functioning, vitality, community wellbeing and supportive relationships. However, the items comprising a factor differ among countries. Only the specific functioning factor defined by three items (Fun4-Fun6) is the same in ten half-samples: Belgium, Denmark, Finland, France, Germany, Netherlands, Norway, Slovenia, Spain and Sweden.

 $\textbf{Table 24} \ \ \textbf{The wellbeing factors and items presented according to their factor loadings: European Social Survey, 2012}$

Country	Wellbeing (WB) factors	Items
BE	Evaluative WB	Evwb2, Emwb4, Evwb1, Emwb3
	Vitality	Vi1, Emwb2, Vi3, Emwb1, Vi2, Emwb5, Sur4, Emwb6, Vi4
	Functioning specific	Fun5, Fun4, Fun6
	Functioning general	Fun10, Fun11, Fun7, Fun3, Fun9, Fun12, Fun1
	Supportive relationships	Sur3, Sur2, Cowb4, Sur1
DK	Emotional WB	Emwb2,Emwb5,Emwb1,Emwb6,Vi3,Sur4,Vi1,Vi4,Vi2,Emwb3
	Functioning specific	Fun5, Fun4, Fun6
	Evaluative WB	Evwb2, Sur3, Emwb4, Evwb1, Fun8, Sur2
	Functioning general	Fun11, Fun9, Fun12, Fun13, Fun14
	Functioning personal	Fun7, Fun3, Fun10, Fun2
	Community WB	Cowb2, Cowb1, Cowb3
FI	Emotional WB positive	Emwb5, Emwb6, Vi2
	Functioning specific	Fun5, Fun6, Fun4
	Evaluative WB	Evwb2, Cowb2, Evwb1, Cowb1, Sur2, Sur3, Fun8
	Emotional WB negative	Emwb2, Vi3, Vi1, Vi4, Emwb1, Sur4
	Functioning general	Fun7, Fun11, Fun3, Fun10, Fun9, Fun1
FR	Evaluative WB	Evwb1, Evwb2, Cowb2
	Emotional WB negative	Emwb2, Emwb1, Vi1, Emwb5, Vi2, Sur4, Vi3, Emwb6, Fun13
	Emotional WB positive	Emwb4, Emwb3, Vi4
	Functioning specific	Fun5, Fun6, Fun4
	Functioning general	Fun10, Fun3, Fun11, Fun7, Fun1, Fun9
DE	Evaluative WB	Evwb2, Evwb1, Sur3, Sur2, Cowb2
	Emotional WB	Emwb1, Emwb2, Emwb5, Emwb6, Vi1, Emwb3, Sur4, Vi2,
		Vi3, Vi4, Emwb4
	Functioning specific	Fun4, Fun5, Fun6
	Functioning general	Fun11, Fun9, Fun3, Fun7, Fun13, Fun12, Fun14
HU	Emotional WB	Emwb3, Emwb4, Vi4, Emwb6
	Vitality	Vi1, Vi2, Emwb2, Emwb1, Vi3, Emwb5, Sur4
	Functioning specific	Fun5, Fun4, Fun6, Fun7
	Functioning general	Fun9, Fun11, Fun1, Fun3, Fun8, Fun10, Evwb1, Fun14
	Community WB	Cowb1, Cowb3, Cowb2
	Supportive relationships	Sur3, Sur2, Cowb4, Evwb2
IE	Emotional WB	Emwb4, Emwb3, Emwb6, Vi4
	Functioning specific	Fun5, Fun6, Fun4, Fun8, Sur2, Fun14
	Vitality	Vi1, Emwb1, Vi3, Vi2, Emwb2, Emwb5, Sur4
	Functioning general	Fun9, Fun3, Fun11, Fun7, Fun10
	Community WB	Cowb2, Cowb3, Evwb1, Evwb2
NL	Vitality	Vi1, Emwb1, Emwb2, Vi3, Sur4, Vi2, Emwb5, Vi4, Emwb3,
		Emwb6, Evwb1
	Evaluative WB	Emwb4, Evwb2, Sur3, Sur2
	Functioning specific	Fun5, Fun4, Fun6
	Functioning general	Fun9, Fun11, Fun1, Fun12, Fun14, Fun13
NO	Evaluative WB	Evwb2, Evwb1, Fun8
	Emotional WB negative	Emwb2, Emwb5, Vi1, Emwb1, Sur4, Vi3, Vi4, Fun14
	Emotional WB positive	Emwb3, Emwb4, Emwb6
	Functioning specific	Fun5, Fun6, Fun4
	Functioning general	Fun10, Fun11, Fun7, Fun13, Fun9, Fun3, Fun2
PL	Emotional WB positive	Emwb4, Emwb3, Emwb6, Vi4
	Emotional WB negative	Emwb1, Emwb2, Vi1, Emwb5, Vi3, Sur4, Vi2
	Functioning specific	Fun5, Fun4, Fun6, Fun8
	Functioning general	Fun10, Fun11, Fun7, Fun3, Fun9, Fun1, Fun12
	Supportive relationships	Sur2, Evwb2, Sur3, Evwb1

Table 24 (continued)

Country	Wellbeing (WB) factors	Items				
PT	Evaluative WB	Evwb1, Evwb2, Fun9, Fun8, Fun3				
	Emotional WB	Emwb1, Vi3, Emwb2, Emwb5, Vi2, Sur4, Emwb6, Fun13, Fun12				
	Functioning specific	Fun5, Fun4, Fun6, Sur2 Sur3				
	Functioning general	Fun10, Fun7, Fun11, Vi4				
SI	Emotional WB positive	Emwb3, Emwb4, Evwb1, Evwb2, Fun8, Fun3, Fun1				
	Emotional WB negative	Emwb5, Vi3, Vi1, Emwb1, Emwb2, Vi2, Sur4, Vi4, Emwb6, Fun13				
	Functioning specific	Fun5, Fun6, Fun4				
	Functioning general	Fun9, Fun10, Fun11, Fun7				
ES	Emotional WB negative	Emwb1, Vi3, Emwb2, Emwb5, Vi2, Vi1, Sur4,				
	Functioning specific	Fun4, Fun5, Fun6				
	Emotional WB positive	Emwb3, Emwb4, Vi4, Emwb6				
	Functioning general	Fun1, Fun3, Fun8, Fun11, Fun9, Fun7				
SE	Evaluative WB	Evwb2, Evwb1, Fun8, Sur2, Sur3				
	Emotional WB negative	Emwb1, Emwb5, Emwb2, Vi1, Sur4, Vi2, Emwb6, Fun12, Fun13, Vi3				
	Emotional WB positive	Emwb3, Emwb4, Vi4				
	Functioning general	Fun11, Fun10, Fun3, Fun7, Fun9, Fun1				
	Functioning specific	Fun6, Fun5, Fun4				
CH	Evaluative WB	Evwb2, Evwb1, Sur2, Sur3				
	Emotional WB negative	Emwb1, Sur4, Emwb5, Emwb2, Vi3, Vi3				
	Emotional WB positive	Emwb3, Emwb4, Vi4, Emwb6, Vi1				
	Functioning	Fun4, Fun5, Fun6, Fun3, Fun8				
GB	Emotional WB positive	Emwb3, Emwb4, Evwb1, Evwb2				
	Emotional WB negative	Emwb2, Vi1, Vi3, Emwb1, Emwb5, Sur4, Vi2, Emwb6,				
	-	Vi4, Fun13				
	Functioning specific	Fun5, Fun4, Fun6, Fun8				
	Functioning general	Fun3, Fun9, Fun11, Fun7, Fun10				

Cowb = community wellbeing; Emwb = emotional wellbeing; Evwb = evaluative wellbeing; Fun = functioning; Sur = supportive relationships; Vi = vitality.

CFA results. The structure indicated by EFA as providing the best model for each country was validated by performing CFA on the second half-samples (Table 25). These analyses produced models with adequate fit for 14 countries and acceptable model fit for Portugal and Slovenia. Therefore, the structure identified by EFA was supported by the CFA results. The models of France and Poland had no cross-loading items. The models of Belgium, Norway, Portugal, Spain and Switzerland included a single cross-loading item. Two cross-loading items were required in the models of Finland and Germany, four in Denmark, Ireland, Slovenia and the UK, five in the Netherlands and seven in Hungary.

Table 25 Confirmatory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix on the second half-sample of each country: Goodness-of-fit indices

Country	n	Structure (no of cross-loading items)	χ^2/df	CFI	TLI	RMSEA (90% CI)
Belgium	935	5 first-order correlated factors (1)	3.36	.914	.902	.050 (.047054)
Denmark	825	6 first-order correlated factors (4)	3.02	.893	.879	.050 (.046053)
Finland	1,099	5 first-order correlated factors (2)	3.77	.921	.908	.050 (.047054)
France	984	5 first-order correlated factors (0)	3.57	.926	.914	.051 (.047055)
Germany	1,479	4 first-order correlated factors (2)	4.25	.934	.922	.047 (.044050)
Hungary	1,007	6 first-order correlated factors (7)	4.27	.899	.880	.057 (.054060)
Ireland	1,314	5 first-order correlated factors (4)	3.72	.945	.933	.045 (.042049)
Netherlands	923	4 first-order correlated factors (5)	3.52	.936	.924	.052 (.049056)
Norway	812	6 first-order correlated factors (1)	3.65	.896	.875	.057 (.053061)
Poland	947	5 first-order correlated factors (0)	3.75	.926	.914	.054 (.050057)
Portugal	1,076	4 first-order correlated factors (1)	4.66	.939	.927	.058 (.055062)
Slovenia	629	4 first-order correlated factors (4)	3.16	.922	.908	.059 (.054063)
Spain	945	4 first-order correlated factors (1)	3.56	.955	.947	.052 (.047057)
Sweden	924	5 first-order correlated factors (4)	3.09	.938	.928	.048 (.044051)
Switzerland	747	5 first-order correlated factors (1)	3.08	.945	.933	.053 (.047058)
UK	1,143	4 first-order correlated factors (4)	3.59	.949	.937	.048 (.044051)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered adequate if $\chi^2/df < 3$, CFI and TLI values greater than or close to .95 and RMSEA \leq .06 with the 90% CI upper limit \leq .06. Model fit is considered acceptable if $\chi^2/df < 3$, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.

Subscale construction and assessment. Subscales were constructed by averaging their rescaled defining items based on the full samples. In Table 26, composite reliability, convergent and discriminant validity of the wellbeing subscales are presented for each country. Most of the reliability values were above or around .70, showing that the analysis produced reliable wellbeing subscales. All subscales were reliable in Finland, France, Hungary, Norway, Poland, Spain, Sweden and Switzerland. Only a single wellbeing subscale was not reliable for the samples of Belgium (supportive relationships), Denmark (personal functioning), Germany (emotional wellbeing), Ireland (community wellbeing), the Netherlands (evaluative wellbeing), Portugal, Slovenia and the UK (general functioning in each case). Relatively few of the wellbeing subscales demonstrated adequate convergent validity (AVE values above and around .50): one in Germany and the Netherlands; two in Belgium, Denmark, Finland, Portugal, Slovenia, Sweden and the UK; three in France, Ireland, Norway, Poland, Spain and Switzerland; and five in Hungary. However, all the wellbeing subscales exhibited adequate evidence of discriminant validity since the squared correlations between subscales were less than their AVE estimates.

Table 26 Composite reliability and convergent and discriminant validity of the wellbeing subscales based on the full sample of each country: European Social Survey, 2012

		Composite	Convergent	Discriminant validity					
Country	Subscale	Reliability	validity	I	II	III	IV	V	VI
BE	EVWB (I)	.808	.515	_					
	Vitality (II)	.860	.411	.114					
	FUN specific (III)	.883	.751	.155	.082				
	FUN general (IV)	.719	.272	.079	.057	.078	_		
	SUR (V)	.540	.283	.060	.046	.065	.032	_	
DK	EMWB (I)	.868	.405	_					
	FUN specific (II)	.883	.716	.077	_				
	EVWB (III)	.696	.294	.078	.125				
	FUN general (IV)	.706	.325	.082	.108	.084	_		
	FUN personal (V)	.572	.260	.063	.120	.069	.073	_	
	COWB (VI)	.748	.501	.059	.100	.067	.052	.046	_
FI	EMWB positive (I)	.748	.500	_					
	FUN specific (II)	.885	.720	.091	_				
	EVWB (III)	.765	.336	.072	.110				
	EMWB negative	.727	.324	.094	.086	.069	_		
	(IV)	•,, •,	.52 .	.07 .	.000	.007			
	FUN general (V)	.723	.306	.060	.107	.076	.063	_	
FR	EVWB (I)	.712	.474	_					
	EMWB negative (II)	.866	.424	.092	_				
	EMWB positive (III)	.755	.509	.117	.116	_			
	FUN specific (IV)	.908	.767	.106	.082	.137	_		
	FUN general (V)	.732	.316	.062	.068	.094	.094	_	
DE	EMWB (I)	.629	.358	_					
	EVWB (II)	.869	.383	.055	_				
	FUN specific (III)	.799	.573	.049	.067	_			
	FUN general (IV)	.698	.251	.039	.060	.066	_		
HU	EMWB (I)	.843	.573	_					
	Vitality (II)	.906	.585	.171	_				
	FUN specific (III)	.884	.667	.176	.184				
	FUN general (IV)	.765	.304	.130	.145	.187	_		
	COWB (V)	.812	.590	.097	.126	.129	.097	_	
	SUR (VI)	.812	.521	.128	.154	.210	.139	.100	_
IE	EMWB (I)	.876	.639	_					
	FUN specific (II)	.892	.580	.139	_				
	Vitality (III)	.916	.611	.180	.131	_			
	FUN general (IV)	.710	.337	.151	.148	.132	_		
	COWB (V)	.598	.277	.107	.125	.114	.098	_	
NL	Vitality (I)	.866	.380	_			.0,0		
. 12	EVWB (II)	.625	.310	.102	_				
	FUN specific (III)	.865	.683	.088	.134	_			
	FUN general (IV)	.687	.249	.068	.050	.058	_		
NO	EVWB (I)	.762	.517	.500	.050	.050			
1,0	EMWB negative (II)	.873	.467	.078	_				
	EMWB negative (II) EMWB positive (III)	.695	. 40 7 .446	.163	.067	_			
	FUN specific (IV)	.861	.676	.103	.051	.116	_		
	FUN specific (IV) FUN general (V)	.706	. 070 .261	.024	.031	.018	.024		
PL	EMWB positive (I)	.838	.568	.024	.019	.010	.024		
ıL	EMWB positive (I) EMWB negative (II)	.030 .900	.565	.159					

 Table 26 (continued)

		Composite	Convergent	Discriminant validity						
Country	Subscale	Reliability	validity	I	II	III	IV	V	VI	
PL	FUN specific (III)	.915	.730	.135	.108	_				
	FUN general (IV)	.760	.313	.089	.075	.106	_			
	SUR (V)	.686	.362	.116	.105	.135	.073	_		
PT	EVWB (I)	.776	.411	_						
	EMWB (II)	.887	.489	.055	_					
	FUN specific (III)	.862	.570	.049	.067					
	FUN general (IV)	.656	.332	.039	.060	.066	_			
SI	EMWB positive (I)	.795	.369	_						
	EMWB negative (II)	.902	.489	.118						
	FUN specific (III)	.925	.804	.166	.127	_				
	FUN general (IV)	.658	.334	.131	.102	.187	_			
ES	EMWB positive (I)	.908	.590	_						
	FUN specific (II)	.914	.781	.138						
	EMWB negative (III)	.783	.491	.161	.146	_				
	FUN general (IV)	.714	.301	.091	.108	.091	_			
SE	EVWB (I)	.741	.403	_						
	EMWB negative (II)	.842	.359	.085						
	EMWB positive (III)	.863	.677	.154	.108					
	FUN general (IV)	.771	.364	.111	.074	.120	_			
	FUN specific (V)	.842	.644	.139	.069	.155	.110	_		
CH	EVWB (I)	.657	.336	_						
	EMWB negative (II)	.811	.423	.077	_					
	EMWB positive (III)	.827	.817	.096	.105	_				
	FUN (IV)	.711	.332	.061	.045	.066	_			
GB	EMWB positive (I)	.756	.450	_						
	EMWB negative (I)	.882	.432	.120	_					
	FUN specific (III)	.830	.586	.221	.100					
	FUN general (IV)	.614	.261	.132	.082	.169	_			

COWB = community wellbeing; EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = functioning; SUR = supportive relationships. Reliability and convergent validity values above and around .70 and .50, respectively, are in boldface. In order to compute discriminant validity, the items were rescaled into a 1-5 scale.

Table 27 presents univariate statistics (mean and standard deviation) of the wellbeing subscales. It should be pointed out that these subscales cannot be used for cross-national comparisons, because they are defined by different items. Only the specific functioning wellbeing subscale defined by the same items may be compared across eleven countries: Belgium, Denmark, Finland, France, Germany, Netherlands, Norway, Slovenia, Spain and Sweden.

Table 27 Univariate statistics of the wellbeing subscales based on the full sample of each country: European Social Survey, 2012

				Subscales					
	Evaluative	Emotional wellbeing		Functioning				Community	Supportive
	wellbeing	Positive	Negative	General	Specific	Personal	Vitality	wellbeing	relationships
Country	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Belgium	3.88 (0.67)			3.86 (0.52)	4.04 (0.57)		3.97 (0.63)		3.69 (0.49)
Denmark	4.25 (0.47)	4.22	(0.56)	3.83 (0.61)	4.14 (0.54)	4.04 (0.58)		3.74 (0.59)	
Finland	4.04 (0.41)	3.98 (0.71)	4.27 (0.55)	3.96 (0.49)	4.08 (0.49)				
France	3.58 (0.66)	3.59 (0.91)	3.91 (0.70)	3.86 (0.59)	3.96 (0.59)				
Germany	4.05 (0.44)	4.02	(0.59)	3.83 (0.48)	4.07 (0.58)				
Hungary		3.18	(0.86)	3.53 (0.66)	3.94 (0.78)		3.84 (0.81)	2.98 (0.77)	3.92 (0.65)
Ireland		3.60	(0.89)	3.95 (0.57)	3.81 (0.59)		4.36 (0.68)	3.53 (0.63)	
Netherlands	4.11 (0.53)		3.77 (0.46)	4.10 (0.463		4.04 (0.60)			
Norway	4.20 (0.52)	3.81 (0.78)	4.29 (0.45)	3.89 (0.39)	3.77 (0.61)				
Poland		3.45 (0.96)	4.26 (0.74)	3.89 (0.52)	4.09 (0.64)				4.10 (0.59)
Portugal	3.49 (0.57)	3.92	(0.65)	3.75 (0.58)	3.89 (0.61)				
Slovenia		3.85 (0.59)	4.15 (0.59)	4.00 (0.54)	3.91 (0.72)				
Spain	3.90 (0.76)	3.16 (0.97)	4.07 (0.59)	3.79 (0.569)	4.08 (0.67)				
Sweden	4.23 (0.47)	3.52 (0.94)	4.17 (0.58)	4.01 (0.45)	3.76 (0.65)				
Switzerland	4.33 (0.44)	3.77 (0.76)	4.34 (0.57)	4.00 ((0.44)				
UK		3.82 (0.75)	3.90 (0.65)	3.82 (0.54)	3.84 (0.63)				

All items were rescaled into a 1-5 scale. Subscales were constructed by averaging their rescaled defining items.

Discussion and Conclusions

In order to demonstrate the importance of items' level of measurement in carrying out a psychometric validation of a multidimensional construct (theory testing) we used Schwartz's human values scale which is comprised of pseudo-interval items and the 2012 ESS measurement of personal and social wellbeing which is comprised of both ordinal and pseudo-interval items.

The analysis was based on the European Social Survey Round 1 to Round 7 Data (2002-2014) for the following 16 countries: Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland and the UK. These countries were selected from the 29 participants in Round 6 because they had also participated in Round 3 (2006), when the wellbeing module was first included in the questionnaire. In parallel, these 16 countries had also participated in all Rounds of the ESS under consideration.

It is central to scaling theory that measurements of constructs must be theoretically rigorous, reliable and valid (Dolan et al., 2011; see also Griffin, 1986). The investigation of the dimensionality of the scales and the assessment of their psychometric properties by applying the traditional approaches of EFA and CFA to randomly split half-samples did not confirm the documented theoretical structures. In both cases, the analysis produced reliable and valid subscales for each country. On the one hand, the analysis indicated how the Schwartz's human values items can be combined into measures providing a better interpretation of values to be used in further analyses by social researchers. On the other hand, the analysis of wellbeing measurement indicated "how items can be combined into the most informative summary measures of well-being" (Huppert et al., 2009, p. 306).

This dissertation has both strengths and limitations. The demonstration of the complex sequence of decisions required in carrying out EFA and CFA based on current theory and practice should be considered among the strengths of the study. Before performing EFA for the analysis of Schwartz's human values scale, item analysis was carried out to investigate their distributional properties and decide on their inclusion in further analysis based on criteria recommended in the literature. In performing EFA, recommended methods were used for factor extraction, selection and rotation. In performing CFA, the appropriate method for model estimation was

applied, multiple fit indices for model evaluation were used and modification and specification searches were performed. The items defining hedonism, achievement, benevolence and one of the two items of the power dimension performed well across countries. More problematic were the items defining tradition, the other item of the power dimension and one of the two items of the conformity dimension.

EFA resulted in a two-factor solution for 41 cases, a three-factor solution for 51 cases and a four-factor solution for 20 cases. The factors were labeled based on their dominant defining items as follows: Openness to change, self-transcendence, self-enhancement, conservation, achievement, benevolence, hedonism, power, security and stimulation. However, the items comprising a factor differed among countries. Only a single factor (self-enhancement) defined by three items was the same in 32 cases.

The subscales were constructed by averaging their defining items. Based on Cronbach's alpha coefficient, all the Schwartz's human values subscales were reliable for 227 cases and based on both Cronbach's alpha and split-half coefficients, 36 cases were reliable. Only a few subscales demonstrated adequate convergent validity. However, all the subscales exhibited adequate evidence of discriminant validity.

In the case of 2012 ESS measurement of wellbeing, a simple transformation was proposed for rescaling the response categories into a 1-5 scale to deal with the crucial methodological issue of different numbers of response categories. The subscales were constructed by averaging their rescaled defining items based on their factor loadings, as is normally the case in most scaling research. Although this simple transformation may not be appropriate for ordinal items, it did produce subscale scores for each country that facilitate interpretation.

Based on initial EFA findings, items with small factor loadings on every factor (i.e., low communalities) and factors defined by only two items were eliminated from the analysis. Although the latter could also be done for factors defined by three items (Brown, 2015), it was decided to retain them because in most cases they turned out to provide reliable and valid subscales. These outcomes presented evidence on the performance of the items for each country. The items defining the evaluative wellbeing, emotional wellbeing and vitality dimensions performed well across countries. More problematic were the items defining the community wellbeing

dimension and certain items of the functioning dimension. Only a single item of the supportive relationships dimension performed well over all samples.

EFA resulted in a four-factor solution for seven countries (Germany, the Netherlands, Portugal, Slovenia, Spain, Switzerland and the UK), a five-factor solution for seven countries (Belgium, Finland, France, Ireland, Norway, Poland and Sweden) and a six-factor solution for two countries (Denmark and Hungary). The factors were labeled based on their dominant defining items as follows: Evaluative wellbeing, emotional wellbeing, positive emotional wellbeing, negative emotional wellbeing, general functioning, specific functioning, personal functioning, vitality, community wellbeing and supportive relationships. However, the items comprising a factor differed across countries. Only a single factor (specific functioning) defined by three items was the same in ten countries (Belgium, Denmark, Finland, France, Germany, the Netherlands, Norway, Slovenia, Spain and Sweden). The CFA findings supported the structures identified by EFA.

The subscales were constructed by averaging their rescaled defining items. All the wellbeing subscales were reliable for eight countries (Finland, France, Hungary, Norway, Poland, Spain, Sweden and Switzerland). In the remaining eight counties (Belgium, Denmark, Germany, Ireland, the Netherlands, Portugal, Slovenia and the UK), a single wellbeing subscale was not reliable. Only a certain number of the wellbeing subscales demonstrated adequate convergent validity. However, all exhibited adequate evidence of discriminant validity. Although, the labeling of the subscales (factors) is consistent across countries, comparing mean subscale scores cross-nationally is not justified without evidence of partial scalar invariance (see for example, Missine et al., 2014). Given that the subscales were defined by different items among countries, such evidence would be hard to come by.

Despite its strengths, the following limitations should be considered in drawing conclusions from this study. First, the Schwartz's human values items with six response categories were considered as pseudo-interval and the appropriate methods for that level of measurement were used. However, if they were to be considered as ordinal then the polychoric correlation matrix of associations should be employed, as was done for the wellbeing items that were considered as both ordinal and pseudo-interval (Brown, 2015). Second, because the theoretical structure of Schwartz's human values scale was defined in ten dimensions, nine of which were

comprised of only two items, it was decided not to eliminate from the analysis factors determined by two items as had been done in the case of the wellbeing scale (Brown, 2015). Furthermore, models with only first-order factors were tested for CFA; a model with second-order factors might provide better fit indices and should be tested in future research. Third, although the construct validity and reliability of the subscales were assessed, there are other types of validity (criterion-related, predictive, concurrent, content, face) and reliability (test-retest, alternate forms method) that should be considered in future studies. Fourth, many analytical decisions were restricted by the software used in the case of Schwartz's human values scale. Although, SPSS is the most widely used software, it does not provide the option of Direct maximum likelihood which is considered to be the best method for dealing with missing data under the assumption of MCAR or MAR (Brown, 2015; Tabachnick and Fidell, 2007) and mean substitution was applied which results in loss of variance (Tabachnick and Fidell, 2007; see also Enders, 2010). Fifth, although Cronbach's coefficient alpha is widely used for estimating scale reliability its problems are well known and composite reliability (as was used in the wellbeing subscales analysis) or McDonald's Omega should be used instead (see, for example: Green & Yang, 2009; Revelle & Zinbarg, 2009; Zieger & Hagemann, 2015). Sixth, although the problem of the different number of response categories was dealt with in the construction and analysis of the wellbeing subscales, other methods proposed in the literature for transforming response categories as discussed by de Jonge et al. (2014) and Batz et al. (2016) could be considered in future research.

In spite of these limitations, the findings clearly did not confirm the theoretical structure of Schwartz's human values and the wellbeing scales, emphasizing the need to validate the original theoretical structure of multidimensional constructs before application. The analysis provided evidence on the performance of the items in each case. Although, the labeling of the subscales was consistent across countries and over time (Schwartz's human values), comparing mean subscale scores cross-nationally or over time (Schwartz's human values), is not justified without evidence of partial scalar invariance. Given that the subscales were defined by different items among countries and over time (Schwartz's human values), such evidence would be hard to come by since only the self-enhancement subscale (Schwartz's human values) was

defined by the same three items in 32 half-samples and of the wellbeing scale only the specific functioning subscale was defined by the same three items in ten half-samples.

This methodological study contributes to the growing research on the measurement of human values and wellbeing by providing reliable and valid subscales for each country that can be used by social researchers in their analyses. The methodology presented may be easily applied to other Likert-type scales or scales using both ordinal and pseudo-interval items which are defined as multidimensional by theory. In the case of theory development, the preliminary considerations and the sequence of decisions for performing EFA may be applied with the appropriate modifications.

References

- Abdallah, S., & Mahony, S. (2012). *Stocktaking report on subjective wellbeing*.

 Retrieved from: http://www.eframeproject.eu/fileadmin/Deliverables/
 Deliverables2.1.pdf
- Allin, P., & Hand, D. (2014). The wellbeing of nations: Meaning, motive and measurement. New York: Wiley.
- Allin, P., & Hand, D. J. (2017). New statistics for old? measuring the wellbeing of the UK. *Journal of the Royal Statistical Society, Series A*, 180(1), 3-43.
- Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage Publications.
- Anagnostopoulos, F., Yfantopoulos, J., Moustaki, I., & Niakas, D. (2013). Psychometric and factor analytic evaluation of the 15D health-related quality of life instrument: the case of Greece. *Quality of Life Research*, 22(8), 1973-1986. doi: 10.1007/s11136-013-0348-2
- Barni, D., & Knafo, A. (2012). Value systems of fathers, mothers and adolescents: do parents and their children construe basic values in the same way? *Survey Research Methods*, 6(1), 3-11.
- Bartholomew, D. J., Steele, F, Moustaki, I., & Galbraith, J. (2008). *Analysis of multivariate social science data*. London: Chapman & Hall/CRC.
- Batz, C., Parrigon, S., & Tay, L. (2016). The impact of scale transformations on national subjective well-being scores. *Social Indicators Research*, 129(1), 13–27.
- Blalock Jr, H. M. (1979). *Social Statistics* (revised second edition). New York: McGraw-Hill.
- Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
- Brown, T. A. (2015). *Confirmatory factor analysis for applied research* (2nd edition). New York: The Guilford Press.
- Cabrera-Nguyen, P. (2010). Author guidelines for reporting scale development and validation results. *Journal of the Society for Social Work and Research*, 1(2), 99-103.
- Carey, S. (Ed.) (2000). *Measuring adult literacy: The International Adult Literacy Survey (IALS) in the European context*. London: Office for National Statistics.

- Carifio, J., & Perla, R. J. (2007). Ten common misunderstanding, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. *Journal of Social Sciences*, *3*(3), 106-116.
- Carifio, J., & Perla, R. J. (2008). Resolving the 50-year debate around using and misusing Likert scales. *Medical Education*, 42, 1150-1151.
- Carmines, E. G., & Zeller R. A. (1983). *Reliability and validity assessment* (sixth printing). USA: Sage Publications, Inc.
- Charalampi, A. (2014). Investigating the dimensionality of the Schwartz scale of human values: Evidence from the European Social Survey of 2002 for Greece and Slovenia (Master's thesis). Athens: Panteion University of Social and Political Sciences. Retrieved from http://pandemos.panteion.gr/ index.php? lang=el&op=record&type=cid&q=isMemberOf-cid:14,isMemberOfCollection -cid: 10&page=1&pid=iid:7632
- Charalampi, A, Michalopoulou, C., & Richardson, C. (2016). Investigating the structure of Schwartz's Human Values Scale. In J. R. Bozeman, T. Oliveira & C. H. Skiadas (Eds), Stochastic and Data Analysis Methods and Applications in Statistics and Demography (pp. 589-609). ISAST.
- Cieciuch, J., & Davidov, E. (2012). A comparison of the invariance properties of the PVQ-40 and the PVQ-21 to measure human values across German and Polish samples. *Survey Research Methods*, 6(1), 37-48.
- Cieciuch, J., Davidov, E., Vecchione, M., Beierlein, C., & Schwartz, S. H. (2014). The cross-national invariance properties of a new scale to measure 19 basic human values: A test across eight countries. *Journal of Cross-Cultural Psychology*, 45(5), 764-776. doi: 10.1177/0022022114527348
- Cieciuch, J., & Schwartz, S. H. (2012). The number of distinct basic values and their structure assessed by PVQ-40. *Journal of Personality Assessment*, 94(3), 321-328.
- Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. *Psychological Assessment*, 7(3), 309-319.
- Colwell, S. R. (2016). The composite reliability calculator, Technical Report. doi: 10.13140/RG.2.1.4298.088
- Datler, G., Jagodzinski, W., & Schmidt, P. (2013). Two theories on the test bench: Internal and external validity of the theories of Ronald Inglehart and Shalom

- Schwartz. *Social Science Research*, 42, 906-925. doi: 10.1016/j.ssresearch.2012.12.009
- Davidov, E., Schmidt, P., & Schwartz, S. H. (2008). Bringing values back in the adequacy of the European Social Survey to measure values in 20 countries. *Public Opinion Quarterly*, 72(3), 420-445.
- de Jonge, T., Veenhoven, R., & Arends, L. (2014). Homogenizing responses to different survey questions on the same topic: Proposal of a scale homogenization method using a reference distribution. *Social Indicators Research*, 117(1), 275–300.
- DeVellis, R. F. (2012). *Scale development: theory and applications* (third edition). USA: Sage Publications, Inc.
- Diener, E. (2000). Subjective well-being. The science of happiness and a proposal for a national index. *American Psychological Association*, 55(1), 34-43. doi: 10.1037//0003-066X.55.1.34
- Diener, E. Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. *Psychological Bulletin*, *125*(2), 276-302.
- Dolan, P., Layard, R., & Metcalfe, R. (2011). *Measuring subjective wellbeing for public policy: Recommendations on measures* (Report no.23). London: Centre for Economic Performance, The London School of Economics and Potilical Science.
- Dolan, P., & Metcalfe, R. (2012). Measuring subjective wellbeing: Recommendations on measures for use by national governments. *Journal of Social Policy*, 41(2), 409-427. doi: 10.1017/S0047279411000833
- Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.
- European Commission (2013). *Quality of life in Europe: Subjective well-being*. Luxembourg: Publications Office of the European Union.
- European Social Survey (2013). Round 6 module on personal and social wellbeing Final module in template. London: Centre for Comparative Social Surveys, City University London.
- European Social Survey (2014). *Weighting European Social Survey data*. Retrieved from: https://www.europeansocialsurvey.org/docs/methodology/ESS_weighting_data_1.pdf

- European Social Survey (2015). *Measuring and reporting on Europeans' wellbeing:*Findings from the European Social Survey. London: ESS ERIC. Retrieved from: https://www.europeansocialsurvey.org/docs/findings/ESS1-6_measuring _and_ reporting _europeans_wellbeing.pdf
- European Social Survey (n.d.a). *Core Questionnaire*. Retrieved from http://www.europeansocialsurvey.org/docs/methodology/core_ess_questionnaire/ESS_core_questionnaire_human_values.pdf
- European Social Survey (n.d.b). *Final Report: Sampling for the European Social Survey* [Round 1]. http://www.europeansocialsurvey.org/
- European Social Survey (n.d.c). Sampling for the European Social Survey- Round II:

 Principles and requirements. http://www.europeansocialsurvey.org/
- European Social Survey (n.d.d). *Round 3: Sampling guide*. http://www.europeansocialsurvey.org/
- European Social Survey Round 1 Data (2002). Data file edition 6.5. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- European Social Survey Round 2 Data (2004). Data file edition 3.5. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- European Social Survey Round 3 Data (2006). Data file edition 3.6. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- European Social Survey Round 4 Data (2008). Data file edition 4.4. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- European Social Survey Round 5 Data (2010). Data file edition 3.3. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- European Social Survey Round 6 Data (2012). Data file edition 2.3. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.

- European Social Survey Round 7 Data (2014). Data file edition 2.1. NSD Norwegian Centre for Research Data, Norway Data Archive and distributor of ESS data for ESS ERIC.
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-299.
- Feather, N. T. (1995). Values, valences, and choice: The influences of values on the perceived attractiveness and choice of alternatives. *Journal of Personality and Social Psychology*, 68(6), 1135-1151.
- Field, A. (2009). *Discovering statistics using SPSS* (third edition). London: Sage Publications Ltd.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.
- Galati, J. C., & Seaton, K. A. (2013). MCAR is not necessary for the complete cases to constitute a simple random subsample of the target sample. *Statistical Methods in Medical Research*, 25(4), 1527-1534. doi: 10.1177/0962280213490360
- Gaskin, J. (2016). Data screening. In: Gaskination's StatWiki. Retrieved from: http://statwiki.kolobkreations.com/index.php?title=Data_screening. Accessed 30 June 2016.
- Gillapsy Jr., J. A., Jackson, D. L., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. *Psychological Methods*, *14*(1), 6-23.
- Göb, R., McCollins, C., & Ramalhoto, M. F. (2007). Ordinal methodology in the analysis of Likert scales. *Quality & Quality*, 41(5), 601-626.
- Green, S. B., & Yang, Y. (2009). Commentary on coefficient alpha A cautionary tale. *Psychometrika*, 74(1), 121-135.
- Griffin, J. (1986). Well-being: Its meaning, measurement and moral importance.

 Oxford: Clarendon Press.
- Guttman, L. (1944). A basis for scaling quantitative data. *American Sociological Review*, 9(2), 139-150.

- Halleröd, B., & Seldén, D. (2013). The multi-dimensional characteristics of wellbeing how different aspects of wellbeing interact and do not interact with each other. *Social Indicators Research*, *113*(3), 807-825. doi: 10.1007/s11205-012-0115-8
- Harkness J. A., Villar A., & Edwards B. (2010). Translation, adaptation and design.
 In: J. A. Harkness, M. Braun, B. Edwards, T.P. Johnson, L. Lyberg, P. Ph. Mohler, B. E. Pennell, & T. W. Smith (Eds) Survey methods in multinational, multiregional, and multicultural contexts (pp. 117-140). Hoboken, NJ: Wiley.
- Harrison, E. (2016). Introduction. In E. Harrison, A. Quick, & S. Abdallah (Eds.), *Looking through the wellbeing kaleidoscope* (pp. 7-9). London: New Economics Foundation.
- Hayton, J. C., Allen, D. G, & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. *Organizational Research Methods*, 7(2), 191-205. doi: 10.1177/1094428104263675
- Hopman, M., Winter, M., & Koops, W. (2014). Analyzing the hidden curriculum: A method for the analysis of the values in youth care interventions. *Methodology*, *10*(1), 12-20. doi: 10.1027/1614-2241/a000063
- Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1), 1-55. doi: 10.1080/10705519909540118
- Huppert, F. A. (2009). Psychological well-being: Evidence regarding its causes and consequences. *Applied Psychology: Health and Well-Being*, 1(2), 137–164.
- Huppert, F. A., & Cooper, C. L. (Eds) (2014). Wellbeing: A complete reference guide volume VI. Interventions and policies to enhance wellbeing. West Sussex: Wiley Blackwell.
- Huppert, F. A., Marks, N., Clark, A., Siegrist, J., Stutzer, A., Vittersø, J., & Wahrendorf, M. (2009). Measuring well-being across Europe: Description of the ESS well-being module and preliminary findings. *Social Indicators Research*, 91(3), 301-315. doi: 10.1007/s11205-008-9346-0
- Huppert, F. A., & So, T. T. C. (2013). Flourishing across Europe: Application of a new conceptual framework for defining well-being. *Social Indicators Research*, *110*(3), 837-861. doi: 10.1007/s11205-011-9966-7
- Jamieson, S. (2004). Likert scales How to (ab)use them. *Medical Education*, 38(12), 1217-1218.

- Jeffrey, K., Abdallah, S., & Quick, A. (2015). Europeans' personal and social wellbeing: Topline results from round 6 of the European Social Survey. ESS

 Topline Result Series Issue 5. Retrieved from: http://www.europeansocialsurvey.org/docs/findings/ESS6_toplines_issue_5_ personal_and_social_wellbeing.pdf. Accessed 2 June 2016.
- Kalmijn, W. (2015). Conversion of measurement results. In R. Veenhoven (Ed.), World database of happiness. Rotterdam: Erasmus University Rotterdam. http://worlddatabaseofhappiness.eur.nl/hap_quer/hqi_fp.htm. Accessed 25 June 2016.
- Karim, J., Weisz, R., Bibi, Z., & Rehman, S. (2015). Validation of the eight-item Center for Epidemiologic Studies depression scale (CES-D) among older adults. *Current Psychology*, *34*(4), 681-692.
- Kish, L. (1994). Multi-population survey designs: Five types with seven shared aspects. *International Statistical Review*, 62(2), 167-186.
- Knoppen, D., & Saris, W. (2009). Do we have to combine values in the Schwartz' human values scale? A comment on the Davidov studies. *Survey Research Methods*, 3(2), 91-103.
- Kristoffersen, I. (2017). The metrics of subjective wellbeing data: An empirical evaluation of the ordinal and cardinal comparability of life satisfaction scores. *Social Indicators Research*, *130*(2), 845-865.
- Kuzon, W. M., Urbanchek, M. G., & McCabe., S. (1996). The seven deadly sins of statistical analysis. *Annals of Plastic Surgery*, *37*(3), 265-272.
- Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. *Practical Assessment, Research & Evaluation*, 12(2), 1-11.
- Levesque, R. (2012). Raynald's SPSS Tools [computer software]. http://www.spsstools.net. Accessed 5 February 2012.
- Levy, S., & Guttman, L. (1975). On the multivariate structure of wellbeing. *Social Indicators Research*, 2(3), 361-388.
- Levy, S., & Guttman, L. (1981). On the definition and varieties of attitude and wellbeing. *Social Indicators Research*, 10(2), 159-174.
- Likert, R. (1932). A technique for the measurement of attitudes. *Archives of Psychology*, 140, 5-55.

- Lilleoja, L., & Saris, W. E. (2014). Testing a new operationalization of the basic values on Estonian-and Russian-speaking subpopulations in Estonia. *Social Indicators Research*, *116*, 153-172. doi: 10.1007/s11205-013-0272-4
- Lilleoja, L., & Saris, W. E. (2015). Does correction for measurement error have an effect on the structure and comparability of basic human values? *Survey Research Methods*, *9*(3), 169-187. doi: 10.18148/srm/2015.v9i3.6203
- Maggino, F. (2014). Assessing the subjective wellbeing of nations. In W. Glatzer, L. Camfield, V. Møller, & M. Rojas (Eds), *Global handbook of quality of life:*Exploration of well-being of nations and continents (pp. 803-822). doi: 10.1007/978-94-017-9178-6_37
- Marsh, H. W., Hau, K. T, & Wen, Z. (2004). In search of golden rules: Comment on hypotheses-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. *Structural Equation Modeling*, 11(3), 320-341. doi: 10.1207/s15328007sem1103_2
- Michalopoulou, C. (2017). Likert scales require validation before application Another cautionary tale. *Bulletin de Méthodologie Sociologique*, 134(1), 5-23.
- Missine, S., Vandeviver, C., Van de Velde, S., & Bracke, P. (2014). Measurement equivalence of the CES-D 8 depression-scale among the ageing population in eleven European countries. *Social Science Research*, 46(July), 38-47.
- Moser, C., & Kalton, G. (1975). Survey methods in social investigation. London: Heinemann Educational Books.
- Muruyama, G., & Ryan, C. A. (2014). *Research methods in social relations* (eighth ed.). UK: Wiley Blackwell.
- Muthén, L. K., & Muthén, B. O. (1998-2012). *Mplus User's Guide (7th edition)*. Los Angeles, CA: Muthén & Muthén.
- New Economics Foundation (2009). *National accounts of well-being: Bringing real wealth onto the balance sheet*. London: NEF. Retrieved from: https://www.unicef.org/lac/National_Accounts_of_Well-being.pdf
- Norman, G. (2010). Likert scales, level of measurement and the "laws" of statistics. *Advances in Health Sciences Education Theory and Practice*, 15(5), 625-632.
- Nunnally, J. C., & Bernstein, I. H. (1994). *Psychometric theory*. New York: McGraw-Hill.

- O'Connor, B. P. (2000). SPSS and SAS programs for determing the number of components using parallel analysis and Velicer's MAP test. *Behavior Research Methods*, *Instruments & Computers*, 32(3), 396-402.
- Oppenheim, A. N. (1984). *Questionnaire design and attitude measurement*. London: Heinemann Educational Books.
- Panek, T. (2015). Subjective personal and social well-being in European countries. In P. B. Sztabiński, H. Domański, & F. Sztabiński (Eds.), *Hopes and anxieties in Europe: Six waves of the European Social Survey* (pp. 27-51). doi: 10.3726/978-3-653-04499-7
- Panek, T. (2015). Some methodological challenges of cross-nation social research: conceptual and measurement validity. In P. B. Sztabiński, H. Domański, & F. Sztabiński (Eds.), *Hopes and anxieties in Europe: Six waves of the European Social Survey* (pp. 99-120). doi: 10.3726/978-3-653-04499-7
- Patil, V. H., Singh, S. N., Mishra, S., & Donavan T. (2007). *Parallel analysis engine* to aid determining number of factors to retain [computer software]. Available from Instruction and Research Server, University of Kansas website: http://ires.ku.edu/~smishra/parallelengine.htm.
- Patil, V. H., Singh, S. N., Mishra, S., & Donavan T. (2008). Efficient theory development and factor retention criteria: A case for abandoning the "eigenvalue greater than one" criterion. *Journal of Business Research*, 61(2), 162-170.
- Potthoff, R. F., Tudor, G. E., Pieper, K. S., & Hasselblad, V. (2006). Can one assess whether missing data are missing at random in medical studies? *Statistical Methods in Medical Research*, 15, 213-234. doi: 10.1191/0962280206sm448oa
- Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173-184.
- Raykov T. (2007). Reliability if deleted, not "alpha if deleted": Evaluation of scale reliability following component deletion. *British Journal of Mathematical and Statistical Psychology*, 60(2), 201–216.
- Revelle, W. (2013). psych: Procedures for psychological, psychometric, and personality research. (R package version 1.0-95)

- Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega and the glb: Comments on Sijtsma. *Psychometrica*, 74(1), 145-154.
- Ruggeri, K., Garzon, E. G., Maguire, Á, Felicia A., & Huppert, F. A. (2016). Comprehensive psychological wellbeing. In E. Harrison, A. Quick, & S. Abdallah (Eds.) *Looking through the wellbeing kaleidoscope* (pp. 10-29). London: New Economics Foundation.
- Sagin, L., & Schwartz, S. H. (2000). Value priorities and subjective well-being: Direct relations and congruity effects. *European Journal of Social Psychology*, 30, 177-198.
- Schmitt, T. A. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. *Journal of Psychoeducational Assessment*, 29(4), 304-322. doi: 10.1177/0734282911406653
- Schwartz, S. H. (n.d.). *Computing Scores for the 10 Human values*. Retrieved from http://www.europeansocialsurvey.org/docs/methodology/ESS1_human_values _ scale.pdf
- Schwartz, S. H. (2011). Studying values: Personal adventure, future directions. *Journal of Cross-Cultural Psychology*, 42, 307-319. doi: 10.1177/0022022110396925
- Schwartz, S. H., & Boehnke, K. (2004). Evaluating the structure of human values with confirmatory factor analysis. *Journal of Research in Personality*, *38*, 230-255. doi: 10.1016/S0092-6566(03)00069-2
- Schwartz, S. H., & Butenko, T. (2014). Values and behavior: Validating the refined value theory in Russia. *European Journal of Social Psychology*, 44(7), 799-813. doi: 10.1002/ejsp.2053
- Seaman, S., Galati, J., Jackson, D., & Carlin, J. (2013). What is meant by "missing at random"? *Institute of Mathematical Statistics*, 28(2), 257-268. doi: 10.1214/13-STS415
- Selltiz, C., Jahoda, M., Deutsch, M., & Cook, S. T. (1977). *Research methods in social relations* (revised one-volume edition). London: Methuen & Co. Ltd.
- Spearman, C, (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201-293.
- Steinmetz, H., Schmidt, P., Tina-Booh, A., Weiczorek, S., & Schwartz, S. (2009). Testing measurement invariance using multigroup CFA: Differences between

- educational groups in human values measurement. *Quality & Quantity*, 43(4), 599-616. doi: 10.1007/s11135-007-9143-x
- Stevens, S. S. (1946). On the theory of scales of measurement. *Science*, 103(2684), 677-680.
- Symeonaki, M., Michalopoulou, C., & Kazani, A. (2015). A fuzzy set theory solution to combining Likert items into a single overall scale (or subscales). *Quality & Quantity*. 49(2), 739-762. doi: 10.1007/s11135-014-0021-z
- Tabachnick, B. G., & Fidell, L. S. (2007). *Using multivariate statistics*. Upper Saddle River, NJ: Pearson Allyn & Bacon.
- The ESS Sampling Expert Panel (2014). Sampling for the European Social Survey Round VII: Principles and requirements. http://www.europeansocialsurvey.
- The ESS Sampling Expert Panel (2016). Sampling guidelines: Principles and implementation for the European Social Survey. London: ESS ERIC Headquarters. http://www.europeansocialsurvey.org/
- The Sampling Expert Panel of the ESS (2008). Sampling for the European Social Survey Round 4: Principles and requirements. http://www.europeansocialsurvey.org/
- The Sampling Expert Panel of the ESS (2010). Sampling for the European Social Survey Round V: Principles and requirements. Manheim, European Social Survey, GESIS. http://www.europeansocialsurvey.org/
- The Sampling Expert Panel of the ESS (2012). Sampling for the European Social Survey Round VI: Principles and requirements. Manheim, European Social Survey, GESIS. http://www.europeansocialsurvey.org/
- Thompson, B. (2005). Exploratory and confirmatory factor analysis: Understanding concepts and applications (2nd printing). Washington DC: American Psychological Association.
- Thurstone, L. L. (1928). Attitudes can be measured. *American Journal of Sociology*, 1928, 33(4), 529-554
- Thurstone, L. L. (1929). Theory of attitude measurement. *Psychological Review*, 36(3), 222-241.
- Thurstone, L. L. (1947). *Multiple-factor analysis*. Chicago: University of Chicago Press.

- Zieger, M., & Hagemann, D. (2015). Editorial Testing the unidimensionality of items. *European Journal of Psychological Assessment*, 31(4), 231-237.
- Zinbarg, R., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach's α , Revelle's β , and McDonald's ω_h : Their relations with each other and two alternative conceptualizations of reliability. *Psychometrica*, 70(1), 123-133.
- Zinbarg, R., Yovel, I., Revelle, W., & McDonald, R. (2006). Estimating generalizability to a universe of indicators that all have one attribute in common: A comparison of estimators for omega. *Applied Psychological Measurement*, 30, 121-144. doi: 10.1177/0146621605278814

Appendix I

- A. The European Social Survey short form of Portrait Value Questionnaire (PVQ-21) developed by Schwartz
- B. The European Social Survey measurement of personal and social wellbeing of Round 6 (2012)

A. The European Social Survey short form of Portrait Value Questionnaire (PVQ-21) developed by Schwartz

RESPONDENT: IF YOU ARE MALE, ANSWER GS1. IF YOU ARE FEMALE, ANSWER GS2

GS1 MALE RESPONDENTS

Here we briefly describe some people. Please read each description tick the box on each line that shows how much each person is or is not like you.

		Very much like me	Like me	Some- what like me	A little like me	Not like me	Not like me at all
Α	Thinking up new ideas ¹ and being creative is important to him. He likes to do things in his own original way.	01	02	03	04	05	06
В	It is important to him to be rich. He wants to have a lot of money and expensive ² things.	□ 01	02	03	04	05	06
С	He thinks it is important that every person in the world should be treated equally. He believes everyone should have equal opportunities in life.	O1	02	03	O4	05	06
D	It's important to him to show ³ his abilities. He wants people to admire ⁴ what he does.	01	02	03	04	05	06
E	It is important to him to live in secure ⁵ surroundings. He avoids anything that might endanger his safety.	01	02	03	04	05	06
F	He likes surprises and is always looking for new things to do. He thinks it is important to do lots of different things in life ⁵ .	01	02	03	04	05	06
G	He believes that people should do what they're told ⁷ . He thinks people should follow rules ⁸ at all times, even when no-one is watching.	1	02	03	04	05	6
Н	It is important to him to listen to people who are different ⁹ from him. Even when he disagrees with them, he still wants to understand them.	01	02	03	04	05	06
I	It is important to him to be humble and modest. He tries not to draw attention to himself.	01	02	03	04	05	06
J	Having a good time is important to him. He likes to "spoil" 10 himself.			₀₃	₀₄		

		Very much like me	Like me	Some- what like me	A little like me	Not like me	Not like me at all
K	It is important to him to make his own decisions about what he does. He likes to be free and not depend ¹¹ on others.	O1	02	03	04	O5	D 06
L	It's very important to him to help the people around him. He wants to care for 12 their well-being.	01	02	03	04	05	06
M	Being very successful is important to him. He hopes people will recognise his achievements.	01	02	03	04	05	06
N	It is important to him that the government ensures ¹³ his safety against all threats. He wants the state to be strong so it can defend its citizens.	01	02	03	04	05	06
0	He looks for adventures and likes to take risks. He wants to have an exciting ¹⁴ life.	01	02	03	04	05	06
Р	It is important to him always to behave properly. He wants to avoid doing anything people would say is wrong.	01	02	03	04	05	06
Q	It is important to him to get ¹⁵ respect from others. He wants people to do what he says.	01	02	o3	04	05	06
R	It is important to him to be loyal to his friends. He wants to devote to himself to people close to him.	₀₁	02	03	04	05	06
S	He strongly believes that people should care for 17 nature. Looking after the environment is important to him.	01	02	03	04	05	06
R	Tradition is important to him. He tries to follow the customs handed down by his religion or his family.	01	02	03	04	05	06
U	He seeks every chance ¹⁸ he can to have fun. It is important to him to do things that give him pleasure.	01	02	03	04	05	06

GS2 FEMALE RESPONDENTS¹⁹

Here we briefly describe some people. Please read each description tick the box on each line that shows how much each person is or is not like you. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{$

		Very much like me	Like me	Some- what like me	A little like me	Not like me	Not like me at all
A	Thinking up new ideas and being creative is important to her. She likes to do things in her own original way.	01	02	03	0 4	05	06
В	It is important to her to be rich. She wants to have a lot of money and expensive things.	01	02	03	04	05	06
С	She thinks it is important that every person in the world should be treated equally. She believes everyone should have equal opportunities in life.	O1	02	03	04	05	06
D	It's important to her to show her abilities. She wants people to admire what she does.	01	02	03	O4	05	06
E	It is important to her to live in secure surroundings. She avoids anything that might endanger her safety.	01	02	03	04	05	06
F	She likes surprises and is always looking for new things to do. She thinks it is important to do lots of different things in life.	0 ₁	02	03	04	05	06
G	She believes that people should do what they're told. She thinks people should follow rules at all times, even when no-one is watching.	O1	02	03	04	05	06
Н	It is important to her to listen to people who are different from her. Even when she disagrees with them, she still wants to understand them.	01	02	03	04	05	06
I	It is important to her to be humble and modest. She tries not to draw attention to herself.	01	02	03	04	05	06
J	Having a good time is important to her. She likes to "spoil" herself.	₀₁		03		05	06

		Very much like me	Like me	Some- what like me	A little like me	Not like me	Not like me at all
K	It is important to her to make her own decisions about what she does. She likes to be free and not depend on others.	₀₁	02	03	₀₄	05	06
L	It's very important to her to help the people around her. She wants to care for their well-being.	01	02	03	04	05	06
M	Being very successful is important to her. She hopes people will recognise her achievements.	01	02	03	04	05	06
N	It is important to her that the government ensures her safety against all threats. She wants the state to be strong so it can defend its citizens.	01	02	03	04	05	06
0	She looks for adventures and likes to take risks. She wants to have an exciting life.	01	02	03	04	05	05
Р	It is important to her always to behave properly. She wants to avoid doing anything people would say is wrong.	01	02	03	04	05	06
Q	It is important to her to get respect from others. She wants people to do what she says.	01	02	03	04	05	06
R	It is important to her to be loyal to her friends. She wants to devote herself to people close to her.	01	02	03	04	05	06
S	She strongly believes that people should care for nature. Looking after the environment is important to her.	01	02	03	04	05	06
Т	Tradition is important to her. She tries to follow the customs handed down by her religion or her family.	01	02	03	04	05	06
U	She seeks every chance she can to have fun. It is important to her to do things that give her pleasure.	01	02	03	04	05	06

B. The European Social Survey measurement of personal and social wellbeing of Round $6\ (2012)$

	Q#	Topics
Core	A1 –A5	Television watching; social trust
Core	B1 – B34	Politics, including: political interest, trust, electoral and other forms of participation, party allegiance, socio-political orientations
Core	C1 – C28	Subjective wellbeing, social exclusion, religion, perceived discrimination, national and ethnic identity, immigration
Rotating module	D1-D39	Personal and social wellbeing, helping others, feelings in the last week, life satisfaction, physical activity
Rotating module	E1-E45	Understandings and evaluation of different elements of democracy
Core	F1 – F60	Socio-demographic profile, including: household composition, sex, age, marital status, type of area, education & occupation of respondent, partner, parents, union membership and income.

INTERVIEWER ENTER START DATE: /	/ (dd/mm/yy)
INTERVIEWER ENTER START TIME:	(Use 24 hour clock)
	(START DATE AND TIME IN ALL COUNTRIES)

B20 CARD 9 All things considered, how satisfied are you with your life as a whole nowadays? Please answer using this card, where 0 means extremely 12 dissatisfied and 10 means extremely satisfied.

Extrem dissatis										Extremely satisfied	
00	01	02	03	04	05	06	07	08	09	10	88

And now a few questions about you and your life.

C1 CARD 17 Taking all things together, how happy would you say you are? Please use this card.

Extrem unhapp									Ext	tremely happy	(Don't Know)
00	01	02	03	04	05	06	07	08	09	10	88

CARD 25 I will now read out a list of the ways you might have felt or behaved during the past week. Using this card, please tell me how much of the time during the past week...READ OUT...

		None or almost none of the time	Some of the time	Most of the time	All or almost all of the time	(Don't know)
D11	you felt sad?	1	2	3	4	8
D5	you felt depressed?	1	2	3	4	8
D10	you enjoyed life?	1	2	3	4	8
D8	you were happy?	1	2	3	4	8

And please tell me how much of the time during the past week... READ OUT...

D14	you felt anxious?	1	2	3	4	8
D15	you felt calm and peaceful?	1	2	3	4	8

CARD 26 Using this card, please tell me to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D16	I feel I am free to decide for myself how to live my life.	1	2	3	4	5	8
D17	In my daily life I get very little chance to show how capable I am.	1	2	3	4	5	8
D18	Most days I feel a sense of accomplishment from what I do.	1	2	3	4	5	8

Please use CARD 31 for the next three questions. How much of the time would you generally say you are...READ OUT...

		None of time	of the										(Don't know)
D31	interested in what you are doing?	00	01	02	03	04	05	06	07	08	09	10	88
D32	absorbed ⁴³ in what you are doing?	00	01	02	03	04	05	06	07	08	09	10	88
D33	enthusiastic about what you are doing?	00	01	02	03	04	05	06	07	08	09	10	88

CARD 28 Using this card, please say to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D23	I generally feel that what I do in my life is valuable and worthwhile ³⁴ .	1	2	3	4	5	8

D35 CARD 33 To what extent do you feel that you have a sense of direction⁴⁸ in your life? Please use this card where 0 is not at all and 10 is completely⁴⁹.

Not at a	II								Com	pletely	(Don't Know)
00	01	02	03	04	05	06	07	08	09	10	88

CARD 24 Using this card, please say how much you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D2	I'm always optimistic about my ³⁰ future.	1	2	3	4	5	8

CARD 28 Using this card, please say to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D25	There are lots of things I feel I am good at.	1	2	3	4	5	8

CARD 24 Using this card, please say how much you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D3	In general I feel very positive about myself.	1	2	3	4	5	8
D4	At times I feel as if I am a failure.	1	2	3	4	5	8

CARD 26 Using this card, please tell me to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D19	When things go wrong in my life, it generally takes me a long time to get back to normal.	1	2	3	4	5	8

D30 CARD 30 How difficult or easy do you find it to deal with⁴⁰ important⁴¹ problems that come up in your life? Please use this card where 0 is extremely⁴² difficult and 10 is extremely easy.

Extreme difficult									Ext	tremely easy	(Don't Know)	
00	01	02	03	04	05	06	07	08	09	10	88	

CARD 25 I will now read out a list of the ways you might have felt or behaved during the past week. Using this card, please tell me how much of the time during the past week...READ OUT...

		None or almost none of the time	Some of the time	Most of the time	All or almost all of the time	(Don't know)
D6	you felt that everything you did was an effort?	1	2	3	4	8
D7	your sleep was restless?	1	2	3	4	8
D12	you could not get going ³¹ ?	1	2	3	4	8
And pleas	se tell me how much of the time duri	ng the past wee	ek READ (OUT		
D13	you had a lot of energy?	1	2	3	4	8

ASK ALL

A3 CARD 2 Using this card, generally speaking, would you say that most people can be trusted, or that you can't be too careful² in dealing with people? Please tell me on a score of 0 to 10, where 0 means you can't be too careful and 10 means that most people can be trusted.

You ca be to caref	00								p	Most eople an be rusted	(Don't Know)
00	01	02	03	04	05	06	07	08	09	10	88

A4 CARD 3 Using this card, do you think that most people would try to take advantage³ of you if they got the chance, or would they try to be fair?

Most p would tak advan of n	try to te tage								pe wo	Most eople uld try be fair	(Don't Know)
00	01	02	03	04	05	06	07	08	09	10	88

A5 CARD 4 Would you say that most of the time people try to be helpful⁴ or that they are mostly looking out for themselves? Please use this card.

Peop mostly out thems	look for								mo. t	eople stly try o be elpful	(Don't Know)
00	01	02	03	04	05	06	07	08	09	10	88

CARD 27 Using this card, please tell me to what extent...READ OUT...

		Not at all						A great deal ³²	(Don't know)
D21	you feel that people in your local area ³³ help one another?	00	01	02	03	04	05	06	88

CARD 28 Using this card, please say to what extent you agree or disagree with each of the following statements. READ OUT EACH STATEMENT AND CODE IN GRID

		Agree strongly	Agree	Neither agree nor disagree	Disagree	Disagree strongly	(Don't know)
D27	I feel close to ³⁵ the people in my local area.	1	2	3	4	5	8

C3^ CARD 19 How many people, if any, are there with whom you can discuss intimate and personal²² matters? Choose your answer from this card.

D29 STILL CARD 29 To what extent do you feel appreciated³⁶ by the people you are close to³⁹? Please use the same card.

Not at all								Com	pletely	(Don't Know)	
00	01	02	03	04	05	06	07	08	09	10	88

D36 CARD 34 To what extent do you receive help and support⁵⁰ from people you are close to⁵¹ when you need it? Please use this card where 0 is not at all and 6 is completely.

Not at all						Completely	(Don't know)
00	01	02	03	04	05	06	88

CARD 25 I will now read out a list of the ways you might have felt or behaved during the past week. Using this card, please tell me how much of the time during the past week...READ OUT...

		None or almost none of the time			All or almost all of the time	(Don't know)
D9	you felt lonely?	1	2	3	4	8

Appendix II

- A. Schwartz's human values scale: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) Results
- B. Wellbeing: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) Results

A. Schwartz's human values scale: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) Results

Table A1 Item analysis of Schwartz scale values of the European Social Survey, 2002: Belgium (first half-sample: n = 949)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.57 (1.164)	2.50-2.65	16.9	35.8	27.4	9.5	5.9	1.9	2.6	0.75	0.36	0.312
SD11	2.08 (0.994)	2.02-2.15	29.3	42.9	17.0	5.8	2.2	0.6	2.2	1.11	1.51	0.319
UN3	2.00 (0.878)	1.95-2.06	27.9	49.6	16.0	3.1	1.4	0.5	1.5	1.22	2.72	0.265
UN8	2.24 (0.912)	2.18-2.30	19.6	45.1	24.2	6.8	1.6	0.2	2.4	0.72	0.69	0.309
UN19	2.04 (1.848)	1.99-2.10	26.0	48.1	18.4	4.3	0.9	0.1	2.1	0.82	1.05	0.276
BE12	2.13 (0.839)	2.08-2.19	21.8	46.9	24.8	3.2	1.1	0.2	2.1	0.71	1.19	0.373
BE18	1.79 (0.715)	1.74-1.83	35.6	49.5	11.0	0.9	0.2	0.2	2.5	0.98	2.73	0.311
TR9	2.58 (1.172)	2.51-2.66	17.3	35.2	26.2	10.4	6.4	1.6	2.8	0.69	0.14	0.117
TR20	2.79 (1.277)	2.71-2.87	13.8	34.1	24.4	13.8	7.8	3.7	2.3	0.66	-0.12	0.217
CO7	3.11 (1.323)	3.03-3.19	9.8	27.4	23.8	18.9	13.4	4.1	2.6	0.32	-0.69	0.257
CO16	2.68 (1.159)	2.60-2.75	13.6	35.6	27.3	12.9	5.7	2.1	2.8	0.67	0.21	0.235
SEC5	2.41 (1.189)	2.34-2.49	21.1	41.1	18.2	10.5	5.0	2.0	2.1	0.97	0.57	0.284
SEC14	2.59 (1.184)	2.52-2.67	17.6	35.1	23.8	13.2	5.5	1.8	3.1	0.65	0.04	0.328
PO2	4.15 (1.240)	4.07-4.23	2.6	7.7	18.1	26.8	29.8	13.4	1.6	-0.44	-0.33	0.239
PO17	3.30 (1.285)	3.22-3.38	7.4	21.4	25.7	23.2	14.5	4.6	3.2	0.16	-0.64	0.353
AC4	3.26 (1.395)	3.17-3.35	9.8	22.8	25.4	17.3	16.0	6.4	3.3	0.23	-0.81	0.389
AC13	3.18 (1.339)	3.10-3.27	9.8	24.6	23.8	18.5	16.0	4.0	3.3	0.22	-0.80	0.415
HE10	2.55 (1.211)	2.47-2.63	19.5	35.8	23.0	12.0	5.8	2.0	1.9	0.73	0.09	0.403
HE21	2.53 (1.211)	2.45-2.61	19.0	37.7	22.9	10.2	5.7	2.4	2.1	0.83	0.35	0.340
ST6	2.81 (1.326)	2.73-2.90	17.3	28.5	23.7	14.9	11.0	2.5	1.8	0.44	-0.59	0.424
ST15	3.90 (1.414)	3.81-3.99	6.4	11.1	19.8	23.5	22.8	14.0	2.4	-0.30	-0.70	0.217

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.159, respectively.

Table A2 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Belgium (first half-sample: n = 949)

	Pr	rincipal axis facto	or analysis (factor	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Openness to	Hedonism	Self-	Power	variance
_	Change		transcendence		
SD1	0.630	-0.126	0.145	-0.137	0.704
SD11	0.339	0.116	0.177	0.014	0.768
UN8	0.091	0.013	0.542	0.010	0.682
BE12	0.104	-0.088	0.570	0.184	0.648
BE18	0.032	0.072	0.513	0.086	0.701
SEC14	-0.210	0.007	0.261	0.450	0.809
PO17	-0.007	0.005	0.100	0.490	0.758
AC4	0.468	0.011	-0.198	0.344	0.463
AC13	0.454	0.033	-0.077	0.270	0.572
HE10	-0.097	0.892	0.006	0.032	0.278
HE21	0.140	0.485	-0.023	-0.013	0.676
ST6	0.612	0.179	0.113	-0.200	0.533
Factors		Correlations b	etween factors		
Openness to change	_				
Hedonism	0.589	_			
Self-transcendence	0.106	0.210	_		
Power	0.509	0.320	-0.070	_	

Table A3 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Belgium (first half-sample: n = 949)

		Sub	scale	
	Openness to change	Hedonism	Self- transcendence	Power
Number of items	5	2	3	2
Mean (standard error)	2.78 (0.027)	2.54 (0.034)	2.05 (0.020)	2.95 (0.031)
95% Confidence interval	2.73-2.84	2.47-2.61	2.01-2.09	2.89-3.01
Standard deviation	0.830	1.038	0.612	0.958
Skewness (standard error)	0.368 (0.079)	0.662 (0.079)	0.313 (0.079)	0.219 (0.079)
Kurtosis (standard error)	0.126 (0.159)	0.253 (0.159)	0.113 (0.159)	0.101 (0.159)
Cronbach's alpha reliability coeff.	0.681	0.639	0.589	0.337
Split-half reliability coefficient	0.710	0.639	0.454	0.337
Average inter-item correlations	0.298	0.470	0.326	0.203
Minimum-maximum correlations	0.210-0.479	0.470-0.470	0.288-0.365	0.203-0.203
Range of correlations	0.269	0.000	0.077	0.000
	Average	e inter-item corre	lations between s	subscales
Openness to change	_			
Hedonism	0.289	_		
Self-transcendence	0.206	0.226	_	
Power	0.204	0.175	0.186	_

Table A4 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, Belgium (first half-sample: n = 949)

	Principal	axis factor analys	is (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	transcendence	enhancement	
SD1	0.390	0.068	0.036	0.816
SD11	0.393	0.157	0.061	0.767
UN8	0.131	0.520	-0.031	0.689
BE12	0.010	0.555	0.173	0.661
BE18	0.138	0.510	0.012	0.692
SEC14	-0.218	0.297	0.381	0.842
PO17	-0.107	0.146	0.521	0.767
AC4	0.277	-0.189	0.523	0.466
AC13	0.316	-0.075	0.420	0.576
HE10	0.629	0.071	-0.055	0.619
HE21	0.587	-0.003	-0.072	0.699
ST6	0.705	0.055	-0.101	0.555
Factors	Corr	elations between f	actors	
Openness to change	_			
Self-transcendence	0.189	_		
Self-enhancement	0.567	-0.017	_	

Table A5 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Belgium (first half-sample: n = 949)

Variables	Principal axis factor	Unique	
	Factor I Self-enhancement	Factor II Self-transcendence	variance
SD1	0.254	0.241	0.813
SD11	0.231	0.326	0.763
UN8	-0.182	0.525	0.791
BE12	-0.057	0.417	0.847
BE18	-0.145	0.525	0.782
PO17	0.365	-0.061	0.886
AC4	0.844	-0.243	0.442
AC13	0.684	-0.063	0.573
HE10	0.291	0.401	0.632
HE21	0.288	0.308	0.730
ST6	0.312	0.416	0.595
	Correlations bet	tween factors	
Self-enhancement	_		
Self-transcendence	0.520	_	

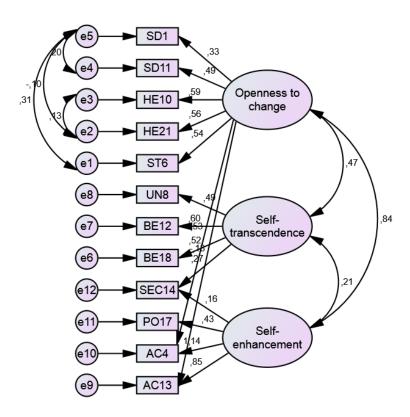

Note: Component and factor loadings >.22 are in boldface.

Table A6 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Belgium (second half-sample: n = 949)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.72	.042	.919	.938	.903	.054 (.045063)
2a	2 first-order correlated factors (11 items)-without cross-						
	loadings	7.63	.064	.830	.847	.790	.084 (.075092)
2b	2 first-order correlated factors						0 / 0 0
2	(11 items)-with cross-loadings	5.30	.039	.899	.916	.864	.067 (.058077)
3a	3 first-order correlated factors- without cross-loadings	3.80	.047	.907	.929	.900	.054 (.046063)
3b	3 first-order correlated factors- with cross-loadings	2.71	.034	.938	.959	.939	.042 (.033052)
4a	4 first-order correlated factors- without cross-loadings	4.41	.050	.899	.919	.879	.060 (.051069)
4b	4 first-order correlated factors- with cross-loadings	3.00	.033	.936	.956	.929	.046 (.037055)
5	4 first-order correlated factors of unified values	4.65	.061	.821	.853	.823	.062 (.057067)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

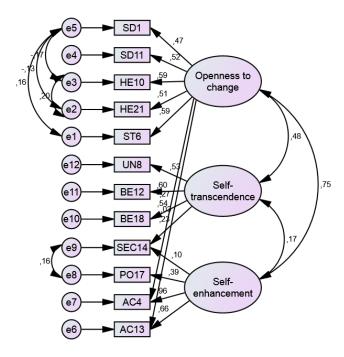


Fig. A1 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Belgium (second half-sample: n = 949)

a Higher values indicate better model fit

Table A7 Descriptive statistics, reliability coefficients and internal consistencies of the subscales (full sample): European Social Survey 2002, Belgium (N = 1,899)

		Subscale	
	Openness to change	Self- transcendence	Self- enhancement
	8-		
Number of items	5	3	4
Mean (standard error)	3.52 (0.018)	2.08 (0.014)	3.09 (0.020)
95% Confidence interval	2.48-2.56	2.05-2.10	3.05-3.13
Standard deviation	0.784	0.619	0.863
Skewness (standard error)	0.500 (0.056)	0.468 (0.056)	0.149 (0.056)
Kurtosis (standard error)	0.327 (0.112)	0.906 (0.112)	-0.021 (0.112)
Cronbach's alpha reliability coeff.	0.673	0.567	0.576
Split-half reliability coefficient	0.643	0.438	0.443
Average inter-item correlations	0.291	0.307	0.247
Minimum-maximum correlations	0.144-0.442	0.265-0.341	0.081-0.509
Range of correlations	0.299	0.075	0.428
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.157	_	
Self-enhancement	0.225	0.215	_

Fig. A2 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Belgium (N = 1,899)

Table A8 Item analysis of Schwartz scale values of the European Social Survey, 2004: Belgium (first half-sample: n = 889)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.58 (1.215)	2.50-2.66	17.7	36.7	26.9	8.1	7.9	2.0	0.8	0.79	0.21	0.332
SD11	2.13 (1.031)	2.06-2.20	28.3	44.1	18.0	5.6	2.9	0.8	0.2	1.13	1.47	0.333
UN3	2.00 (0.885)	1.94-2.05	28.9	49.3	16.8	2.4	1.6	0.6	0.6	1.25	2.84	0.304
UN8	2.30 (0.982)	2.24-2.37	17.4	48.6	23.8	6.0	2.7	1.0	0.4	1.07	1.72	0.338
UN19	2.08 (0.969)	2.01-2.14	28.7	45.4	18.4	4.6	1.8	0.8	0.2	1.15	1.94	0.293
BE12	2.22 (0.925)	2.16-2.28	21.5	44.5	26.2	5.3	1.6	0.4	0.4	0.78	1.08	0.429
BE18	1.78 (0.762)	1.73-1.83	38.9	46.8	12.0	1.3	0.3	0.2	0.3	1.07	2.43	0.365
TR9	2.53 (1.151)	2.46-2.61	16.3	40.8	25.1	9.4	6.4	1.5	0.4	0.82	0.36	0.160
TR20	2.84 (1.394)	2.75-2.94	16.4	32.3	20.7	16.4	8.7	5.3	0.2	0.58	-0.49	0.211
CO7	3.32 (1.340)	3.24-3.41	6.5	24.1	27.4	19.6	14.8	6.7	0.8	0.28	-0.72	0.195
CO16	2.35 (1.135)	2.27-2.42	21.9	43.2	20.5	8.1	4.7	1.5	0.1	1.00	0.82	0.309
SEC5	2.39 (1.181)	2.31-2.46	23.5	38.6	21.0	9.3	5.8	1.2	0.4	0.86	0.29	0.245
SEC14	2.48 (1.121)	2.41-2.55	18.1	37.5	27.3	9.6	4.6	1.5	1.5	0.80	0.51	0.335
PO2	4.27 (1.205)	4.19-4.34	1.5	7.2	16.4	28.7	29.8	16.0	0.4	-0.42	-0.37	0.190
PO17	3.14 (1.317)	3.05-3.23	9.9	25.6	25.5	20.9	13.2	4.0	0.8	0.25	-0.70	0.394
AC4	3.07 (1.350)	2.98-3.16	11.1	27.8	26.2	16.6	13.3	4.5	0.4	0.37	-0.67	0.381
AC13	3.41 (1.327)	3.32-3.49	5.1	24.2	25.3	22.0	16.3	6.7	0.3	0.21	-0.81	0.433
HE10	2.47 (1.153)	2.39-2.54	18.9	40.0	25.0	8.1	6.5	1.2	0.2	0.85	0.39	0.349
HE21	2.69 (1.216)	2.61-2.77	13.9	37.6	26.3	12.7	6.5	2.8	0.1	0.74	0.15	0.307
ST6	2.79 (1.266)	2.71-2.88	15.1	31.3	26.2	15.6	9.0	2.4	0.4	0.49	-0.40	0.368
ST15	4.02 (1.452)	3.92-4.11	5.2	12.4	18.3	21.7	24.3	18.0	0.1	-0.33	-0.85	0.254

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.164, respectively.

Table A9 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Belgium (first half-sample: n = 889)

_	Pı	rincipal axis fact	or analysis (factor	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Openness to	Self-	Hedonism	variance
		change	enhancement		
SD1	-0.118	0.671	0.134	-0.153	0.608
SD11	0.091	0.379	0.026	0.076	0.784
UN3	0.307	0.310	-0.065	-0.097	0.790
UN8	0.205	0.403	-0.103	0.002	0.771
BE12	0.397	0.336	-0.089	0.056	0.655
BE18	0.488	0.058	-0.075	0.217	0.696
CO16	0.601	-0.030	0.087	-0.142	0.615
SEC14	0.487	-0.085	0.057	0.077	0.762
PO17	0.369	-0.080	0.439	-0.098	0.661
AC4	-0.024	0.101	0.647	0.009	0.532
AC13	0.009	0.018	0.646	0.141	0.481
HE10	0.059	0.113	0.059	0.472	0.670
HE21	0.015	-0.129	0.026	0.824	0.396
ST6	-0.161	0.493	0.074	0.254	0.552
Factors		Correlations b	etween factors		
Conservation	_				
Openness to change	0.292	_			
Self-enhancement	0.192	0.314	_		
Hedonism	0.049	0.507	0.377	_	

Table A10 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Belgium (first half-sample: n = 889)

	Subscale					
	Conservation	Openness to change	Self- enhancement	Hedonism		
Number of items	4	5	3	2		
Mean (standard error)	2.21 (0.022)	2.36 (0.022)	3.20 (0.034)	2.58 (0.033)		
95% Confidence interval	2.16-2.25	2.32-2.40	3.14-3.27	2.51-2.64		
Standard deviation	0.664	0.667	1.009	0.997		
Skewness (standard error)	0.527 (0.082)	0.506 (0.082)	0.329 (0.082)	0.714 (0.082)		
Kurtosis (standard error)	0.852 (0.164)	1.095 (0.164)	-0.368 (0.164)	0.525 (0.164)		
Cronbach's alpha reliability coeff.	0.580	0.588	0.628	0.588		
Split-half reliability coefficient	0.624	0.614	0.611	0.588		
Average inter-item correlations	0.268	0.219	0.360	0.417		
Minimum-maximum correlations	0.211-0.401	0.110-0.377	0.292-0.496	0.417-0.417		
Range of correlations	0.190	0.268	0.205	0.000		
	Average	inter-item correla	ations between si	ubscales		
Conservation	_					
Openness to change	0.185	_				
Self-enhancement	0.210	0.188	_			
Hedonism	0.181	0.210	0.265	_		

Table A11 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Belgium (first half-sample: n = 889)

	Principal			
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
_	change	transcendence	enhancement	
SD1	0.418	0.145	0.025	0.772
SD11	0.368	0.221	-0.006	0.785
UN3	0.106	0.443	-0.084	0.791
UN8	0.284	0.370	-0.132	0.771
BE12	0.236	0.519	-0.072	0.650
BE18	0.129	0.461	0.015	0.743
CO16	-0.255	0.580	0.152	0.612
SEC14	-0.086	0.404	0.142	0.800
PO17	-0.165	0.294	0.475	0.654
AC4	0.197	-0.041	0.578	0.573
AC13	0.226	-0.079	0.656	0.458
HE10	0.490	0.025	0.112	0.708
HE21	0.502	-0.111	0.156	0.697
ST6	0.684	-0.005	0.006	0.530
Factors	Corr	elations between f	actors	
Openness to change	_			
Self-transcendence	0.199	_		
Self-enhancement	0.297	0.258	_	

Table A12 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Belgium (first half-sample: n = 889)

Variables	Principal axis factor a	Unique	
v arrables	Factor I Openness to change	Factor II Conservation	variance
SD1	0.416	0.045	0.812
SD11	0.354	0.104	0.839
UN3	0.048	0.296	0.901
BE12	0.177	0.325	0.825
BE18	0.119	0.365	0.824
CO16	-0.212	0.645	0.629
SEC14	-0.038	0.454	0.804
PO17	0.045	0.545	0.684
AC4	0.443	0.221	0.691
AC13	0.492	0.218	0.641
HE10	0.556	-0.027	0.700
HE21	0.598	-0.131	0.677
ST6	0.670	-0.140	0.594
	Correlations betw	veen factors	
Openness to change			
Conservation	0.328	_	

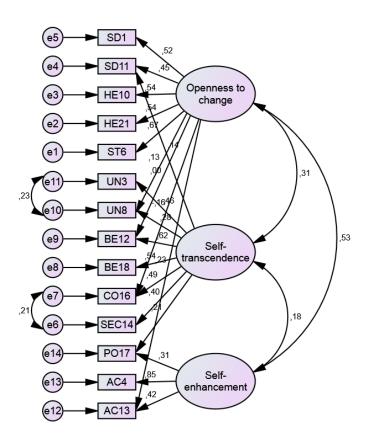

Note: Component and factor loadings >.22 are in boldface.

Table A13 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Belgium (second half-sample: n = 889)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.37	.055	.873	.898	.847	.062 (.054069)
2a	2 first-order correlated factors (13 items)-without cross-						
	loadings	5.92	.063	.810	.836	.793	.074 (.067082)
2b	2 first-order correlated factors	7 00	0.42	011	00.5	=00	077 (050 000)
2	(13 items)-with cross-loadings	5.98	.063	.811	.836	.790	.075 (.068082)
3a	3 first-order correlated factors- without cross-loadings	4.92	.058	.832	.860	.823	.066 (.060073)
3b	3 first-order correlated factors- with cross-loadings	4.50	.049	.859	.885	.842	.063 (.056070)
4a	4 first-order correlated factors- without cross-loadings	6.04	.069	.805	.830	.772	.075 (.068082)
4b	4 first-order correlated factors- with cross-loadings	4.87	.056	.852	.877	.825	.066 (.059073)
5	4 first-order correlated factors of unified values	5.02	.072	.795	.828	.791	.067 (.062073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

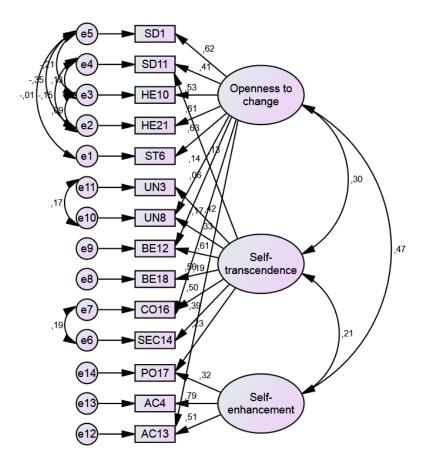


Fig. A3 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Belgium (second half-sample: n = 889)

a Higher values indicate better model fit

Table A14 Descriptive statistics, reliability coefficients and internal consistencies of the subscales (full sample): European Social Survey 2004, Belgium (N = 1,778)

	Subscale					
	Openness to	Self-	Self-			
	change	transcendence	enhancement			
Number of items	5	6	3			
Mean (standard error)	2.55 (0.018)	2.19 (0.014)	3.23 (0.024)			
95% Confidence interval	2.52-2.59	2.17-2.22	3.18-3.28			
Standard deviation	0.776	0.589	1.008			
Skewness (standard error)	0.560 (0.058)	0.419 (0.058)	0.295 (0.058)			
Kurtosis (standard error)	0.519 (0.116)	0.527 (0.116)	-0.329 (0.116)			
Cronbach's alpha reliability coeff.	0.674	0.636	0.615			
Split-half reliability coefficient	0.665	0.556	0.450			
Average inter-item correlations	0.292	0.234	0.347			
Minimum-maximum correlations	0.161-0.390	0.085-0.376	0.275-0.472			
Range of correlations	0.229	0.290	0.197			
	Average inter-i	tem correlations be	tween subscales			
Openness to change	_					
Self-transcendence	0.172	_				
Self-enhancement	0.243	0.177	_			

Fig. A4 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Belgium (N = 1,778)

Table A15 Item analysis of Schwartz scale values of the European Social Survey, 2006: Belgium (first half-sample: n = 899)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.73 (1.195)	2.65-2.81	14.8	31.7	30.3	13.9	7.8	1.6	-	0.51	-0.22	0.225
SD11	2.15 (0.985)	2.09-2.22	26.4	43.9	20.8	5.9	2.8	0.2	-	0.90	0.81	0.226
UN3	1.96 (0.876)	1.90-2.01	31.7	47.7	15.7	3.2	1.4	0.2	-	1.09	1.86	0.272
UN8	2.32 (0.894)	2.26-2.38	14.9	48.5	29.1	4.4	2.6	0.3	0.1	0.84	1.41	0.370
UN19	2.00 (0.890)	1.95-2.06	31.0	44.3	19.6	3.7	1.3	0.1	-	0.86	0.93	0.217
BE12	2.10 (0.833)	2.05-2.15	22.5	50.8	22.6	2.7	1.2	0.2	-	0.83	1.61	0.371
BE18	1.77 (0.719)	1.72-1.82	36.3	52.7	9.5	0.7	0.6	0.2	0.1	1.20	3.86	0.349
TR9	2.56 (1.081)	2.49-2.63	12.5	43.8	25.9	11.2	5.5	1.0	0.1	0.79	0.38	0.087
TR20	2.72 (1.314)	2.63-2.80	17.0	34.4	23.6	14.0	7.0	4.0	-	0.69	-0.13	0.152
CO7	3.18 (1.295)	3.10-3.27	6.6	29.6	24.9	20.6	13.3	4.6	0.4	0.35	-0.68	0.193
CO16	2.56 (1.106)	2.49-2.63	13.8	41.9	26.3	12.0	4.1	1.8	0.1	0.82	0.57	0.266
SEC5	2.53 (1.140)	2.46-2.61	17.0	39.6	24.6	11.8	6.1	0.9	-	0.69	0.02	0.334
SEC14	2.52 (1.102)	2.45-2.59	16.5	39.6	25.0	13.3	4.6	0.8	0.2	0.64	0.02	0.353
PO2	4.21 (1.209)	4.14-4.29	2.0	6.6	18.6	27.9	30.5	14.3	0.1	-0.42	-0.33	0.175
PO17	3.21 (1.207)	3.13-3.29	6.5	23.9	29.9	24.0	12.8	2.8	0.1	0.19	-0.57	0.293
AC4	3.13 (1.257)	3.05-3.21	7.6	27.3	29.4	19.9	12.0	3.8	0.1	0.35	-0.53	0.333
AC13	3.15 (1.203)	3.07-3.23	6.1	27.0	30.4	21.7	11.9	2.9	-	0.31	-0.51	0.393
HE10	2.54 (1.100)	2.46-2.61	15.6	39.4	28.0	11.3	4.3	1.3	-	0.73	0.41	0.389
HE21	2.53 (1.047)	2.46-2.59	14.9	38.8	30.5	11.0	3.9	0.8	0.1	0.63	0.32	0.261
ST6	2.82 (1.233)	2.74-2.90	13.3	32.4	26.5	15.8	10.7	1.2	0.1	0.42	-0.58	0.358
ST15	3.92 (1.328)	3.83-4.01	4.0	12.1	19.8	28.0	23.6	12.2	0.2	-0.26	-0.64	0.182

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.163, respectively.

Table A16 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Belgium (first half-sample: n = 899)

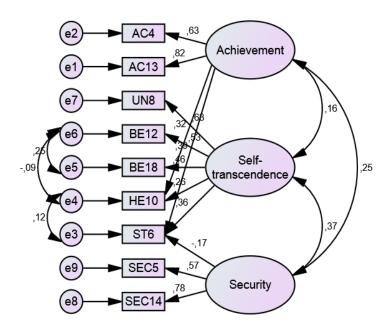
	Principal ax			
	Factor I	Factor II	Factor III	Unique
Item	Achievement	Self-	Security	variance
		transcendence		
UN8	-0.033	0.460	0.109	0.773
BE12	-0.110	0.561	0.209	0.643
BE18	-0.121	0.508	0.153	0.727
SEC5	0.142	0.111	0.636	0.541
SEC14	0.048	0.174	0.533	0.656
AC4	0.769	-0.140	0.109	0.464
AC13	0.738	-0.070	0.120	0.481
HE10	0.284	0.345	-0.074	0.730
ST6	0.312	0.444	-0.281	0.553
Factors	Correla	ations between fac	etors	
Achievement	_			
Self-transcendence	0.354	_		
Security	-0.036	0.124	_	

Notes. Factor loadings >.22 are in boldface.

Table A17 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Belgium (first half-sample: n = 899)

		Subscale	
	Achievement	Self- transcendence	Security
Number of items	2	5	2
Mean (standard error)	3.14 (0.036)	2.31 (0.020)	2.53 (0.031)
95% Confidence interval	3.07-3.21	2.27-2.35	2.46-2.59
Standard deviation	1.079	0.596	0.944
Skewness (standard error)	0.287 (0.082)	0.424 (0.082)	0.609 (0.082)
Kurtosis (standard error)	-0.295 (0.163)	1.069 (0.163)	0.241 (0.163)
Cronbach's alpha reliability coeff.	0.699	0.583	0.588
Split-half reliability coefficient	0.699	0.451	0.588
Average inter-item correlations	0.538	0.233	0.417
Minimum-maximum correlations	0.538-0.538	0.130-0.382	0.417-0.417
Range of correlations	0.000	0.252	0.000
	Average inter-i	tem correlations be	etween subscales
Achievement	_		
Self-transcendence	0.201	_	
Security	0.244	0.193	_

Table A18 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Belgium (first half-sample: n = 899)

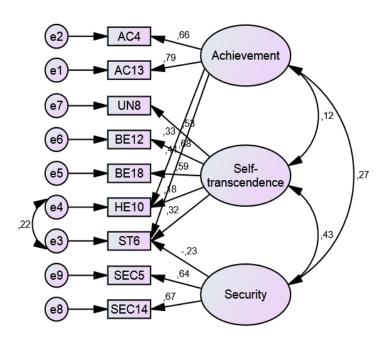

Wawiahlaa	Principal axis factor a	T I:		
Variables	Factor I Self-enhancement	Factor II Conservation	Unique variance	
UN8	0.085	0.345	0.856	
BE12	0.013	0.492	0.754	
BE18	-0.004	0.428	0.818	
SEC5	0.013	0.578	0.664	
SEC14	-0.052	0.601	0.655	
AC4	0.683	-0.039	0.548	
AC13	0.706	0.008	0.498	
HE10	0.412	0.099	0.797	
ST6	0.463	-0.016	0.790	
	Correlations betw	veen factors		
Self-enhancement	_			
Conservation	0.292	_		

Note: Component and factor loadings >.22 are in boldface.

Table A19 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2006, Belgium (second half-sample: n = 899)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.49	.043	.939	.951	.897	.062 (.049077)
2	2 first-order correlated factors- without cross-loadings	5.84	.062	.888	.905	.857	.073 (.062085)
3a	3 first-order correlated factors- without cross-loadings	8.08	.065	.865	.878	.791	.089 (.077101)
3b	3 first-order correlated factors- with cross-loadings	2.59	.026	.963	.977	.953	.042 (.027057)
4	4 first-order correlated factors of unified values	5.15	.071	.792	.824	.788	.068 (.063074)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.


Fig. A5 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Belgium (second half-sample: n = 899)

a Higher values indicate better model fit

b Lower values indicate better model fit

Table A20 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Belgium (N = 1,798)

		Subscale	
	Achievement	Self- transcendence	Security
Number of items	2	5	2
Mean (standard error)	3.14 (0.025)	2.32 (0.014)	2.52 (0.023)
95% Confidence interval	3.09-3.19	2.29-2.34	2.48-2.57
Standard deviation	1.065	0.593	0.954
Skewness (standard error)	0.313 (0.058)	0.310 (0.058)	0.621 (0.058)
Kurtosis (standard error)	-0.345 (0.115)	0.588 (0.115)	0.230 (0.115)
Cronbach's alpha reliability coeff.	0.688	0.584	0.600
Split-half reliability coefficient	0.688	0.428	0.600
Average inter-item correlations	0.525	0.235	0.430
Minimum-maximum correlations	0.525-0.525	0.112-0.408	0.430-0.430
Range of correlations	0.000	0.295	0.000
	Average inter-i	tem correlations be	etween subscales
Achievement	_		
Self-transcendence	0.202	_	
Security	0.245	0.190	_

Fig. A6 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Belgium (N = 1,798)

Table A21 Item analysis of Schwartz scale values of the European Social Survey, 2008: Belgium (first half-sample: n = 880)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.71 (1.165)	2.64-2.79	14.3	32.3	29.9	14.3	7.2	1.3	0.8	0.49	-0.21	0.348
SD11	2.19 (1.028)	2.12-2.25	25.7	43.8	20.5	6.3	2.4	1.0	0.5	1.07	1.45	0.344
UN3	2.04 (0.846)	1.98-2.10	26.5	49.0	19.1	4.0	1.1	-	0.3	0.77	0.78	0.290
UN8	2.28 (0.916)	2.22-2.34	16.3	51.8	22.5	6.1	2.7	0.2	0.3	0.94	1.25	0.349
UN19	2.04 (0.885)	1.98-2.10	28.5	46.1	19.2	4.7	1.1	0.1	0.2	0.82	0.83	0.246
BE12	2.09 (0.823)	2.03-2.14	23.2	50.2	21.7	3.6	0.8	0.1	0.3	0.70	0.95	0.431
BE18	1.80 (0.722)	1.75-1.85	35.0	52.4	10.5	1.1	0.7	-	0.3	0.94	1.98	0.460
TR9	2.57 (1.133)	2.49-2.64	14.5	41.0	26.0	10.7	5.9	1.5	0.3	0.79	0.35	0.182
TR20	2.67 (1.209)	2.59-2.75	13.5	40.6	22.8	13.9	6.3	2.6	0.3	0.77	0.13	0.247
CO7	3.20 (1.274)	3.12-3.28	7.7	24.9	27.7	21.9	13.4	3.9	0.5	0.24	-0.64	0.131
CO16	2.50 (1.061)	2.43-2.57	14.1	44.1	25.3	10.9	4.4	0.9	0.2	0.80	0.49	0.285
SEC5	2.53 (1.148)	2.46-2.61	17.5	39.1	23.4	13.4	5.2	1.1	0.2	0.68	0.01	0.330
SEC14	2.54 (1.094)	2.47-2.62	13.9	43.4	23.5	13.1	4.3	1.3	0.6	0.77	0.35	0.385
PO2	4.17 (1.159)	4.09-4.24	1.6	6.7	18.8	30.6	30.3	11.7	0.3	-0.38	-0.28	0.197
PO17	3.08 (1.184)	3.00-3.16	5.6	30.9	28.8	21.0	10.5	2.7	0.6	0.42	-0.43	0.357
AC4	3.08 (1.237)	3.00-3.17	7.2	30.0	28.2	19.0	12.6	2.8	0.2	0.37	-0.58	0.405
AC13	3.14 (1197)	3.06-3.22	6.5	26.6	30.2	22.4	11.1	2.8	0.3	0.30	-0.47	0.409
HE10	2.63 (1.136)	2.55-2.70	14.7	37.0	26.6	14.9	5.5	1.1	0.2	0.57	-0.09	0.436
HE21	2.65 (1.144)	2.58-2.73	13.0	37.7	30.2	10.5	6.4	1.9	0.3	0.75	0.36	0.329
ST6	2.82 (1.277)	2.74-2.91	15.3	30.0	25.3	17.2	10.0	1.9	0.2	0.40	-0.59	0.436
ST15	3.84 (1.315)	3.76-3.93	4.3	13.8	19.0	28.0	25.5	9.2	0.3	-0.29	-0.66	0.218

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.165, respectively.

Table A22 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Belgium (first half-sample: n = 880)

	Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Self-	Self-	Hedonism	Security	variance		
	transcendence	enhancement					
SD1	0.554	0.233	-0.144	-0.227	0.618		
SD11	0.395	0.118	0.049	-0.018	0.760		
UN8	0.543	-0.101	-0.075	0.108	0.747		
BE12	0.529	-0.114	0.014	0.283	0.625		
BE18	0.544	-0.133	0.054	0.205	0.645		
SEC5	0.000	0.138	-0.026	0.637	0.568		
SEC14	0.128	0.079	0.000	0.529	0.658		
PO17	-0.079	0.424	0.001	0.296	0.751		
AC4	-0.027	0.753	-0.064	0.122	0.467		
AC13	-0.007	0.595	0.118	0.023	0.568		
HE10	0.104	0.049	0.576	0.048	0.552		
HE21	-0.107	-0.025	0.784	-0.035	0.481		
ST6	0.439	0.139	0.218	-0.166	0.552		
Factors		Correlations be	tween factors				
Self-transcendence	_						
Self-enhancement	0.468	_					
Hedonism	0.555	0.477	_				
Security	0.185	0.061	0.020	_			

Table A23 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Belgium (first half-sample: n = 880)

	Subscale					
	Self- transcendence	Self- enhancement	Hedonism	Security		
Number of items	6	3	2	2		
Mean (standard error)	2.31 (0.021)	3.10 (0.031)	2.64 (0.033)	2.54 (0.032)		
95% Confidence interval	2.27-2.36	3.04-3.16	2.58-2.71	2.48-2.60		
Standard deviation	0.623	0.913	0.972	0.941		
Skewness (standard error)	0.439 (0.082)	0.319 (0.082)	0.609 (0.082)	0.587 (0.082)		
Kurtosis (standard error)	0.532 (0.165)	-0.081 (0.165)	0.271 (0.165)	0.056 (0.165)		
Cronbach's alpha reliability coeff.	0.678	0.626	0.625	0.580		
Split-half reliability coefficient	0.643	0.462	0.625	0.580		
Average inter-item correlations	0.274	0.357	0.455	0.409		
Minimum-maximum correlations	0.159-0.516	0.277-0.472	0.455-0.455	0.409-0.409		
Range of correlations	0.357	0.195	0.000	0.000		
	Averag	e inter-item correl	ations between su	ibscales		
Self-transcendence	_					
Self-enhancement	0.228	_				
Hedonism	0.254	0.271	_			
Security	0.214	0.252	0.188	_		

Table A24 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Belgium (first half-sample: n = 880)

	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Openness to	Conservation	Self-	variance		
	change		enhancement			
SD1	0.471	-0.024	0.090	0.751		
SD11	0.406	0.114	0.061	0.771		
UN8	0.277	0.329	-0.123	0.784		
BE12	0.260	0.503	-0.101	0.629		
BE18	0.333	0.438	-0.132	0.645		
SEC5	-0.261	0.598	0.239	0.581		
SEC14	-0.113	0.554	0.159	0.661		
PO17	-0.042	0.193	0.434	0.747		
AC4	0.158	0.000	0.641	0.502		
AC13	0.311	-0.086	0.532	0.552		
HE10	0.538	0.057	0.086	0.650		
HE21	0.498	-0.069	0.056	0.750		
ST6	0.678	-0.023	0.044	0.530		
Factors	Corre	elations between f	actors			
Openness to change	_					
Conservation	0.199	_				
Self-enhancement	0.297	0.258	_			

Table A25 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Belgium (first half-sample: n = 880)

Variables	Principal axis factor analysis (factors)				
v ariables	Factor I Openness to change	Factor II Conservation	Unique variance		
SD1	0.523	-0.060	0.748		
SD11	0.443	0.057	0.780		
UN8	0.243	0.154	0.887		
BE12	0.237	0.305	0.792		
BE18	0.300	0.227	0.804		
SEC5	-0.188	0.704	0.576		
SEC14	-0.055	0.578	0.689		
PO17	0.112	0.403	0.789		
AC4	0.368	0.287	0.697		
AC13	0.481	0.159	0.682		
HE10	0.589	0.000	0.654		
HE21	0.537	-0.118	0.748		
ST6	0.713	-0.116	0.545		
	Correlations betw	veen factors			
Openness to change	_				
Conservation	0.328	_			

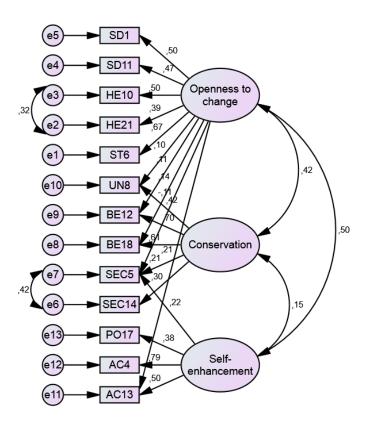

Note: Component and factor loadings >.22 are in boldface.

Table A26 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Belgium (second half-sample: n = 880)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.12	.048	.896	.918	.879	.060 (.051068)
2a	2 first-order correlated factors- without cross-loadings	6.74	.064	.823	.843	.778	.081 (.073089)
2b	2 first-order correlated factors- with cross-loadings	5.84	_	.855	.875	.813	.074 (.066082)
3a	3 first-order correlated factors- without cross-loadings	4.06	.047	.884	.909	.881	.059 (.051067)
3b	3 first-order correlated factors- with cross-loadings	3.89	.043	.897	.920	.885	.058 (.050067)
4a	4 first-order correlated factors- without cross-loadings	5.10	.052	.871	.892	.841	.068 (.060077)
4b	4 first-order correlated factors- with cross-loadings	4.79	.046	.888	.908	.853	.066 (.057074)
5	4 first-order correlated factors of unified values	5.19	.067	.795	.826	.791	.069 (.064075)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 2b reached iteration limit, so the results are incorrect.

b Lower values indicate better model fit

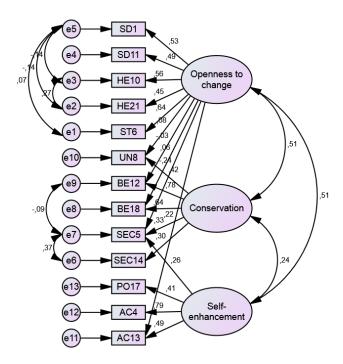


Fig. A7 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Belgium (second half-sample: n = 880)

a Higher values indicate better model fit

Table A27 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Belgium (N = 1,760)

		Subscale	
	Openness to change	Conservation	Self- enhancement
Number of items	5	5	3
Mean (standard error)	2.60 (0.018)	2.24 (0.014)	3.10 (0.022)
95% Confidence interval	2.56-2.63	2.21-2.27	3.06-3.14
Standard deviation	0.758	0.608	0.916
Skewness (standard error)	0.535 (0.058)	0.386 (0.058)	0.324 (0.058)
Kurtosis (standard error)	0.465 (0.117)	0.239 (0.117)	-0.171 (0.117)
Cronbach's alpha reliability coeff.	0.668	0.616	0.619
Split-half reliability coefficient	0.628	0.687	0.442
Average inter-item correlations	0.286	0.261	0.350
Minimum-maximum correlations	0.130-0.452	0.097-0.512	0.265-0.477
Range of correlations	0.322	0.414	0.212
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.196	_	
Self-enhancement	0.244	0.199	_

Fig. A8 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Belgium (N = 1,760)

Table A28 Item analysis of Schwartz scale values of the European Social Survey, 2010: Belgium (first half-sample: n = 852)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.65 (1.186)	2.57-2.73	16.7	32.9	29.3	12.6	7.0	1.4	0.1	0.57	-0.13	0.364
SD11	2.15 (0.968)	2.09-2.22	25.4	45.9	19.5	6.6	2.3	0.2	0.1	0.90	0.85	0.310
UN3	1.97 (0.853)	1.92-2.03	30.3	47.7	17.4	3.2	1.2	0.1	0.2	0.93	1.35	0.260
UN8	2.34 (0.945)	2.28-2.41	16.1	46.9	26.4	7.7	2.2	0.5	0.1	0.79	0.92	0.277
UN19	2.12 (0.927)	2.06-2.19	25.8	45.0	21.8	5.3	1.6	0.2	0.2	0.82	0.88	0.288
BE12	2.06 (0.823)	2.00-2.11	25.2	48.2	22.8	2.7	0.8	0.1	0.1	0.66	0.89	0.384
BE18	1.73 (0.723)	1.68-1.78	39.6	50.1	8.2	1.3	0.7	-	0.1	1.11	2.42	0.345
TR9	2.51 (1.103)	2.43-2.58	16.5	40.0	26.1	11.3	5.2	0.8	0.1	0.70	0.17	0.071
TR20	2.65 (1.247)	2.57-2.74	15.6	38.7	23.0	13.0	6.5	3.1	0.1	0.78	0.10	0.141
CO7	3.19 (1.248)	3.11-3.28	6.2	27.1	28.5	20.3	14.1	3.4	0.4	0.30	-0.65	0.207
CO16	2.58 (1.097)	2.50-2.65	13.0	42.1	26.4	11.6	5.4	1.2	0.2	0.76	0.34	0.290
SEC5	2.53 (1.141)	2.45-2.61	16.7	40.7	23.6	11.3	6.8	0.7	0.2	0.71	-0.01	0.336
SEC14	2.62 (1.195)	2.54-2.70	16.3	36.0	27.2	11.9	5.8	2.3	0.5	0.73	0.22	0.423
PO2	4.20 (1.229)	4.12-4.28	1.6	7.6	19.0	28.3	27.6	15.7	0.1	-0.33	-0.51	0.186
PO17	3.21 (1.283)	3.12-3.29	7.0	25.4	29.8	20.4	12.1	5.2	0.1	0.34	-0.53	0.366
AC4	3.21 (1.298)	3.13-3.30	6.6	27.8	27.0	19.0	15.1	4.3	0.1	0.31	-0.73	0.383
AC13	3.18 (1.300)	3.10-3.27	8.3	26.1	26.1	21.8	13.5	4.1	0.1	0.25	-0.70	0.492
HE10	2.56 (1.123)	2.49-2.64	16.0	38.4	26.2	12.6	6.2	0.6	0.1	0.60	-0.13	0.371
HE21	2.52 (1.115)	2.45-2.60	16.5	38.3	29.5	9.2	4.9	1.5	0.1	0.78	0.55	0.310
ST6	2.89 (1.274)	2.80-2.97	13.6	29.1	27.2	16.7	11.0	2.1	0.2	0.38	-0.58	0.352
ST15	3.87 (1.368)	3.78-3.96	5.4	12.4	19.5	26.4	24.6	11.5	0.1	-0.30	-0.69	0.192

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.084 and 0.167, respectively.

Table A29 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Belgium (first half-sample: n = 852)

	Principal axis factor analysis (factors)					
Item	Factor I	Factor II	Factor III	Factor IV	Unique	
	Self-	Conservation	Hedonism	Openness to	variance	
	enhancement			change		
SD1	0.082	0.021	-0.168	0.689	0.597	
SD11	-0.002	0.160	0.213	0.223	0.788	
BE12	-0.187	0.367	0.101	0.217	0.771	
BE18	-0.178	0.267	0.151	0.222	0.810	
SEC5	0.087	0.640	-0.066	-0.107	0.593	
SEC14	0.103	0.650	-0.042	-0.010	0.547	
PO17	0.355	0.306	-0.021	-0.044	0.744	
AC4	0.736	-0.060	0.012	0.062	0.438	
AC13	0.641	0.087	0.101	0.076	0.433	
HE10	0.051	0.028	0.763	-0.109	0.468	
HE21	0.043	-0.098	0.659	-0.002	0.567	
ST6	0.104	-0.147	0.106	0.547	0.593	
Factors		Correlations be	tween factors			
Self-enhancement	_					
Conservation	0.275	_				
Hedonism	0.401	0.235	_			
Openness to change	0.343	0.247	0.614	_		

Table A30 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Belgium (first half-sample: n = 852)

		Subs	scale	
	Self- enhancement	Conservation	Hedonism	Openness to change
Number of items	3	4	2	3
Mean (standard error)	3.20 (0.034)	2.23 (0.023)	2.54 (0.033)	2.56 (0.028)
95% Confidence interval	3.13-3.27	2.19-2.28	2.48-2.61	2.51-2.62
Standard deviation	0.998	0.658	0.961	0.831
Skewness (standard error)	0.266 (0.084)	0.344 (0.084)	0.546 (0.084)	0.303 (0.084)
Kurtosis (standard error)	-0.381 (0.167)	0.042 (0.167)	0.100 (0.167)	-0.098 (0.167)
Cronbach's alpha reliability coeff.	0.660	0.578	0.644	0.542
Split-half reliability coefficient	0.463	0.683	0.644	0.350
Average inter-item correlations	0.392	0.263	0.475	0.280
Minimum-maximum correlations	0.287-0.554	0.123-0.449	0.475-0.475	0.209-0.382
Range of correlations	0.267	0.326	0.000	0.173
	Average	inter-item correl	lations between s	ubscales
Self-enhancement	_			
Conservation	0.214			
Hedonism	0.297	0.190	_	
Openness to change	0.251	0.182	0.278	_

Table A31 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, Belgium (first half-sample: n = 852)

	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Openness to	Self-	Conservation	variance		
	change	enhancement				
SD1	0.421	0.082	0.018	0.782		
SD11	0.419	-0.003	0.140	0.776		
BE12	0.334	-0.204	0.350	0.754		
BE18	0.383	-0.196	0.248	0.789		
SEC5	-0.136	0.095	0.642	0.589		
SEC14	-0.024	0.112	0.645	0.549		
PO17	-0.052	0.358	0.314	0.744		
AC4	0.059	0.723	-0.034	0.450		
AC13	0.161	0.644	0.098	0.426		
HE10	0.522	0.119	-0.005	0.664		
HE21	0.556	0.085	-0.120	0.668		
ST6	0.573	0.097	-0.149	0.644		
Factors	Corre	elations between f	actors			
Openness to change	_					
Self-enhancement	0.418	_				
Conservation	0.258	0.224	_			

Table A32 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Belgium (first half-sample: n = 852)

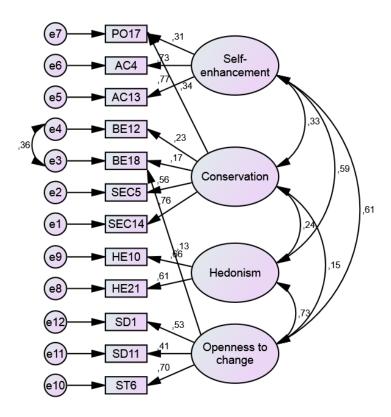

Variables	Principal axis factor a	Unique	
variables	Factor I Openness to change	Factor II Conservation	variance
SD1	0.447	-0.009	0.803
SD11	0.361	0.078	0.841
SEC5	-0.180	0.645	0.646
SEC14	-0.058	0.631	0.628
PO17	0.109	0.465	0.731
AC4	0.472	0.224	0.641
AC13	0.523	0.313	0.496
HE10	0.571	-0.026	0.686
HE21	0.605	-0.157	0.686
ST6	0.634	-0.185	0.659
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.328	_	

Table A33 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, Belgium (second half-sample: n = 852)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.62	.046	.909	.931	.902	.055 (.047065)
2a	2 first-order correlated factors (10 items)-without cross-						
	loadings	4.67	.057	.906	.924	.890	.066 (.055077)
2b	2 first-order correlated factors						
	(10 items)-with cross-loadings	3.87	.046	.927	.945	.914	.058 (.047070)
3a	3 first-order correlated factors-						
	without cross-loadings	7.13	.071	.800	.822	.769	.085 (.077093)
3b	3 first-order correlated factors-						
	with cross-loadings	5.24	.052	.862	.884	.840	.071 (.062079)
4a	4 first-order correlated factors-						
	without cross-loadings	4.35	.058	.888	.910	.874	.063 (.054072)
4b	4 first-order correlated factors-						
_	with cross-loadings	2.89	.043	.928	.951	.929	.047 (.038057)
5	4 first-order correlated factors of unified values	4.71	.066	.810	.842	.810	.066 (.060072)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

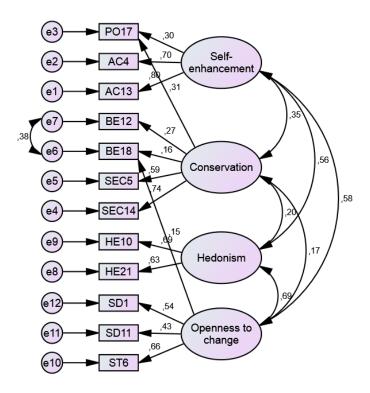


Fig. A9 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Belgium (second half-sample: n = 852)

a Higher values indicate better model fit

Table A34 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Belgium (N = 1,704)

		Subs	cale	
	Self- enhancement	Conservation	Hedonism	Openness to change
Number of items	3	4	2	3
Mean (standard error)	3.22 (0.024)	2.23 (0.016)	2.57 (0.023)	2.60 (0.020)
95% Confidence interval	3.18-3.27	2.20-2.26	2.53-2.62	2.56-2.64
Standard deviation	0.992	0.642	0.962	0.845
Skewness (standard error)	0.323 (0.059)	0.396 (0.059)	0.572 (0.059)	0.345 (0.059)
Kurtosis (standard error)	-0.314 (0.119)	0.159 (0.119)	0.148 (0.119)	-0.230
				(0.119)
Cronbach's alpha reliability coeff.	0.663	0.558	0.610	0.550
Split-half reliability coefficient	0.467	0.664	0.610	0.364
Average inter-item correlations	0.396	0.246	0.439	0.287
Minimum-maximum correlations	0.307-0.559	0.105-0.434	0.439-0.439	0.230-0.383
Range of correlations	0.251	0.329	0.000	0.153
	Average	inter-item correl	ations between si	ubscales
Self-enhancement	_			
Conservation	0.208	_		
Hedonism	0.299	0.182	_	
Openness to change	0.260	0.171	0.279	_

Fig. A10 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Belgium (N = 1,704)

Table A35 Item analysis of Schwartz scale values of the European Social Survey, 2014: Belgium (first half-sample: n = 884)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.60 (1.146)	2.52-2.67	15.5	37.0	29.1	9.2	7.8	0.9	0.6	0.67	0.06	0.294
SD11	2.14 (0.985)	2.07-2.20	26.4	46.0	18.0	6.7	2.5	0.3	0.1	0.98	1.02	0.305
UN3	2.05 (0.925)	1.98-2.11	28.2	47.9	17.6	3.3	2.4	0.3	0.3	1.14	1.94	0.265
UN8	2.32 (0.943)	2.26-2.38	15.8	49.5	24.8	6.4	2.8	0.5	0.1	0.92	1.25	0.333
UN19	2.06 (0.931)	2.00-2.12	27.8	47.4	18.2	4.1	1.9	0.5	0.1	1.09	1.82	0.314
BE12	2.02 (0.800)	1.96-2.07	24.9	52.9	19.0	1.8	1.0	0.2	0.1	0.93	2.16	0.387
BE18	1.75 (0.667)	1.70-1.79	35.9	54.9	8.3	0.5	0.3	0.1	0.1	0.93	3.02	0.297
TR9	2.42 (1.003)	2.35-2.49	13.7	48.4	25.0	8.0	3.8	0.8	0.2	0.95	1.08	0.122
TR20	2.72 (1.228)	2.64-2.80	14.4	35.1	27.6	12.4	7.8	2.5	0.2	0.66	-0.04	0.209
CO7	3.12 (1.273)	3.04-3.21	6.7	31.0	26.1	19.2	12.7	4.0	0.3	0.41	-0.61	0.201
CO16	2.52 (1.071)	2.45-2.59	14.4	42.4	27.1	9.7	5.5	0.7	0.1	0.75	0.35	0.289
SEC5	2.49 (1.121)	2.41-2.56	16.4	42.9	23.9	9.7	5.5	1.2	0.3	0.86	0.48	0.320
SEC14	2.42 (1.016)	2.35-2.49	15.0	45.6	26.0	8.4	3.5	0.9	0.6	0.90	0.99	0.379
PO2	4.29 (1.147)	4.21-4.36	0.8	6.6	16.5	29.6	31.9	14.5	0.1	-0.39	-0.38	0.175
PO17	3.11 (1.182)	3.03-3.19	6.1	27.3	32.2	20.7	10.7	2.8	0.1	0.36	-0.38	0.265
AC4	3.11 (1.315)	3.03-3.20	7.9	29.9	27.7	16.0	13.5	4.8	0.3	0.44	-0.61	0.363
AC13	3.10 (1.232)	3.02-3.18	7.6	27.6	29.9	20.2	11.2	3.3	0.2	0.35	-0.47	0.473
HE10	2.55 (1.101)	2.47-2.62	15.6	38.7	27.8	11.9	4.9	1.0	0.1	0.66	0.19	0.355
HE21	2.58 (1.122)	2.51-2.66	14.6	38.0	30.4	9.6	5.7	1.6	0.1	0.76	0.45	0.268
ST6	2.81 (1.252)	2.73-2.89	14.7	30.2	28.2	15.0	10.0	1.8	0.1	0.44	-0.47	0.399
ST15	3.85 (1.297)	3.76-3.93	4.0	13.1	20.4	28.7	24.3	9.4	0.1	-0.25	-0.63	0.200

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.164, respectively.

Table A36 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Belgium (first half-sample: n = 884)

	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Achievement	Self-	Security	variance		
		transcendence				
SD11	0.110	0.369	-0.035	0.829		
UN8	-0.151	0.547	0.077	0.714		
UN19	-0.129	0.423	0.130	0.803		
BE12	-0.006	0.422	0.136	0.771		
SEC5	0.122	-0.033	0.614	0.594		
SEC14	0.005	0.160	0.539	0.630		
AC4	0.741	-0.109	0.057	0.487		
AC13	0.706	0.019	0.075	0.465		
HE10	0.242	0.322	-0.026	0.785		
ST6	0.236	0.509	-0.198	0.632		
Factors	Correla	ntions between fac	ctors			
Achievement	_					
Self-transcendence	0.354	_				
Security	-0.036	0.124	_			
-						

Table A37 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Belgium (first half-sample: n = 884)

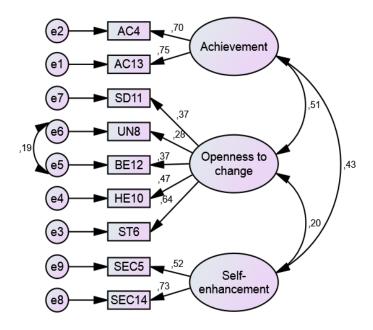
		Subscale	
	Achievement	Self- transcendence	Security
Number of items	2	6	2
Mean (standard error)	3.11 (0.037)	2.32 (0.020)	2.45 (0.030)
95% Confidence interval	3.03-3.18	2.28-2.35	2.39-2.51
Standard deviation	1.112	0.584	0.888
Skewness (standard error)	0.433 (0.082)	0.209 (0.082)	0.702 (0.082)
Kurtosis (standard error)	-0.235 (0.164)	0.624 (0.164)	0.775 (0.164)
Cronbach's alpha reliability coeff.	0.687	0.599	0.548
Split-half reliability coefficient	0.687	0.601	0.548
Average inter-item correlations	0.524	0.203	0.379
Minimum-maximum correlations	0.524-0.524	0.089-0.308	0.379-0.379
Range of correlations	0.000	0.219	0.000
	Average inter-i	tem correlations be	etween subscales
Achievement	_		
Self-transcendence	0.191		
Security	0.260	0.178	_

Table A38 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Belgium (first half-sample: n = 884)

Variables	Principal axis factor	Unique	
	Factor I Self-enhancement	Factor II Self-transcendence	variance
SD11	0.146	0.311	0.848
UN8	-0.110	0.586	0.693
UN19	-0.093	0.494	0.782
BE12	0.036	0.484	0.751
SEC5	0.168	0.230	0.890
SEC14	0.084	0.373	0.831
AC4	0.740	-0.116	0.503
AC13	0.745	0.003	0.444
HE10	0.278	0.259	0.802
ST6	0.264	0.300	0.780
	Correlations bet	tween factors	
Self-enhancement	_		
Self-transcendence	0.375	_	

Table A39 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-9 items): European Social Survey 2014, Belgium (first half-sample: n = 884)

	Principal a			
	Factor I	Factor II	Factor III	Unique
Item	Achievement	Openness to	Security	variance
		change		
SD11	0.018	0.429	-0.003	0.810
UN8	-0.181	0.472	0.119	0.779
BE12	-0.043	0.380	0.167	0.803
SEC5	0.107	-0.075	0.652	0.563
SEC14	-0.032	0.127	0.555	0.642
AC4	0.788	-0.081	0.019	0.422
AC13	0.642	0.097	0.056	0.499
HE10	0.144	0.405	0.001	0.763
ST6	0.140	0.571	-0.164	0.629
Factors	Correl	ations between fac	etors	
Achievement	_			
Openness to change	0.385	_		
Security	0.184	0.301	_	
-				


Table A40 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2014, Belgium (second half-sample: n = 884)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.10	.040	.923	.946	.909	.049 (.037061)
2a	2 first-order correlated factors- without cross-loadings	6.79	.065	.800	.822	.750	.081 (.071091)
2b	2 first-order correlated factors- with cross-loadings	5.40	.056	.851	.873	.810	.071 (.060081)
3a	3 first-order correlated factors- without cross-loadings	4.58	.046	.870	.894	.846	.064 (.053074)
3b	3 first-order correlated factors- with cross-loadings	4.05	.040	.892	.915	.868	.059 (.048070)
3c	3 first-order correlated factors (9 items)-without						
4	cross-loadings 4 first-order correlated factors	3.66	.035	.913	.935	.898	.055 (.043068)
T	of unified values	5.08	.068	.775	.809	.770	.068 (.062073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

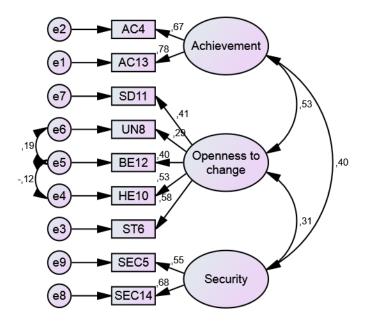

b Lower values indicate better model fit

Fig. A11 Standardized solution for the 3 first-order correlated factors (model 3c-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Belgium (second half-sample: n = 885)

Table A41 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Belgium (N = 1,769)

		Subscale	
	Achievement	Openness to change	Security
Number of items	2	5	2
Mean (standard error)	3.10 (0.027)	2.37 (0.015)	2.46 (0.022)
95% Confidence interval	3.04-3.15	2.34-2.40	2.41-2.50
Standard deviation	1.123	0.620	0.911
Skewness (standard error)	0.379 (0.058)	0.286 (0.058)	0.711 (0.058)
Kurtosis (standard error)	-0.375 (0.116)	0.433 (0.116)	0.528 (0.116)
Cronbach's alpha reliability coeff.	0.687	0.560	0.547
Split-half reliability coefficient	0.687	0.506	0.547
Average inter-item correlations	0.525	0.205	0.378
Minimum-maximum correlations	0.525-0.525	0.110-0.294	0.378-0.378
Range of correlations	0.000	0.184	0.000
	Average inter-it	tem correlations be	etween subscales
Achievement	_		
Openness to change	0.182	_	
Security	0.270	0.161	_

Fig. A12 Standardized solution for the 3 first-order correlated factors (model 3c-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Belgium (N = 1,769)

Table A42 Item analysis of Schwartz scale values of the European Social Survey, 2002: Denmark (first half-sample: n = 753)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.26 (1.228)	2.17-2.35	33.1	29.2	18.3	9.6	6.1	0.8	2.9	0.86	-0.01	0.304
SD11	2.12 (1.085)	2.04-2.19	32.7	36.0	17.5	7.0	3.3	0.7	2.8	1.04	0.86	0.297
UN3	2.40 (1.189)	2.32-2.49	24.0	35.9	16.9	14.6	4.8	0.9	2.9	0.73	-0.16	0.215
UN8	2.37 (1.088)	2.29-2.45	20.7	39.7	20.3	12.4	3.2	0.8	2.9	0.77	0.27	0.333
UN19	2.19 (1.023)	2.11-2.26	27.5	37.6	20.3	9.6	1.7	0.4	2.9	0.77	0.30	0.201
BE12	2.13 (0.954)	2.06-2.20	26.3	43.2	17.7	8.6	1.3	0.1	2.8	0.79	0.38	0.394
BE18	1.60 (0.729)	1.54-1.65	51.1	38.2	5.4	2.1	-	0.3	2.8	1.53	4.13	0.372
TR9	3.74 (1.413)	3.64-3.84	6.1	17.7	17.4	20.2	26.6	9.2	2.9	-0.23	-0.94	0.143
TR20	2.68 (1.352)	2.58-2.78	21.4	30.7	18.9	14.1	10.0	2.5	2.5	0.56	-0.56	0.240
CO7	3.11 (1.358)	3.01-3.21	12.5	24.8	20.7	20.1	16.1	2.9	2.9	0.16	-0.91	0.262
CO16	2.98 (1.405)	2.88-3.08	16.1	27.0	18.1	18.5	14.1	3.5	2.9	0.29	-0.90	0.283
SEC5	2.82 (1.370)	2.72-2.91	19.3	28.0	18.5	16.3	12.9	2.0	3.1	0.37	-0.86	0.242
SEC14	3.17 (1.401)	3.07-3.27	11.4	25.1	19.9	17.8	15.7	5.3	4.8	0.25	-0.85	0.350
PO2	4.32 (1.279)	4.23-4.41	2.7	8.2	13.0	20.7	35.2	17.1	3.1	-0.66	-0.20	0.222
PO17	3.43 (1.290)	3.34-3.53	6.1	20.1	23.8	22.4	20.8	3.9	2.9	-0.00	-0.84	0.297
AC4	3.53 (1.404)	3.43-3.63	8.0	17.7	21.5	19.7	22.8	7.2	3.2	-0.05	-0.93	0.315
AC13	3.30 (1.299)	3.20-3.39	8.0	21.5	23.9	23.5	51.3	4.4	3.5	0.12	-0.71	0.421
HE10	2.63 (1.268)	2.54-2.72	20.3	32.9	18.6	15.7	8.8	1.1	2.7	0.51	-0.60	0.397
HE21	2.67 (1.234)	2.59-2.76	18.6	30.4	23.5	15.8	7.6	1.3	2.8	0.46	-0.46	0.464
ST6	3.13 (1.443)	3.02-3.23	16.9	18.9	21.2	18.9	17.4	3.9	2.9	0.10	-1.00	0.370
ST15	3.65 (1.441)	3.55-3.76	9.4	14.6	18.6	20.7	25.6	8.0	3.1	-0.27	-0.89	0.340

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A43 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Denmark (first half-sample: n = 753)

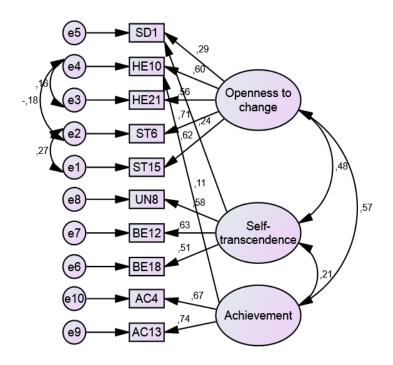
	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Achievement	variance
	change	transcendence		
SD1	0.305	0.275	-0.037	0.767
UN8	0.083	0.487	-0.079	0.743
BE12	-0.064	0.745	-0.051	0.508
BE18	-0.073	0.539	0.063	0.721
AC4	-0.027	-0.066	0.637	0.636
AC13	-0.004	-0.014	0.731	0.475
HE10	0.263	0.160	0.236	0.709
HE21	0.306	0.214	0.179	0.673
ST6	0.764	0.027	-0.052	0.441
ST15	0.850	-0.146	-0.006	0.385
Factors	Corre	lations between fa	ctors	
Openness to change	_			
Self-transcendence	0.498	_		
Achievement	0.587	0.342	_	

Table A44 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Denmark (first half-sample: n = 753)

		Subscale	
	Openness to change	Self- transcendence	Achievement
Number of items	5	3	2
Mean (standard error)	2.87 (0.034)	2.03 (0.025)	3.42 (0.042)
95% Confidence interval	2.80-2.93	1.98-2.08	3.33-3.50
Standard deviation	0.923	0.691	1.153
Skewness (standard error)	0.172 (0.089)	0.601 (0.089)	0.024 (0.089)
Kurtosis (standard error)	-0.327 (0.178)	0.463 (0.178)	-0.526 (0.178)
Cronbach's alpha reliability coeff.	0.734	0.585	0.625
Split-half reliability coefficient	0.689	0.410	0.625
Average inter-item correlations	0.352	0.328	0.456
Minimum-maximum correlations	0.155-0.582	0.249-0.384	0.456-0.456
Range of correlations	0.428	0.134	0.000
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.267	_	
Achievement	0.302	0.201	_

Table A45 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Denmark (first half-sample: n = 753)

	Principal axis factor a		
Variables	•	• • •	Unique
	Factor I	Factor II	variance
	Openness to change	Achievement	
SD1	0.504	-0.035	0. 767
UN8	0.486	-0.155	0.832
BE12	0.538	-0.176	0.796
BE18	0.409	-0.074	0.865
AC4	-0.186	0.704	0.630
AC13	-0.112	0.764	0.508
HE10	0.340	0.262	0.706
HE21	0.433	0.197	0.669
ST6	0.627	0.128	0.492
ST15	0.505	0.231	0.548
	Correlations betw	veen factors	
Openness to change	_		
Achievement	0.614	_	


Table A46 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2002, Denmark (second half-sample: n = 753)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.32	.044	.919	.936	.904	.066 (.055078)
2a	2 first-order correlated factors- without cross-loadings	4.32	.044	.919	.936	.904	.066 (.055078)
2b	2 first-order correlated factors- with cross-loadings	4.06	.040	.929	.945	.912	.064 (.052076)
3a	3 first-order correlated factors- without cross-loadings	3.60	.040	.935	.952	.925	.059 (.047071)
3b	3 first-order correlated factors- with cross-loadings	3.06	.033	.948	.964	.948	.052 (.040065)
4	2 first-order correlated factors of unified values	7.83	.080	.819	.837	.759	.095 (.081110)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

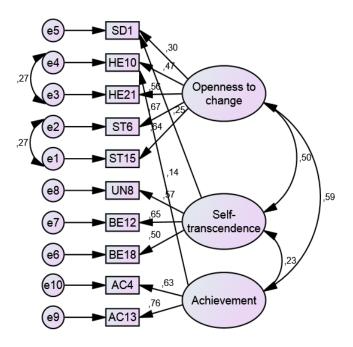

b Lower values indicate better model fit

Fig. A13 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Denmark (second half-sample: n = 753)

Table A47 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Denmark (N = 1,506)

		Subscale	
	Openness to change	Self- transcendence	Achievement
Number of items	5	3	2
Mean (standard error)	2.86 (0.024)	2.04 (0.018)	3.41 (0.030)
95% Confidence interval	2.82-2.91	2.01-2.08	3.35-3.47
Standard deviation	0.930	0.699	1.174
Skewness (standard error)	0.200 (0.063)	0.623 (0.063)	0.005 (0.063)
Kurtosis (standard error)	-0.343 (0.126)	0.320 (0.126)	-0.566 (0.126)
Cronbach's alpha reliability coeff.	0.737	0.580	0.643
Split-half reliability coefficient	0.762	0.404	0.643
Average inter-item correlations	0.355	0.326	0.476
Minimum-maximum correlations	0.200-0.586	0.258-0.373	0.476-0.476
Range of correlations	0.386	0.115	0.000
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-transcendence	0.264	_	
Achievement	0.308	0.199	_

Fig. A14 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Denmark (N = 1,506)

Table A48 Item analysis of Schwartz scale values of the European Social Survey, 2004: Denmark (first half-sample: n = 743)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.42 (1.225)	2.33-2.51	26.5	30.1	20.9	13.6	5.7	0.9	2.3	0.65	-0.32	0.241
SD11	2.14 (1.099)	2.06-2.22	32.6	36.7	15.3	10.4	3.0	0.4	1.6	0.91	0.28	0.334
UN3	2.31 (1.173)	2.22-2.39	27.6	35.0	17.0	12.0	4.8	0.7	3.0	0.81	-0.01	0.254
UN8	2.44 (1.140)	2.35-2.52	20.3	39.3	19.4	13.3	5.2	0.5	1.9	0.70	-0.13	0.312
UN19	2.13 (1.033)	2.06-2.21	29.5	40.1	16.7	8.7	2.6	0.3	2.2	0.91	0.50	0.220
BE12	2.22 (0.999)	2.15-2.29	24.9	40.8	20.7	10.2	1.7	0.1	1.5	0.67	0.01	0.392
BE18	1.58 (0.698)	1.53-1.63	52.4	38.0	6.5	1.3	0.3	-	1.6	1.23	1.97	0.409
TR9	3.73 (1.325)	3.64-3.83	4.3	17.8	18.0	24.5	25.0	7.4	3.0	-0.22	-0.83	0.090
TR20	2.67 (1.371)	2.58-2.77	22.1	31.1	17.8	14.4	10.1	2.7	1.9	0.57	-0.59	0.225
CO7	3.08 (1.334)	2.99-3.18	10.9	26.9	23.6	18.6	12.9	4.2	3.0	0.32	-0.68	0.228
CO16	2.76 (1.330)	2.66-2.85	16.2	35.4	18.7	15.7	7.9	3.9	2.2	0.64	-0.32	0.254
SEC5	2.83 (1.384)	2.73-2.93	19.0	28.7	18.6	16.7	12.8	2.4	1.9	0.39	-0.85	0.309
SEC14	3.06 (1.345)	2.96-3.16	12.5	25.8	22.2	17.6	15.2	3.0	3.6	0.25	-0.83	0.342
PO2	4.25 (1.225)	4.16-4.34	2.6	8.2	13.1	24.8	37.1	12.5	1.7	-0.68	-0.07	0.194
PO17	3.29 (1.266)	3.20-3.38	6.5	25.2	21.9	24.2	17.2	2.7	2.3	0.09	-0.87	0.395
AC4	3.57 (1.395)	3.47-3.67	7.9	18.6	18.7	21.0	25.6	5.7	2.6	-0.20	-0.97	0.322
AC13	3.29 (1.311)	3.19-3.38	7.1	24.4	24.6	19.5	17.8	4.0	2.6	0.18	-0.83	0.427
HE10	2.64 (1.245)	2.55-2.73	18.0	35.9	19.0	15.5	8.1	1.3	2.2	0.57	-0.43	0.386
HE21	2.80 (1.252)	2.71-2.89	15.9	29.1	24.5	17.2	10.2	1.1	2.0	0.34	-0.68	0.370
ST6	3.26 (1.417)	3.15-3.36	13.1	19.8	21.5	20.9	18.8	4.3	1.6	0.03	-0.98	0.357
ST15	3.70 (1.421)	3.60-3.81	8.1	15.6	17.1	22.1	27.6	7.7	1.9	-0.31	-0.89	0.295

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.179, respectively.

Table A49 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Denmark (first half-sample: n = 743)

	Pı	rincipal axis factor	analysis (factors	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Self-	Hedonism	Security	variance
	Enhancement	transcendence			
SD11	0.151	0.258	0.139	-0.062	0.821
UN8	-0.046	0.603	-0.067	-0.020	0.683
BE12	-0.082	0.665	-0.036	0.092	0.570
BE18	0.023	0.546	0.040	0.057	0.655
SEC5	0.061	-0.035	0.043	0.674	0.532
SEC14	0.024	0.117	0.012	0.546	0.653
PO17	0.590	0.004	-0.070	0.097	0.660
AC4	0.659	-0.072	0.036	-0.010	0.570
AC13	0.782	-0.007	-0.037	0.017	0.415
HE10	0.135	-0.031	0.623	0.026	0.524
HE21	-0.144	-0.033	0.849	0.049	0.397
ST6	0.198	0.266	0.195	-0.204	0.734
Factors		Correlations be	tween factors		
Self-enhancement	_				
Self-transcendence	0.309	_			
Hedonism	0.501	0.443	_		
Security	0.165	0.206	0.068	_	

Table A50 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Denmark (first half-sample: n = 743)

		Sub	scale	
	Self- enhancement	Self- transcendence	Hedonism	Security
Number of items	3	5	2	2
Mean (standard error)	3.38 (0.038)	2.33 (0.025)	2.72 (0.040)	2.94 (0.042)
95% Confidence interval	3.31-3.46	2.28-2.37	2.64-2.80	2.86-3.03
Standard deviation	1.046	0.673	1.085	1.139
Skewness (standard error)	0.014 (0.090)	0.305 (0.090)	0.475 (0.090)	0.255 (0.090)
Kurtosis (standard error)	-0.585 (0.179)	-0.083 (0.179)	-0.183 (0.179)	-0.617 (0.179)
Cronbach's alpha reliability coeff.	0.697	0.589	0.675	0.565
Split-half reliability coefficient	0. 551	0.554	0.675	0.565
Average inter-item correlations	0.435	0.248	0.510	0.394
Minimum-maximum correlations	0.343-0.510	0.129-0.385	0.510-0.510	0.394-0.394
Range of correlations	0.167	0.257	0.000	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-enhancement				
Self-transcendence	0.204	_		
Hedonism	0.315	0.236	_	
Security	0.248	0.178	0.214	_

Table A51 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Denmark (first half-sample: n = 743)

_	Principal a	xis factor analysis	(factors)	
Item	Factor I Self-	Factor II Self-	Factor III Security	Unique variance
	enhancement	transcendence		
SD11	0.118	0.370	-0.045	0.815
UN8	-0.143	0.457	0.070	0.813
BE12	-0.178	0.544	0.174	0.697
BE18	-0.069	0.541	0.124	0.697
SEC5	0.135	-0.018	0.601	0.615
SEC14	0.048	0.093	0.600	0.601
PO17	0.565	-0.047	0.138	0.674
AC4	0.681	-0.039	0.003	0.558
AC13	0.751	-0.029	0.067	0.444
HE10	0.285	0.438	-0.067	0.626
HE21	0.108	0.513	-0.069	0.686
ST6	0.171	0.422	-0.193	0.726
Factors	Corre	lations between fac	ctors	
Self-enhancement	_			
Self-transcendence	0.438	_		
Security	0.068	0.179	_	

Table A52 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Denmark (first half-sample: n = 743)

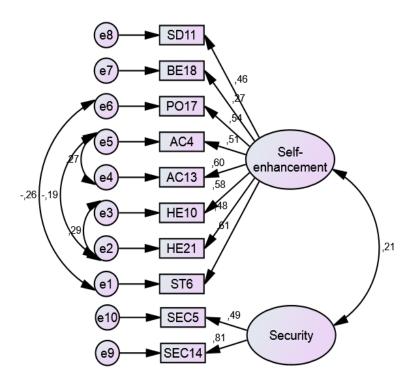

Variables	Principal axis factor an	T.T.	
Variables	Factor I Self-enhancement	Factor II Security	Unique variance
SD11	0.394	-0.046	0.854
BE18	0.298	0.102	0.882
SEC5	-0.049	0.713	0.510
SEC14	0.000	0.546	0.711
PO17	0.455	0.156	0.724
AC4	0.568	0.039	0.663
AC13	0.627	0.083	0.567
HE10	0.607	-0.039	0.645
HE21	0.484	-0.041	0.777
ST6	0.497	-0.181	0.775
	Correlations between	een factors	
Self-enhancement	_		
Security	0.327	_	

Table A53 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2004, Denmark (second half-sample: n = 744)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.01	.044	.913	.939	.911	.052 (.042062)
2	2 first-order correlated factors (10 items)-without cross-						
	loadings	3.08	.042	.927	.949	.923	.053 (.041065)
3a	3 first-order correlated factors-						
	without cross-loadings	3.86	.054	.880	.907	.873	.062 (.053072)
3b	3 first-order correlated factors-						
	with cross-loadings	3.94	.054	.880	.907	.869	.063 (.054073)
4	4 first-order correlated factors-						
	without cross-loadings	3.67	.050	.894	.919	.882	.060 (.050070)
5	2 first-order correlated factors of unified values	2.67	.036	.941	.962	.944	.047 (.032063)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

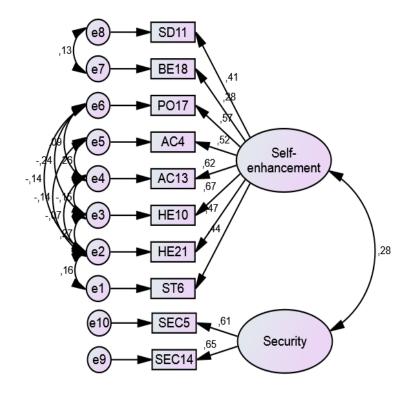


Fig. A15 Standardized solution for the 2 first-order correlated factors (model 2-10 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Denmark (first half-sample: n = 744)

a Higher values indicate better model fit

Table A54 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Denmark (N = 1,487)

	Subscale			
	Self-enhancement	Security		
Number of items	8	2		
Mean (standard error)	2.82 (0.019)	2.93 (0.029)		
95% Confidence interval	2.78-2.85	2.87-2.98		
Standard deviation	0.726	1.129		
Skewness (standard error)	0.216 (0.063)	0.237 (0.063)		
Kurtosis (standard error)	-0.101 (0.127)	-0.615 (0.127)		
Cronbach's alpha reliability coeff.	0.731	0.564		
Split-half reliability coefficient	0.689	0.564		
Average inter-item correlations	0.250	0.393		
Minimum-maximum correlations	0.095-0.499	0.393-0.393		
Range of correlations	0.404	0.000		
	Average inter-i	tem correlations		
	between	subscales		
Self-enhancement	_			
Security	0.196	_		

Fig. A16 Standardized solution for the 2 first-order correlated factors (model 2-10 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Denmark (N = 1,487)

Table A55 Item analysis of Schwartz scale values of the European Social Survey, 2006: Denmark (first half-sample: n = 752)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.43 (1.155)	2.35-2.52	22.2	34.8	21.5	12.6	5.7	0.4	2.7	0.64	-0.26	0.287
SD11	2.19 (1.047)	2.11-2.26	27.5	39.4	19.0	8.8	2.5	0.5	2.3	0.89	0.59	0.279
UN3	2.26 (1.175)	2.18-2.35	27.4	39.6	14.1	9.8	5.5	0.9	2.7	1.00	0.43	0.209
UN8	2.42 (1.062)	2.35-2.50	17.6	41.8	21.8	11.8	4.7	0.1	2.3	0.69	-0.04	0.325
UN19	2.03 (0.943)	1.97-2.10	30.2	44.3	15.2	6.3	1.6	0.3	2.3	1.03	1.20	0.271
BE12	2.14 (0.927)	2.08-2.21	24.1	46.1	18.5	7.6	1.2	0.3	2.3	0.85	0.81	0.414
BE18	1.63 (0.651)	1.59-1.68	44.7	46.4	5.2	1.5	-	-	2.3	0.86	1.03	0.373
TR9	3.56 (1.311)	3.46-3.65	4.1	22.3	21.4	20.2	25.3	4.5	2.1	-0.06	-1.03	0.136
TR20	2.68 (1.380)	2.58-2.78	20.3	34.3	17.4	12.4	10.0	3.6	2.0	0.68	-0.42	0.199
CO7	3.08 (1.331)	2.98-3.17	8.9	32.6	19.4	18.6	14.0	3.9	2.7	0.38	-0.77	0.240
CO16	2.82 (1.253)	2.88-3.08	12.4	35.2	22.1	15.7	10.4	2.0	2.3	0.52	-0.48	0.272
SEC5	2.98 (1.327)	2.89-3.08	12.9	29.4	20.2	19.8	12.8	2.7	2.3	0.30	-0.80	0.262
SEC14	3.13 (1.327)	3.03-3.22	12.0	22.5	23.8	20.1	14.9	3.1	3.7	0.16	-0.78	0.367
PO2	4.37 (1.169)	4.28-4.45	2.0	6.1	12.6	23.4	40.0	13.7	2.1	-0.76	0.21	0.296
PO17	3.28 (1.179)	3.19-3.36	4.1	24.5	28.2	22.1	16.1	2.1	2.9	0.20	-0.71	0.355
AC4	3.74 (1.265)	3.64-3.83	3.6	15.2	23.5	23.3	25.9	6.1	2.4	-0.19	-0.76	0.306
AC13	3.26 (1.234)	3.17-3.35	6.0	22.9	29.8	18.2	16.9	2.9	3.3	0.22	-0.67	0.451
HE10	2.74 (1.243)	2.66-2.83	16.6	30.6	23.9	15.6	10.0	0.9	2.4	0.40	-0.63	0.425
HE21	2.65 (1.134)	2.57-2.73	14.6	35.8	25.0	14.6	6.8	0.5	2.7	0.49	-0.34	0.436
ST6	3.26 (1.346)	3.16-3.36	11.2	20.6	21.3	21.9	20.3	2.1	2.5	-0.05	-0.99	0.373
ST15	3.70 (1.337)	3.60-3.79	6.4	15.8	18.2	23.5	28.2	5.2	2.7	-0.34	-0.80	0.337

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A56 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Denmark (first half-sample: n = 752)

	Principal a	xis factor analysi	s (factors)			
	Factor I	Factor II	Factor III	Unique		
Item	Openness to	Self-	Self-	variance		
	change	enhancement	transcendence			
LINIO	0.040	0.021	0.250	0.041		
UN8	0.048	-0.021	0.379	0.841		
BE12	-0.012	-0.069	0.649	0.604		
BE18	0.087	-0.029	0.504	0.706		
SEC14	-0.201	0.171	0.452	0.806		
PO17	0.015	0.489	0.006	0.752		
AC4	0.060	0.644	-0.070	0.568		
AC13	0.007	0.796	0.077	0.323		
HE10	0.485	0.082	0.162	0.611		
HE21	0.469	-0.057	0.330	0.554		
ST6	0.751	-0.015	-0.044	0.475		
ST15	0.792	0.067	-0.163	0.422		
Factors	Correl	Correlations between factors				
Openness to change	_					
Self-enhancement	0.469	_				
Self-transcendence	0.482	0.259	_			

Table A57 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Denmark (first half-sample: n = 752)

		Subscale	
	Openness to	Self-	Self-
	change	enhancement	transcendence
Number of items	4	3	4
Mean (standard error)	3.09 (0.035)	3.42 (0.035)	2.33 (0.024)
95% Confidence interval	3.02-3.16	3.36-3.49	2.28-2.38
Standard deviation	0.969	0.962	0.658
Skewness (standard error)	0.028 (0.089)	0.118 (0.089)	0.267 (0.089)
Kurtosis (standard error)	-0.493 (0.178)	-0.384 (0.178)	-0.135 (0.178)
Cronbach's alpha reliability coeff.	0.762	0.687	0.529
Split-half reliability coefficient	0.805	0.515	0.526
Average inter-item correlations	0.447	0.421	0.254
Minimum-maximum correlations	0.369-0.573	0.328-0.536	0.132-0.430
Range of correlations	0.204	0.208	0.298
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.319	_	
Self-transcendence	0.247	0.190	_

Table A58 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Denmark (first half-sample: n = 752)

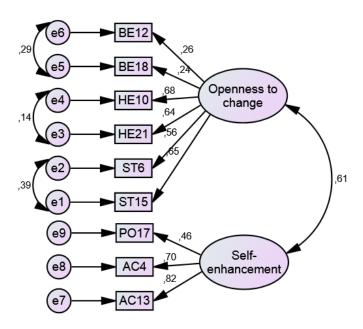

	Principal axis factor	analysis (factors)	
Variables	1	• , , , ,	Unique
	Factor I	Factor II	variance
	Openness to change	Self-enhancement	
BE12	0.349	-0.076	0. 900
BE18	0.403	-0.052	0.857
PO17	-0.035	0.521	0.747
AC4	-0.062	0.707	0.542
AC13	0.004	0.784	0.382
HE10	0.611	0.061	0.583
HE21	0.711	-0.101	0.561
ST6	0.662	0.041	0.532
ST15	0.618	0.125	0.521
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.534	_	

Table A59 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2006, Denmark (second half-sample: n = 753)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2	1 first-order uncorrelated factor 2 first-order correlated factors (9 items)-without cross-	3.65	.043	.934	.950	.917	.059 (.048071)
2	loadings	2.37	.031	.966	.980	.969	.043 (.028057)
3a	3 first-order correlated factors- without cross-loadings	3.37	.043	.928	.947	.926	.056 (.046067)
3b	3 first-order correlated factors- with cross-loadings	3.17	.041	.934	.953	.932	.054 (.043065)
4	2 first-order correlated factors of unified values	4.41	.062	.917	.934	.903	.067 (.053082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

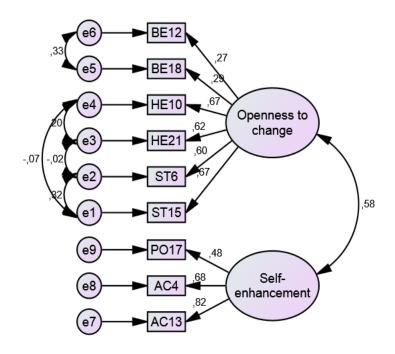


Fig. A17 Standardized solution for the 2 first-order correlated factors (model 2-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Denmark (second half-sample: n = 753)

a Higher values indicate better model fit

Table A60 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Denmark (N = 1,505)

	Su	ıbscale
	Openness to change	Self-enhancement
Number of items	6	3
Mean (standard error)	2.71 (0.019)	3.38 (0.025)
95% Confidence interval	2.67-2.75	3.33-3.43
Standard deviation	0.742	0.985
Skewness (standard error)	-0.024 (0.063)	0.026 (0.063)
Kurtosis (standard error)	-0.377 (0.126)	-0.496 (0.126)
Cronbach's alpha reliability coeff.	0.731	0.688
Split-half reliability coefficient	0.653	0.508
Average inter-item correlations	0.303	0.424
Minimum-maximum correlations	0.136-0.593	0.325-0.556
Range of correlations	0.457	0.230
	Average inter	-item correlations
	betwee	n subscales
Openness to change	_	
Self-enhancement	0.261	_

Fig. A18 Standardized solution for the 2 first-order correlated factors (model 2-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Denmark (N = 1,505)

Table A61 Item analysis of Schwartz scale values of the European Social Survey, 2008: Denmark (first half-sample: n = 805)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.38 (1.187)	2.30-2.46	26.2	32.4	22.5	10.8	5.5	0.9	1.7	0.73	-0.06	0.338
SD11	2.18 (1.125)	2.10-2.25	32.5	33.9	18.0	9.3	4.0	0.4	1.9	0.87	0.17	0.372
UN3	2.30 (1.166)	2.22-2.38	27.0	36.9	17.9	10.7	4.3	1.1	2.1	0.90	0.33	0.224
UN8	2.33 (1.045)	2.26-2.40	21.0	40.9	22.1	10.6	2.7	0.6	2.1	0.77	0.41	0.357
UN19	2.09 (0.936)	2.02-2.15	28.2	42.1	19.6	6.3	1.2	0.2	2.2	0.84	0.73	0.282
BE12	2.05 (0.914)	1.99-2.12	28.7	44.5	17.4	6.5	0.9	0.2	1.9	0.88	0.86	0.439
BE18	1.61 (0.683)	1.56-1.66	47.8	43.5	5.0	1.5	0.1	0.1	2.0	1.29	3.34	0.411
TR9	3.53 (1.375)	3.44-3.63	7.2	18.8	23.7	18.0	24.8	5.6	1.9	-0.09	-0.97	0.184
TR20	2.66 (1.333)	2.56-2.75	20.9	31.4	22.1	11.6	9.3	2.9	1.9	0.64	-0.33	0.289
CO7	3.02 (1.334)	2.92-3.11	11.7	28.8	23.6	15.0	14.5	3.2	3.1	0.37	-0.72	0.280
CO16	2.76 (1.291)	2.67-2.85	16.6	33.4	19.8	15.7	11.7	1.1	1.7	0.45	-0.74	0.359
SEC5	2.83 (1.306)	2.74-2.92	15.4	30.7	23.7	14.2	11.9	2.1	2.0	0.45	-0.61	0.335
SEC14	3.00 (1.274)	2.92-3.09	10.8	28.4	25.1	17.5	12.9	2.4	2.9	0.33	-0.65	0.429
PO2	4.26 (1.217)	4.18-4.35	2.5	6.8	16.1	21.5	38.4	12.7	2.0	-0.65	-0.12	0.254
PO17	3.24 (1.237)	3.15-3.32	7.2	22.5	28.6	19.8	17.4	2.0	2.6	0.12	-0.76	0.440
AC4	3.49 (1.351)	3.40-3.59	6.1	21.0	23.9	19.4	21.9	5.8	2.0	0.01	-0.93	0.313
AC13	3.16 (1.260)	3.07-3.24	8.0	25.2	28.3	18.6	14.7	3.0	2.2	0.26	-0.65	0.429
HE10	2.56 (1.203)	2.48-2.64	19.3	35.8	21.7	13.2	7.0	1.1	2.0	0.62	-0.23	0.439
HE21	2.66 (1.151)	2.58-2.74	15.8	33.5	24.5	18.0	5.6	0.7	1.9	0.40	-0.46	0.443
ST6	3.10 (1.361)	3.01-3.20	14.5	21.2	22.4	20.7	17.0	2.0	2.1	0.06	-0.98	0.408
ST15	3.72 (1.414)	3.62-3.82	6.6	16.8	19.0	20.6	26.0	9.1	2.0	-0.22	-0.92	0.335

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.086 and 0.172, respectively.

Table A62 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Denmark (first half-sample: n = 805)

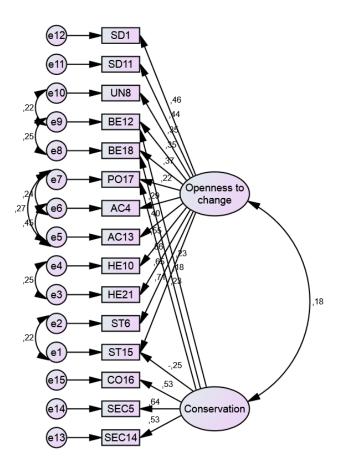
	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Conservation	variance
	change	enhancement		
SD1	0.501	-0.060	0.032	0.771
SD11	0.489	0.021	0.046	0.742
UN8	0.460	-0188	0.183	0.789
BE12	0.517	-0.173	0.295	0.672
BE18	0.455	-0.082	0.226	0.748
CO16	-0.021	0.087	0.596	0.639
SEC5	-0.042	0.152	0.587	0.638
SEC14	0.193	0.069	0.492	0.676
PO17	0.071	0.462	0.216	0.691
AC4	-0.140	0.733	0.043	0.547
AC13	-0.016	0.677	0.105	0.537
HE10	0.362	0.309	0.032	0.653
HE21	0.436	0.201	0.018	0.677
ST6	0.647	0.107	-0.213	0.490
ST15	0.550	0.184	-0.291	0.519
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Self-enhancement	0.514	_		
Conservation	0.126	0.030	_	

Table A63 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Denmark (first half-sample: n = 805)

		Subscale	
	Openness to change	Self- enhancement	Conservation
Number of items	9	3	3
Mean (standard error)	2.51 (0.023)	3.30 (0.035)	2.86 (0.034)
95% Confidence interval	2.46-2.56	3.23-3.36	2.79-2.93
Standard deviation	0.667	0.992	0.943
Skewness (standard error)	0.122 (0.086)	0.081 (0.086)	0.266 (0.086)
Kurtosis (standard error)	-0.245 (0.172)	-0.358 (0.172)	-0.394 (0.172)
Cronbach's alpha reliability coeff.	0.760	0.662	0.617
Split-half reliability coefficient	0.598	0.501	0.543
Average inter-item correlations	0.264	0.395	0.349
Minimum-maximum correlations	0.099-0.538	0.317-0.496	0.308-0.383
Range of correlations	0.438	0.179	0.074
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.236	_	
Conservation	0.201	0.237	_

Table A64 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Denmark (first half-sample: n = 805)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.401	0.034	0. 831
SD11	0.454	0.057	0.777
UN8	0.235	0.163	0.899
BE12	0.276	0.273	0.810
BE18	0.307	0.223	0.821
CO16	-0.080	0.616	0.639
SEC5	-0.050	0.622	0.626
SEC14	0.127	0.505	0.696
PO17	0.374	0.270	0.735
AC4	0.391	0.114	0.811
AC13	0.463	0.170	0.716
HE10	0.571	0.077	0.646
HE21	0.557	0.051	0.672
ST6	0.717	-0.185	0.519
ST15	0.719	-0.267	0.511
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.257	_	


Table A65 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2008, Denmark (second half-sample: n = 805)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2	1 first-order uncorrelated factor 2 first-order correlated factors	3.65	.043	.934	.950	.917	.059 (.048071)
3a	(9 items)-without cross- loadings 3 first-order correlated factors-	2.37	.031	.966	.980	.969	.043 (.028057)
3b	without cross-loadings 3 first-order correlated factors-	3.37	.043	.928	.947	.926	.056 (.046067)
4	with cross-loadings 2 first-order correlated factors	3.17	.041	.934	.953	.932	.054 (.043065)
-	of unified values	4.41	.062	.917	.934	.903	.067 (.053082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

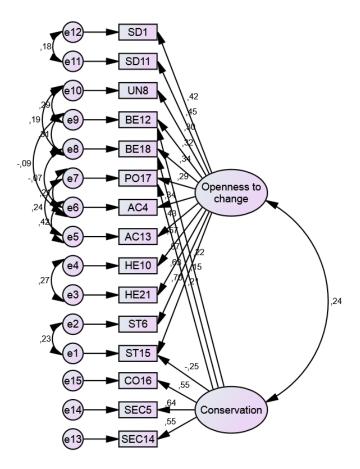

b Lower values indicate better model fit

Fig. A19 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Denmark (second half-sample: n = 805)

Table A66 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Denmark (N = 1,610)

	Subscale			
	Openness to change	Conservation		
Number of items	12	3		
Mean (standard error)	2.72 (0.016)	2.89 (0.024)		
95% Confidence interval	2.69-2.76	2.85-2.94		
Standard deviation	0.633	0.980		
Skewness (standard error)	0.026 (0.061)	0.269 (0.061)		
Kurtosis (standard error)	-0.221 (0.122)	-0.345 (0.122)		
Cronbach's alpha reliability coeff.	0.780	0.601		
Split-half reliability coefficient	0.634	0.510		
Average inter-item correlations	0.230	0.334		
Minimum-maximum correlations	0.040-0.549	0.278-0.366		
Range of correlations	0.509	0.088		
	Average inter	-item correlations		
	betwee	n subscales		
Openness to change	_			
Conservation	0.187	_		

Fig. A20 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Denmark (N = 1,610)

Table A67 Item analysis of Schwartz scale values of the European Social Survey, 2010: Denmark (first half-sample: n = 788)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.30 (1.178)	2.22-2.39	30.5	30.1	22.6	11.2	4.4	0.6	0.6	0.69	-0.19	0.335
SD11	2.16 (1.191)	2.07-2.24	36.0	32.7	16.1	8.4	5.6	0.5	0.6	0.97	0.23	0.299
UN3	2.08 (1.137)	2.00-2.16	36.9	35.7	14.3	8.1	3.3	1.0	0.6	1.14	0.93	0.270
UN8	2.24 (1.109)	2.17-2.32	26.9	40.9	16.5	11.2	3.2	0.8	0.6	0.89	0.39	0.275
UN19	2.06 (1.008)	1.99-2.14	32.1	41.1	16.9	6.9	2.2	0.4	0.5	1.00	0.91	0.221
BE12	1.94 (0.901)	1.88-2.00	35.4	41.9	15.6	5.6	0.9	-	0.6	0.87	0.45	0.329
BE18	1.55 (0.673)	1.50-1.60	52.5	41.5	3.4	1.5	0.4	-	0.6	1.43	3.38	0.297
TR9	3.50 (1.361)	3.40-3.59	6.1	22.1	22.0	20.3	24.0	5.2	0.4	-0.02	-1.02	0.125
TR20	2.75 (1.418)	2.65-2.85	21.6	28.4	22.0	12.7	10.8	4.1	0.5	0.56	-0.58	0.207
CO7	2.93 (1.280)	2.84-3.02	11.5	32.9	21.4	18.4	12.7	1.8	1.3	0.36	-0.76	0.276
CO16	2.67 (1.282)	2.58-2.76	18.5	34.3	21.4	14.0	9.5	1.6	0.6	0.57	-0.47	0.268
SEC5	2.76 (1.376)	2.67-2.86	19.8	30.8	19.4	14.0	13.5	1.9	0.6	0.46	-0.82	0.289
SEC14	2.93 (1.251)	2.85-3.02	9.6	33.8	23.1	16.4	11.0	2.7	3.4	0.49	-0.47	0.327
PO2	4.33 (1.175)	4.25-4.41	2.4	5.8	14.0	23.1	42.3	11.9	0.5	-0.80	0.24	0.289
PO17	3.16 (1.288)	3.07-3.25	8.5	26.5	26.3	17.8	17.6	2.2	1.1	0.20	-0.87	0.350
AC4	3.56 (1.378)	3.46-3.66	8.2	17.1	19.9	24.6	23.9	5.6	0.6	-0.20	-0.89	0.345
AC13	3.30 (1.309)	3.21-3.39	7.2	24.2	24.5	21.1	18.8	3.4	0.8	0.11	-0.89	0.411
HE10	2.61 (1.289)	2.52-2.70	21.1	34.4	18.7	14.2	10.2	0.9	0.6	0.55	-0.64	0.430
HE21	2.57 (1.168)	2.48-2.65	18.3	35.5	24.7	13.6	6.2	0.9	0.8	0.57	-0.23	0.418
ST6	3.11 (1.436)	3.00-3.21	17.1	20.6	19.9	21.2	17.9	2.8	0.5	0.06	-1.09	0.418
ST15	3.62 (1.428)	3.52-3.72	9.3	15.7	18.8	21.8	27.2	6.5	0.8	-0.27	-0.94	0.323

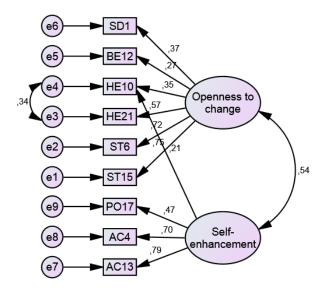
Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.087 and 0.174, respectively.

Table A68 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Denmark (first half-sample: n = 788)

XX ' 11	Principal axis factor	** '	
Variables	Factor I Openness to change	Factor II Self-enhancement	Unique variance
SD1	0.372	0.060	0. 835
BE12	0.249	-0.031	0.945
PO17	-0.045	0.531	0.740
AC4	0.028	0.642	0.568
AC13	-0.004	0.728	0.474
HE10	0.383	0.250	0.691
HE21	0.488	0.050	0.734
ST6	0.814	-0.090	0.405
ST15	0.695	-0.016	0.528
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.517	_	

Table A69 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Denmark (first half-sample: n = 788)

	Su	ibscale
	Openness to change	Self-enhancement
Number of items	6	3
Mean (standard error)	2.69 (0.028)	3.34 (0.036)
95% Confidence interval	2.64-2.75	3.27-3.41
Standard deviation	0.790	1.023
Skewness (standard error)	0.144 (0.087)	0.068 (0.087)
Kurtosis (standard error)	-0.419 (0.174)	-0.653 (0.174)
Cronbach's alpha reliability coeff.	0.702	0.660
Split-half reliability coefficient	0.658	0.503
Average inter-item correlations	0.270	0.393
Minimum-maximum correlations	0.093-0.554	0.320-0.492
Range of correlations	0.461	0.173
	Average inter	-item correlations
	betwee	n subscales
Openness to change	_	
Self-enhancement	0.237	_


Table A70 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of four models: European Social Survey 2010, Denmark (second half-sample: n = 788)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2a	1 first-order uncorrelated factor 2 first-order correlated factors-	3.45	.038	.937	.954	.929	.056 (.044068)
	without cross-loadings	3.20	.038	.947	.963	.947	.053 (.040066)
2b	2 first-order correlated factors- with cross-loadings	2.51	.023	.960	.976	.963	.044 (.030058)
3	2 first-order correlated factors of unified values	3.95	.050	.916	.935	.905	.061 (.047076)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

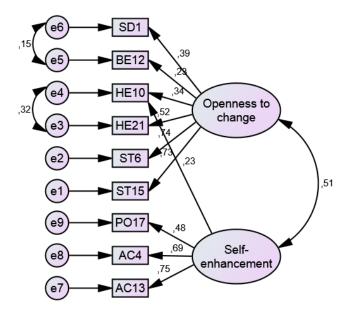

b Lower values indicate better model fit

Fig. A21 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Denmark (second half-sample: n = 788)

Table A71 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Denmark (N = 1,576)

	Subscale				
	Openness to change	Self-enhancement			
Number of items	6	3			
Mean (standard error)	2.71 (0.020)	3.33 (0.026)			
95% Confidence interval	2.67-2.75	3.28-3.39			
Standard deviation	0.795	1.033			
Skewness (standard error)	0.187 (0.062)	0.106 (0.062)			
Kurtosis (standard error)	-0.362 (0.123)	-0.605 (0.123)			
Cronbach's alpha reliability coeff.	0.711	0.671			
Split-half reliability coefficient	0.775	0.505			
Average inter-item correlations	0.281	0.405			
Minimum-maximum correlations	0.109-0.549	0.324-0.518			
Range of correlations	0.440	0.194			
	Average inter	-item correlations			
	betwee	n subscales			
Openness to change	_				
Self-enhancement	0.187	_			

Fig. A22 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Denmark (N = 1,576)

Table A72 Item analysis of Schwartz scale values of the European Social Survey, 2012: Denmark (first half-sample: n = 825)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.41 (1.152)	2.33-2.49	23.4	33.7	24.0	11.9	4.1	1.1	1.8	0.70	0.07	0.345
SD11	2.16 (1.085)	2.08-2.23	31.4	35.6	19.9	7.3	3.8	0.4	1.7	0.91	0.45	0.330
UN3	2.11 (1.065)	2.04-2.18	31.9	38.2	17.3	6.4	3.8	0.4	2.1	1.03	0.80	0.255
UN8	2.28 (0.996)	2.21-2.35	20.7	44.2	21.2	9.0	2.8	0.2	1.8	0.80	0.47	0.308
UN19	2.17 (1.033)	2.10-2.24	28.0	39.2	20.7	6.9	3.0	0.4	1.8	0.89	0.64	0.222
BE12	2.00 (0.911)	1.94-2.06	31.8	42.8	16.6	5.7	1.1	0.1	1.9	0.90	0.78	0.404
BE18	1.57 (0.702)	1.52-1.62	52.6	38.7	5.0	1.6	0.2	0.1	1.8	1.49	3.76	0.354
TR9	3.32 (1.346)	3.23-3.41	8.4	22.7	23.0	20.0	19.5	4.1	2.3	0.08	-0.91	0.126
TR20	2.80 (1.391)	2.70-2.89	19.2	29.6	20.6	14.4	11.0	3.6	1.6	0.51	-0.63	0.210
CO7	2.86 (1.300)	2.77-2.95	14.5	30.5	23.0	15.5	12.2	1.9	2.2	0.41	-0.67	0.220
CO16	2.65 (1.221)	2.57-2.74	16.8	34.5	24.7	12.5	8.1	1.6	1.7	0.61	-0.21	0.301
SEC5	2.90 (1.353)	2.81-2.99	16.8	26.1	23.2	17.7	11.4	3.0	1.8	0.35	-0.71	0.291
SEC14	2.82 (1.234)	2.74-2.90	13.6	31.0	25.2	15.9	9.5	1.8	3.0	0.44	-0.43	0.395
PO2	4.13 (1.260)	4.04-4.21	3.3	7.4	19.3	24.5	31.4	12.6	1.6	-0.48	-0.33	0.291
PO17	3.28 (1.214)	3.19-3.36	5.5	23.3	28.6	21.5	16.6	2.4	2.2	0.16	-0.71	0.374
AC4	3.41 (1.325)	3.32-3.50	9.0	16.4	25.9	21.6	21.1	3.8	2.3	-0.07	-0.81	0.375
AC13	3.05 (1.226)	2.97-3.13	9.1	26.7	28.5	19.2	12.1	2.2	2.3	0.29	-0.56	0.511
HE10	2.66 (1.218)	2.58-2.75	16.2	36.1	21.5	15.0	8.4	1.1	1.7	0.55	-0.43	0.431
HE21	2.61 (1.180)	2.53-2.69	17.8	34.2	24.2	14.7	6.4	1.0	1.7	0.52	-0.31	0.450
ST6	3.06 (1.400)	2.97-3.16	16.0	22.1	21.5	20.1	15.4	3.2	1.8	0.15	-0.95	0.400
ST15	3.46 (1.429)	3.36-3.55	10.1	18.5	20.0	20.8	22.7	6.1	1.8	-0.08	-0.99	0.426

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A73 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Denmark (first half-sample: n = 825)

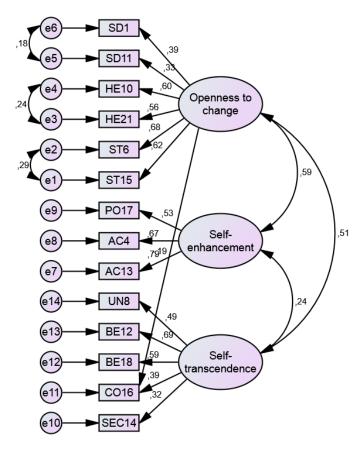
	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Self-	Self-	variance			
	change	enhancement	transcendence				
SD1	0.344	0.052	0.105	0.824			
SD11	0.359	0.049	0.102	0.816			
UN8	0.169	-0119	0.414	0.791			
BE12	0.160	-0.103	0.591	0.607			
BE18	0.064	0.000	0.484	0.742			
CO16	-0.291	0.182	0.469	0.749			
SEC14	0.040	0.057	0.439	0.774			
PO17	-0.088	0.606	0.085	0.644			
AC4	0.125	0.669	-0.144	0.503			
AC13	0.186	0.618	0.043	0.449			
HE10	0.489	0.122	0.059	0.663			
HE21	0.528	0.024	0.109	0.659			
ST6	0.781	-0.070	-0.038	0.545			
ST15	0.794	0.024	-0.095	0.388			
Factors	Correlations between factors						
Openness to change	_						
Self-enhancement	0.487	_					
Self-transcendence	0.312	0.295	_				

Table A74 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Denmark (first half-sample: n = 825)

	Subscale					
	Openness to	Self-	Self-			
	change	enhancement	transcendence			
Number of items	6	3	5			
Mean (standard error)	2.73 (0.029)	3.25 (0.035)	2.26 (0.022)			
95% Confidence interval	2.67-2.78	3.18-3.31	2.22-2.31			
Standard deviation	0.842	0.993	0.633			
Skewness (standard error)	0.307 (0.085)	0.040 (0.085)	0.376 (0.085)			
Kurtosis (standard error)	-0.222 (0.170)	-0.366 (0.170)	0.045 (0.170)			
Cronbach's alpha reliability coeff.	0.759	0.700	0.584			
Split-half reliability coefficient	0.695	0.545	0.464			
Average inter-item correlations	0.339	0.438	0.238			
Minimum-maximum correlations	0.185-0.604	0.378-0.530	0.122-0.397			
Range of correlations	0.419	0.153	0.275			
	Average inter-it	tem correlations be	etween subscales			
Openness to change	_					
Self-enhancement	0.236	_				
Self-transcendence	0.201	0.237	_			

Table A75 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Denmark (first half-sample: n = 825)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Self-enhancement	
SD1	0.359	0.084	0. 833
SD11	0.372	0.084	0.823
BE12	0.151	0.229	0.889
BE18	0.064	0.284	0.897
CO16	-0.249	0.426	0.865
SEC14	0.060	0.286	0.897
PO17	-0.028	0.609	0.645
AC4	0.228	0.422	0.672
AC13	0.266	0.554	0.473
HE10	0.517	0.112	0.661
HE21	0.547	0.054	0.668
ST6	0.807	-0.161	0.455
ST15	0.836	-0.108	0.381
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.510	_	


Table A76 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2012, Denmark (second half-sample: n = 825)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.63	.056	.869	.893	.854	.066 (.059074)
2a	2 first-order correlated factors (13 items)-without cross-						
	loadings	5.45	.068	.854	.877	.834	.074 (.066082)
2b	2 first-order correlated factors						
	(13 items)-with cross-loadings	5.52	.065	.860	.881	.832	.074 (.066082)
3a	3 first-order correlated factors -						
	without cross-loadings	4.17	.054	.874	.901	.873	.062 (.055069)
3b	3 first-order correlated factors-						
	with cross-loadings	4.05	.052	.880	.906	.877	.061 (.054068)
4	2 first-order correlated factors	2 - 1	0.45	0.50	0.50	^	0.45 (0.20 , 0.50)
	of unified values	2.64	.047	.952	.969	.955	.045 (.030060)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

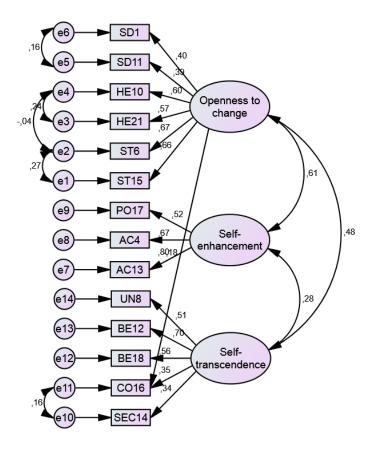

b Lower values indicate better model fit

Fig. A23 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Denmark (second half-sample: n = 825)

Table A77 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Denmark (N = 1,650)

	Subscale						
	Openness to	Self-	Self-				
	change	enhancement	transcendence				
Number of items	6	3	5				
Mean (standard error)	2.67 (0.020)	3.22 (0.025)	2.25 (0.015)				
95% Confidence interval	2.63-2.71	3.17-3.27	2.22-2.28				
Standard deviation	0.816	1.005	0.624				
Skewness (standard error)	0.322 (0.060)	0.096 (0.060)	0.453 (0.060)				
Kurtosis (standard error)	-0.186 (0.120)	-0.438 (0.120)	0.510 (0.120)				
Cronbach's alpha reliability coeff.	0.745	0.701	0.565				
Split-half reliability coefficient	0.796	0.549	0.515				
Average inter-item correlations	0.322	0.439	0.229				
Minimum-maximum correlations	0.175-0.595	0.384-0.525	0.131-0.389				
Range of correlations	0.420	0.140	0.258				
	Average inter-item correlations between subscales						
Openness to change	_						
Self-enhancement	0.280	_					
Self-transcendence	0.195	0.181	_				

Fig. A24 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Denmark (N = 1,650)

Table A78 Item analysis of Schwartz scale values of the European Social Survey, 2014: Denmark (first half-sample: n = 751)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.31 (1.192)	223-2.40	31.6	26.8	23.8	11.5	4.7	0.5	1.2	0.64	-0.34	0.280
SD11	2.13 (1.091)	2.06-2.21	33.4	35.2	18.9	8.3	3.5	0.3	0.5	0.88	0.25	0.259
UN3	2.12 (1.129)	2.04-2.20	34.5	35.3	16.6	7.6	3.6	0.9	1.5	1.07	0.83	0.201
UN8	2.30 (1.043)	2.23-2.38	20.2	45.5	21.0	8.0	3.1	1.1	1.1	1.01	1.17	0.279
UN19	2.14 (1.053)	2.06-2.21	30.1	40.1	19.0	6.3	3.3	0.5	0.7	1.01	0.92	0.229
BE12	2.03 (0.936)	1.96-2.09	31.8	42.1	17.7	6.3	1.2	0.1	0.8	0.86	0.59	0.428
BE18	1.52 (0.713)	1.47-1.57	57.3	36.1	3.6	1.9	0.4	0.1	0.7	1.80	5.05	0.382
TR9	3.22 (1.355)	3.13-3.32	9.1	26.2	23.2	18.8	18.1	3.9	0.8	0.18	-0.93	0.068
TR20	2.76 (1.362)	2.67-2.86	18.6	31.7	20.4	14.6	10.9	2.9	0.8	0.53	-0.61	0.203
CO7	2.80 (1.300)	2.71-2.89	15.0	33.7	21.8	15.8	10.4	2.4	0.8	0.51	-0.54	0.177
CO16	2.62 (1.283)	2.53-2.71	19.4	35.6	20.6	12.6	8.8	2.0	0.9	0.66	-0.30	0.254
SEC5	2.83 (1.372)	2.73-2.92	19.3	27.4	20.6	16.8	12.9	2.0	0.9	0.35	-0.87	0.199
SEC14	2.82 (1.284)	2.73-2.91	14.2	33.0	22.0	17.2	8.9	2.8	1.9	0.51	-0.44	0.332
PO2	4.19 (1.249)	4.10-4.28	3.3	7.3	16.4	23.4	37.0	11.7	0.8	-0.65	-0.15	0.289
PO17	3.14 (1.263)	3.05-3.23	8.3	26.8	25.7	21.2	14.4	2.5	1.2	0.22	-0.74	0.351
AC4	3.51 (1.395)	3.41-3.61	7.6	20.0	22.2	19.4	24.0	6.0	0.8	-0.06	-1.00	0.371
AC13	3.10 (1.291)	3.00-3.19	9.7	27.8	24.2	20.4	14.6	2.4	0.8	0.23	-0.81	0.549
HE10	2.60 (1.234)	2.52-2.69	19.4	34.9	20.1	15.4	8.4	0.7	1.1	0.52	-0.58	0.351
HE21	2.60 (1.189)	2.51-2.68	16.8	38.1	22.1	14.2	6.8	1.2	0.8	0.63	-0.20	0.428
ST6	2.99 (1.359)	2.89-3.08	15.8	25.3	20.9	19.7	15.7	1.5	1.1	0.16	-1.03	0.406
ST15	3.43 (1.462)	3.33-3.53	11.3	18.2	20.8	20.2	21.4	6.9	1.1	-0.04	-1.01	0.382

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A79 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Denmark (first half-sample: n = 751)

	Principal a	Principal axis factor analysis (factors)						
•	Factor I	Factor II	Factor III	Unique				
Item	Hedonism	Stimulation	Self-	variance				
			enhancement					
BE12	0.370	0.031	0.040	0.832				
BE18	0.358	-0.046	0.119	0.834				
SEC14	0.299	-0.083	0.081	0.905				
PO17	-0.032	0.031	0.452	0.796				
AC4	0.032	-0.017	0.642	0.577				
AC13	0.099	0.032	0.767	0.295				
HE10	0.483	0.032	0.078	0.702				
HE21	0.840	0.054	-0.143	0.355				
ST6	0.112	0.540	0.048	0.599				
ST15	-0.082	1.007	-0.002	0.069				
Factors	Correlations between factors							
Hedonism	_							
Stimulation	0.530	_						
Self-enhancement	0.513	0.488	_					

Table A80 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Denmark (first half-sample: n = 751)

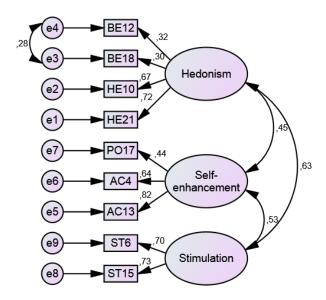
		Subscale	
	Hedonism	Stimulation	Self- enhancement
Number of items	5	2	3
Mean (standard error)	2.31 (0.025)	3.21 (0.046)	3.25 (0.037)
95% Confidence interval	2.26-2.36	3.12-3.30	3.18-3.32
Standard deviation	0.675	1.259	1.023
Skewness (standard error)	0.437 (0.089)	0.061 (0.089)	0.121 (0.089)
Kurtosis (standard error)	-0.153 (0.178)	-0.878 (0.178)	-0.527 (0.178)
Cronbach's alpha reliability coeff.	0.594	0.744	0.671
Split-half reliability coefficient	0.512	0.744	0.672
Average inter-item correlations	0.241	0.593	0.403
Minimum-maximum correlations	0.072-0.459	0.593-0.593	0.296-0.545
Range of correlations	0.387	0.000	0.248
	Average inter-it	tem correlations be	etween subscales
Hedonism	_		
Stimulation	0.236	_	
Self-enhancement	0.201	0.237	_

Table A81 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Denmark (first half-sample: n = 751)

	Principal axis factor			
Variables	Factor I Openness to change	Factor II Self-enhancement	Unique variance	
BE12	0.269	0.113	0. 879	
BE18	0.164	0.223	0.880	
PO17	-0.009	0.445	0.807	
AC4	-0.041	0.695	0.549	
AC13	0.096	0.745	0.351	
HE10	0.285	0.241	0.780	
HE21	0.430	0.149	0.717	
ST6	0.780	-0.092	0.467	
ST15	0.771	-0.002	0.407	
	Correlations bet	ween factors		
Openness to change	_			
Self-enhancement	0.585	_		

Table A82 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-9 items): European Social Survey 2014, Denmark (first half-sample: n = 751)

	Principal axis factor analysis (factors)								
	Factor I	Factor II	Factor III	Unique					
Item	Hedonism	Self-	Stimulation	variance					
		enhancement							
BE12	0.340	0.062	0.021	0.848					
BE18	0.390	-0.056	0.093	0.824					
PO17	-0.072	0.038	0.472	0.793					
AC4	0.057	-0.060	0.666	0.552					
AC13	0.045	0.060	0.761	0.328					
HE10	0.674	-0.053	0.011	0.574					
HE21	0.679	0.105	-0.093	0.522					
ST6	0.102	0.577	0.024	0.575					
ST15	-0.053	0.949	0.007	0.145					
Factors	Correla	ntions between fa	ctors						
Hedonism									
Self-enhancement	0.555	_							
Stimulation	0.545	0.510	_						


Table A83 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2014, Denmark (second half-sample: n = 825)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1 2a	1 first-order uncorrelated factor 2 first-order correlated factors (9 items)-without cross-	2.52	.032	.952	.970	.949	.045 (.032059)
21-	loadings	6.29	.061	.889	.904	.849	.084 (.071097)
2b	2 first-order correlated factors (9 items)-with cross-loadings	6.49	.061	.890	.905	.844	.086 (.072099)
3a	3 first-order correlated factors- without cross-loadings	3.59	.044	.919	.940	.912	.059 (.047071)
3b	3 first-order correlated factors(9 items)-without						
4	cross-loadings	3.07	.036	.946	.962	.941	.052 (.039067)
4	2 first-order correlated factors of unified values	3.32	.047	.928	.948	.923	.056 (.041071)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

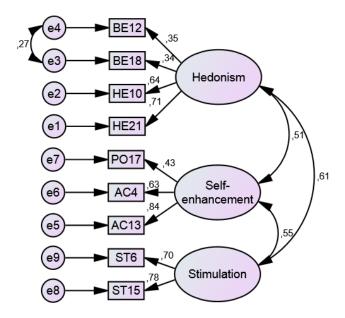

b Lower values indicate better model fit

Fig. A25 Standardized solution for the 3 first-order correlated factors (model 3b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Denmark (second half-sample: n = 751)

Table A84 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Denmark (N = 1,502)

		Subscale	
	Hedonism	Self- enhancement	Stimulation
Number of items	4	3	2
Mean (standard error)	2.17 (0.018)	3.23 (0.032)	3.25 (0.027)
95% Confidence interval	2.14-2.21	3.17-3.29	3.20-3.30
Standard deviation	0.696	1.234	1.033
Skewness (standard error)	0.534 (0.063)	0.012 (0.063)	0.084 (0.063)
Kurtosis (standard error)	-0.019 (0.126)	-0.812 (0.126)	-0.522 (0.126)
Cronbach's alpha reliability coeff.	0.606	0.710	0.667
Split-half reliability coefficient	0.702	0.710	0.658
Average inter-item correlations	0.285	0.552	0.400
Minimum-maximum correlations	0.188-0.474	0.552-0.552	0.308-0.532
Range of correlations	0.285	0.000	0.224
	Average inter-i	tem correlations be	etween subscales
Hedonism	_		
Self-enhancement	0.240	_	
Stimulation	0.281	0.327	_

Fig. A26 Standardized solution for the 3 first-order correlated factors (model 3b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Denmark (N = 1,502)

Table A85 Item analysis of Schwartz scale values of the European Social Survey, 2002: Finland (first half-sample: n = 865)

	Frequency percent of response categories											
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.63 (1.137)	2.55-2.71	16.9	29.7	34.3	11.7	6.0	0.9	0.5	0.48	-0.08	0.338
SD11	2.23 (1.024)	2.16-2.30	25.5	40.5	23.2	6.6	2.9	0.5	0.8	0.84	0.70	0.341
UN3	2.04 (1.000)	1.97-2.11	33.4	40.2	17.7	6.2	1.6	0.6	0.2	1.06	1.24	0.249
UN8	2.34 (0.942)	2.27-2.40	16.9	45.7	27.2	7.3	2.0	0.6	0.5	0.80	1.12	0.243
UN19	2.00 (0.919)	1.94-2.06	34.2	38.2	21.7	4.2	1.2	0.1	0.5	0.74	0.38	0.234
BE12	2.49 (0.992)	2.43-2.56	14.3	39.3	31.1	11.8	2.0	0.8	0.7	0.59	0.51	0.411
BE18	1.92 (0.895)	1.86-1.98	35.0	43.7	16.2	2.8	1.3	0.3	0.7	1.13	1.99	0.391
TR9	3.17 (1.280)	3.08-3.25	8.7	23.5	31.2	18.6	12.9	4.2	0.9	0.28	-0.55	0.101
TR20	3.09 (1.328)	3.00-3.19	10.8	25.3	29.1	17.0	12.7	4.5	0.6	0.34	-0.61	0.259
CO7	2.93 (1.288)	2.84-3.02	11.3	33.3	24.0	16.2	11.1	2.9	1.2	0.47	-0.56	0.206
CO16	2.88 (1.209)	2.79-2.96	11.0	32.3	29.0	16.3	8.1	2.7	0.7	0.53	-0.21	0.245
SEC5	2.40 (1.126)	2.33-2.48	21.3	39.1	23.7	9.4	5.4	0.8	0.3	0.76	0.15	0.257
SEC14	2.39 (1.162)	2.31-2.47	23.9	36.5	23.2	9.9	4.2	1.5	0.7	0.83	0.42	0.345
PO2	4.37 (1.205)	4.29-4.46	2.1	5.7	16.0	23.8	35.4	16.8	0.3	-0.64	-0.06	0.338
PO17	3.85 (1.243)	3.76-3.93	2.1	13.4	24.2	26.1	24.3	9.0	0.9	-0.11	-0.75	0.431
AC4	3.67 (1.348)	3.58-3.76	5.5	14.9	24.0	24.3	22.1	8.7	0.5	-0.10	-0.79	0.483
AC13	3.51 (1.322)	3.42-3.60	6.5	17.3	25.9	23.8	19.8	5.8	0.9	-0.03	-0.77	0.551
HE10	3.10 (1.330)	3.01-3.19	11.2	25.2	26.7	19.1	12.8	4.0	0.9	0.27	-0.69	0.461
HE21	3.22 (1.374)	3.13-3.32	10.5	23.5	24.2	21.3	14.3	5.2	1.0	0.18	-0.81	0.475
ST6	2.82 (1.240)	2.74-2.91	13.9	30.1	27.5	17.6	8.4	2.0	0.6	0.42	-0.44	0.469
ST15	3.84 (1.463)	3.74-3.94	7.2	12.5	20.3	21.3	23.9	14.0	0.8	-0.25	-0.87	0.384

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.169, respectively.

Table A86 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Finland (first half-sample: n = 865)

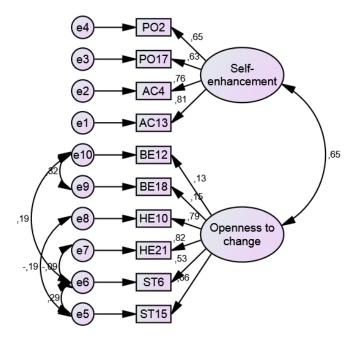
-	Principal axis factor	analysis (factors)	
Variables		Unique	
	Factor I	Factor II	variance
	Self-enhancement	Openness to change	
SD1	0.222	0.172	0.873
SD11	0.071	0.282	0.890
BE12	-0.082	0.306	0.931
BE18	-0.081	0.245	0.945
PO2	0.584	0.026	0.640
PO17	0.686	-0.023	0.549
AC4	0.890	-0.117	0.325
AC13	0.700	0.100	0.412
HE10	-0.065	0.841	0.357
HE21	0.060	0.746	0.383
ST6	0.079	0.577	0.602
ST15	0.142	0.625	0.477
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.634	_	

Table A87 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Finland (first half-sample: n = 865)

	Subscale				
	Self-enhancement	Openness to			
		change			
Number of items	5	7			
Mean (standard error)	3.61 (0.031)	2.80 (0.026)			
95% Confidence interval	3.54-3.67	2.75-2.85			
Standard deviation	0.905	0.768			
Skewness (standard error)	-0.114 (0.084)	0.161 (0.084)			
Kurtosis (standard error)	-0.377 (0.168)	-0.051 (0.168)			
Cronbach's alpha reliability coeff.	0.770	0.756			
Split-half reliability coefficient	0.784	0.808			
Average inter-item correlations	0.392	0.289			
Minimum-maximum correlations	0.155-0.639	0.041-0.705			
Range of correlations	0.484	0.664			
	Average inter-i	tem correlations			
	between	subscales			
Self-enhancement	_				
Openness to change	0.281	_			

Table A88 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-10 items): European Social Survey 2002, Finland (first half-sample: n = 865)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Self-enhancement	Openness to change	
SD1	-0.085	0.287	0.942
SD11	-0.018	0.230	0.952
BE12	0.592	0.024	0.630
BE18	0.697	-0.031	0.540
PO2	0.881	-0.114	0.339
PO17	0.707	0.086	0.415
AC4	-0.071	0.857	0.339
HE21	0.056	0.768	0.353
ST6	0.077	0.553	0.634
ST15	0.145	0.621	0.478
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.639	_	


Table A89 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of four models: European Social Survey 2002, Finland (second half-sample: n = 865)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.59	.032	.961	.972	.945	.055 (.044065)
2a 2b	2 first-order correlated factors- without cross-loadings 2 first-order correlated factors	7.22	.063	.895	.908	.868	.085 (.076094)
3	(10 items)-without cross- loadings 2 first-order correlated factors	4.62	.043	.952	.962	.941	.065 (.054076)
3	of unified values	3.67	.054	.958	.969	.954	.056 (.042070)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

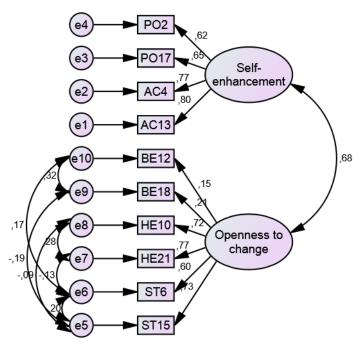

b Lower values indicate better model fit

Fig. 27 Standardized solution for the 2 first-order correlated factors (model 2b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Finland (second half-sample: n = 865)

Table A90 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Finland (N = 1,730)

	Sub	scale				
	Self-enhancement	Openness to change				
Number of items	4	6				
Mean (standard error)	3.86 (0.024)	2.91 (0.019)				
95% Confidence interval	3.81-3.90	2.87-2.94				
Standard deviation	1.006	0.808				
Skewness (standard error)	-0.096 (0.059)	0.164 (0.059)				
Kurtosis (standard error)	-0.481 (0.118)	-0.170 (0.118)				
Cronbach's alpha reliability coeff.	0.804	0.741				
Split-half reliability coefficient	0.815	0.648				
Average inter-item correlations	0.506	0.303				
Minimum-maximum correlations	0.434-0.625	0.025-0.677				
Range of correlations	0.191	0.652				
	Average inter-i	tem correlations				
	between subscales					
Self-enhancement	_					
Openness to change	0.297	_				

Fig. 28 Standardized solution for the 2 first-order correlated factors (model 2b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Finland (N = 1,730)

Table A91 Item analysis of Schwartz scale values of the European Social Survey, 2004: Finland (first half-sample: n = 859)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.71 (1.139)	2.64-2.79	13.5	32.6	30.7	14.6	6.5	1.2	0.9	0.48	-0.14	0.315
SD11	2.23 (1.014)	2.16-2.29	24.4	41.1	22.8	7.3	2.4	0.6	1.3	0.86	0.79	0.323
UN3	2.06 (1.012)	2.00-2.13	33.4	36.7	20.4	5.7	1.9	0.6	1.4	0.98	1.00	0.273
UN8	2.35 (0.977)	2.28-2.41	17.8	42.4	27.5	8.0	2.1	0.7	1.5	0.77	0.89	0.345
UN19	2.10 (1.007)	2.04-2.17	31.5	36.4	22.0	6.4	1.7	0.5	1.4	0.86	0.66	0.298
BE12	2.43 (0.896)	2.37-2.49	13.4	40.7	34.1	8.5	1.7	0.1	1.4	0.43	0.23	0.427
BE18	1.93 (0.891)	1.87-1.99	34.5	43.1	15.1	4.3	0.8	0.3	1.9	1.08	1.67	0.400
TR9	3.03 (1.194)	2.95-3.11	8.6	27.6	29.1	21.0	10.1	2.1	1.5	0.30	-0.47	0.122
TR20	3.02 (1.337)	2.93-3.11	12.5	26.9	26.1	16.6	12.7	3.8	1.4	0.36	-0.64	0.277
CO7	2.89 (1.275)	2.81-2.98	12.1	31.9	25.1	17.0	9.2	3.3	1.4	0.50	-0.38	0.242
CO16	2.85 (1.223)	2.77-2.94	12.2	31.3	26.5	16.4	9.5	1.9	2.1	0.44	-0.42	0.335
SEC5	2.43 (1.119)	2.35-2.50	19.9	38.2	22.7	11.2	5.0	0.7	2.3	0.74	0.12	0.303
SEC14	2.37 (1.132)	2.30-2.45	23.6	36.0	22.5	11.5	3.8	0.9	1.6	0.74	0.15	0.384
PO2	4.36 (1.218)	4.28-4.44	1.3	7.1	15.6	23.6	33.5	18.0	0.8	-0.52	-0.39	0.296
PO17	3.91 (1.227)	3.83-3.99	2.1	10.5	25.8	26.3	23.2	10.4	1.7	-0.10	-0.62	0.384
AC4	3.77 (1.302)	3.68-3.86	4.0	13.3	26.0	22.9	22.7	9.3	1.9	-0.11	-0.71	0.423
AC13	3.56 (1.230)	3.48-3.64	4.7	15.6	27.1	26.9	18.3	5.1	2.3	-0.06	-0.56	0.497
HE10	3.11 (1.315)	3.02-3.19	9.1	27.1	29.0	16.4	12.2	5.0	1.2	0.42	-0.52	0.447
HE21	3.32 (1.353)	3.22-3.41	8.5	20.8	27.6	20.6	14.4	6.6	1.4	0.20	-0.69	0.467
ST6	2.93 (1.217)	2.84-3.01	9.8	30.8	30.4	15.0	10.1	2.6	1.3	0.50	-0.28	0.436
ST15	3.91 (1.317)	3.83-4.00	3.4	11.3	24.4	22.8	23.2	12.7	2.2	-0.16	-0.71	0.374

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.167, respectively.

Table A92 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Finland (first half-sample: n = 859)

	Pr	incipal axis facto	or analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Openness to	Conservation	Self-	variance
	enhancement	change		transcendence	
SD1	0.174	-0.160	-0.155	0.637	0.599
SD11	0.057	0.111	0.095	0.286	0.835
UN8	-0.164	0.013	0.146	0.536	0.699
BE12	-0.117	-0.016	0.292	0.525	0.625
BE18	-0.088	0.062	0.450	0.303	0.657
CO16	0.194	-0.162	0.649	-0.009	0.554
SEC5	0.042	0.047	0.622	-0.063	0.625
SEC14	0.037	0.082	0.576	0.055	0.644
PO17	0.622	0.100	0.157	-0.167	0.591
AC4	0.787	-0.065	-0.014	0.082	0.386
AC13	0.739	0.050	0.081	0.041	0.379
HE10	-0.023	0.742	0.047	0.028	0.449
HE21	0.021	0.910	0.050	-0.129	0.258
ST6	0.094	0.236	-0.135	0.492	0.513
ST15	0.186	0.477	-0.199	0.156	0.469
Factors		Correlations b	etween factors		
Self-enhancement	_				
Openness to change	0.590	_			
Conservation	-0.046	-0.052	_		
Self-transcendence	0.374	0.505	0.158	_	

Table A93 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Finland (first half-sample: n = 859)

	Subscale				
	Self- enhancement	Openness to change	Conservation	Self- transcendence	
Number of items	3	3	4	5	
Mean (standard error)	2.75 (0.035)	3.45 (0.038)	2.40 (0.027)	2.53 (0.023)	
95% Confidence interval	3.68-3.82	3.37-3.52	2.34-2.45	2.48-2.58	
Standard deviation	1.034	1.116	0.782	0.675	
Skewness (standard error)	-0.041 (0.083)	0.190 (0.083)	0.490 (0.083)	0.473 (0.083)	
Kurtosis (standard error)	-0.472 (0.167)	-0.460 (0.167)	-0.110 (0.167)	0.502 (0.167)	
Cronbach's alpha reliability coeff.	0.766	0.791	0.675	0.639	
Split-half reliability coefficient	0.710	0.650	0.671	0.686	
Average inter-item correlations	0.521	0.558	0.342	0.262	
Minimum-maximum correlations	0.468-0.619	0.476-0.638	0.263-0.399	0.161-0.390	
Range of correlations	0.151	0.162	0.136	0.229	
	Averag	ge inter-item corre	lations between su	ibscales	
Self-enhancement	_				
Openness to change	0.433	_			
Conservation	0.216	0.187	_		
Self-transcendence	0.237	0.273	0.197	_	

Table A94 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Finland (first half-sample: n = 859)

	Principal axis factor analysis (factors)						
•	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Self-	Conservation	variance			
	change	enhancement					
SD1	0.441	0.009	0.028	0.799			
SD11	0.340	0.031	0.156	0.839			
UN8	0.450	-0.240	0.274	0.733			
BE12	0.401	-0.189	0.420	0.654			
BE18	0.245	-0.086	0.519	0.652			
CO16	-0.228	0.214	0.671	0.545			
SEC5	-0.108	0.120	0.586	0.664			
SEC14	0.031	0.097	0.573	0.661			
PO17	-0.041	0.670	0.116	0.571			
AC4	0.129	0.654	0.028	0.477			
AC13	0.147	0.693	0.097	0.398			
HE10	0.589	0.162	-0.026	0.540			
HE21	0.552	0.268	-0.065	0.486			
ST6	0.662	0.032	-0.033	0.544			
ST15	0.590	0.233	-0.214	0.444			
Factors	Correl	ations between fa	actors				
Openness to change	_						
Self-enhancement	0.468	_					
Conservation	0.104	-0.053	_				

Table A95 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Finland (first half-sample: n = 859)

	Principal axis factor a		
Variables		Unique	
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.395	0.045	0.837
SD11	0.310	0.171	0.860
UN8	0.173	0.275	0.881
BE12	0.154	0.419	0.783
BE18	0.087	0.522	0.707
CO16	-0.109	0.649	0.586
SEC5	-0.072	0.592	0.656
SEC14	0.038	0.586	0.649
PO17	0.473	0.107	0.751
AC4	0.619	0.036	0.609
AC13	0.660	0.101	0.536
HE10	0.660	0.003	0.564
HE21	0.726	-0.039	0.480
ST6	0.611	-0.003	0.628
ST15	0.746	-0.188	0.446
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.135	_	

Table A96 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-11 items): European Social Survey 2004, Finland (first half-sample: n = 859)

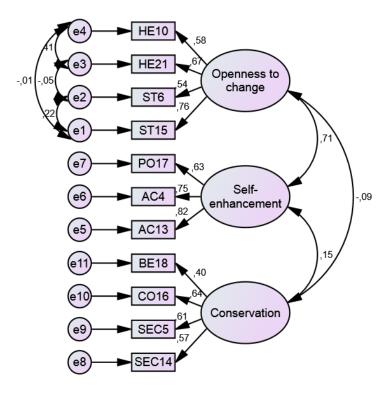

	Principal a			
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Conservation	variance
	change	enhancement		
BE18	0.191	-0.095	0.504	0.737
CO16	-0.209	0.163	0.619	0.557
SEC5	-0.011	-0.018	0.634	0.601
SEC14	0.082	-0.007	0.593	0.644
PO17	0.028	0.579	0.072	0.628
AC4	0.027	0.757	-0.053	0.411
AC13	0.077	0.753	0.019	0.355
HE10	0.797	-0.079	0.105	0.425
HE21	0.794	0.012	0.058	0.355
ST6	0.496	0.119	-0.017	0.670
ST15	0.611	0.172	-0.147	0.459
Factors	Correl			
Openness to change	_			
Self-enhancement	0.589	_		
Conservation	-0.004	-0.142	_	

Table A97 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Finland (second half-sample: n = 860)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.79	.054	.910	.927	.883	.066 (.059074)
2	2 first-order correlated factors- without cross-loadings	5.67	.063	.884	.901	.856	.074 (.067071)
3a	3 first-order correlated factors- without cross-loadings	6.85	.083	.850	.868	.819	.083 (.076089)
3b	3 first-order correlated factors- with cross-loadings	5.49	.060	.890	.908	.861	.072 (.065079)
3c	3 first-order correlated factors (11 items)-without		0.70				, , , , , ,
4a	cross-loadings 4 first-order correlated factors-	4.55	.050	.936	.949	.925	.064 (.055074)
-τα	without cross-loadings	6.60	.081	.848	.867	.827	.081 (.074087)
4b	4 first-order correlated factors- with cross-loadings	5.42	.065	.879	.899	.863	.072 (.065079)
5	2 first-order correlated factors of unified values	4.45	.056	.945	.957	.936	.063 (.050077)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

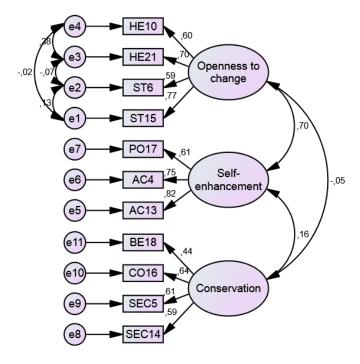


Fig. 29 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Finland (second half-sample: n = 860)

a Higher values indicate better model fit

Table A98 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Finland (N = 1,719)

		Subscale	
	Openness to change	Self- enhancement	Conservation
Number of items	4	3	4
Mean (standard error)	3.32 (0.024)	3.72 (0.025)	2.42 (0.018)
95% Confidence interval	3.27-3.37	3.67-3.77	2.38-2.46
Standard deviation	1.012	1.041	0.767
Skewness (standard error)	0.187 (0.059)	0.003 (0.059)	0.461 (0.059)
Kurtosis (standard error)	-0.353 (0.118)	-0.503 (0.118)	0.063 (0.118)
Cronbach's alpha reliability coeff.	0.788	0.772	0.660
Split-half reliability coefficient	0.810	0.624	0.658
Average inter-item correlations	0.480	0.529	0.325
Minimum-maximum correlations	0.366-0.637	0.485-0.614	0.251-0.394
Range of correlations	0.271	0.129	0.143
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.406	_	
Conservation	0.180	0.210	_

Fig. 30 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Finland (N = 1,719)

Table A99 Item analysis of Schwartz scale values of the European Social Survey, 2006: Finland (first half-sample: n = 829)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.73 (1.144)	2.65-2.80	13.1	32.4	31.6	14.7	5.8	1.7	0.6	0.53	0.02	0.300
SD11	2.19 (1.047)	2.12-2.26	26.2	42.9	20.3	5.9	3.5	0.7	0.5	1.03	1.14	0.293
UN3	2.03 (1.006)	1.96-2.10	32.8	42.1	17.7	3.9	2.4	0.8	0.2	1.23	1.98	0.217
UN8	2.31 (0.904)	2.24-2.37	16.0	47.8	27.0	6.5	1.6	0.5	0.6	0.79	1.21	0.272
UN19	2.07 (1.019)	2.00-2.14	33.2	37.8	20.4	6.4	0.8	1.1	0.4	1.04	1.38	0.258
BE12	2.38 (0.951)	2.32-2.45	16.4	41.7	30.0	8.9	1.7	0.5	0.7	0.60	0.54	0.372
BE18	1.91 (0.867)	1.85-1.97	33.7	46.4	15.1	2.8	0.5	0.7	0.8	1.27	3.12	0.361
TR9	2.99 (1.177)	2.91-3.07	9.5	26.2	32.9	19.2	9.7	1.8	0.7	0.30	-0.38	0.122
TR20	3.09 (1.325)	3.00-3.18	11.8	23.3	28.7	19.9	10.9	4.7	0.7	0.30	-0.54	0.273
CO7	2.88 (1.269)	2.80-2.97	10.6	33.9	28.5	13.3	9.2	4.0	0.6	0.64	-0.15	0.213
CO16	2.84 (1.179)	2.76-2.92	10.5	33.2	30.2	15.0	9.0	1.7	0.5	0.51	-0.25	0.264
SEC5	2.57 (1.199)	2.49-2.65	18.8	34.9	25.9	11.5	6.6	1.6	0.7	0.67	-0.01	0.321
SEC14	2.31 (1.038)	2.24-2.38	17.1	22.4	17.4	6.5	4.6	1.0	31.0	1.21	1.56	0.324
PO2	4.46 (1.156)	4.38-4.53	0.6	5.1	15.7	25.0	33.7	19.8	0.2	-0.47	-0.42	0.242
PO17	3.87 (1.269)	3.78-3.95	2.8	11.3	26.9	23.8	23.9	10.4	1.0	-0.10	-0.70	0.418
AC4	3.74 (1.295)	3.65-3.82	3.7	13.6	27.1	25.7	19.2	10.0	0.6	-0.01	-0.67	0.411
AC13	3.59 (1.282)	3.50-3.67	4.2	16.6	28.8	23.0	18.9	7.2	1.1	0.06	-0.70	0.505
HE10	3.03 (1.064)	2.96-3.10	6.5	20.4	19.1	11.3	9.8	1.8	31.1	0.47	0.39	0.357
HE21	3.27 (1.349)	3.18-3.36	8.2	23.3	28.0	18.6	15.3	5.9	0.7	0.25	-0.73	0.450
ST6	2.95 (1.207)	2.87-3.03	9.0	30.9	30.3	17.2	9.4	2.7	0.5	0.47	-0.29	0.412
ST15	3.93 (1.361)	3.84-4.02	4.7	10.9	22.1	24.1	23.8	13.5	1.0	-0.26	-0.68	0.334

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A100 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Finland (first half-sample: n = 829)

	Principal axis factor analysis (factors)					
Item	Factor I	Factor II	Factor III	Factor IV	Unique	
	Self-	Hedonism	Openness to	Self-	variance	
	enhancement		change	transcendence		
SD1	0.154	-0.224	0.606	0.062	0.668	
BE12	-0.107	-0.109	0.366	0.522	0.607	
BE18	-0.154	0.102	0.172	0.539	0.653	
SEC5	0.191	0.036	-0.203	0.510	0.694	
SEC14	0.143	0.113	-0.103	0.440	0.767	
PO17	0.676	-0.003	0.005	0.038	0.539	
AC4	0.818	-0.060	0.091	-0.020	0.326	
AC13	0.672	0.089	0.108	0.062	0.397	
HE10	-0.043	0.776	-0.125	0.092	0.508	
HE21	0.038	0.800	-0.023	0.063	0.342	
ST6	-0.011	0.147	0.665	0.021	0.434	
ST15	0.083	0.357	0.463	-0.229	0.383	
Factors		Correlations be	etween factors			
Self-enhancement	_					
Hedonism	0.313	_				
Openness to change	0.536	0.410	_			
Self-transcendence	0.008	-0.044	-0.051	_		

Table A101 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Finland (first half-sample: n = 829)

	Subscale				
	Self- enhancement	Hedonism	Openness to change	Self- transcendence	
Number of items	3	2	3	4	
Mean (standard error)	3.73 (0.038)	3.15 (0.037)	3.20 (0.034)	2.29 (0.023)	
95% Confidence interval	3.66-3.80	3.08-3.22	3.14-3.27	2.25-2.34	
Standard deviation	1.081	1.072	0.969	0.671	
Skewness (standard error)	0.002 (0.085)	0.357 (0.085)	0.150 (0.085)	0.612 (0.085)	
Kurtosis (standard error)	-0.421 (0.170)	-0.232 (0.170)	-0.391 (0.170)	1.159 (0.170)	
Cronbach's alpha reliability coeff.	0.797	0.715	0.681	0.562	
Split-half reliability coefficient	0.659	0.715	0.648	0.627	
Average inter-item correlations	0.566	0.572	0.416	0.252	
Minimum-maximum correlations	0.501-0.638	0.572-0.572	0.302-0.547	0.169-0.434	
Range of correlations	0.137	0.000	0.245	0.265	
	Averag	ge inter-item corre	lations between su	ibscales	
Self-enhancement					
Hedonism	0.416	_			
Openness to change	0.364	0.361	_		
Self-transcendence	0.199	0.190	0.165	_	

Table A102 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Finland (first half-sample: n = 829)

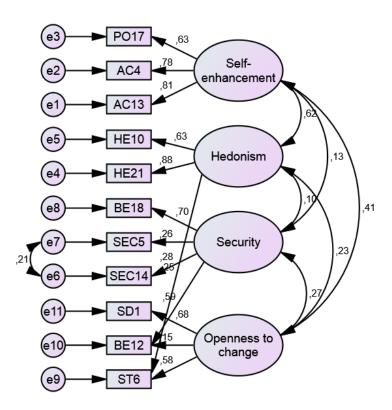
	Principal a			
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	enhancement	transcendence	
SD1	0.361	0.043	0.083	0.836
BE12	0.182	-0.164	0.528	0.688
BE18	0.176	-0.167	0.578	0.634
SEC5	-0.230	0.231	0.487	0.707
SEC14	-0.062	0.176	0.434	0.773
PO17	0.008	0.676	0.008	0.537
AC4	0.061	0.777	-0.047	0.356
AC13	0.178	0.670	0.045	0.392
HE10	0.446	0.122	0.095	0.710
HE21	0.532	0.194	0.069	0.560
ST6	0.715	-0.067	0.073	0.512
ST15	0.804	0.046	-0.204	0.323
Factors	Correl	ations between fa	actors	
Openness to change	_			
Self-enhancement	0.482	_		
Self-transcendence	0.143	0.144	_	

Table A103 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Finland (first half-sample: n = 829)

Variables	Principal axis factor	Unique	
variables	Factor I Openness to change	Factor II Self-enhancement	Unique variance
SD1	0.378	0.005	0.855
SEC5	-0.256	0.403	0.893
SEC14	-0.100	0.332	0.919
PO17	0.079	0.623	0.548
AC4	0.162	0.661	0.410
AC13	0.253	0.610	0.383
HE10	0.491	0.057	0.723
HE21	0.599	0.093	0.567
ST6	0.745	-0.165	0.561
ST15	0.935	-0.225	0.321
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.586	_	

Table A104 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (4 factors-11 items): European Social Survey 2004, Finland (first half-sample: n = 829)

	Pri	incipal axis factor	analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Hedonism	Security	Openness to	variance
	enhancement			change	
SD1	0.166	-0.152	-0.078	0.633	0.621
BE12	-0.127	-0.079	0.397	0.403	0.616
BE18	-0.163	0.073	0.485	0.195	0.649
SEC5	0.163	-0.032	0.554	-0.176	0.707
SEC14	0.139	0.040	0.520	-0.119	0.723
PO17	0.675	-0.012	0.079	-0.008	0.542
AC4	0.821	-0.038	-0.024	0.098	0.310
AC13	0.677	0.093	0.075	0.088	0.406
HE10	-0.039	0.771	0.029	-0.082	0.471
HE21	0.071	0.758	-0.001	0.016	0.356
ST6	0.046	0.232	-0.118	0.575	0.520
Factors		Correlations be	tween factors		
Self-enhancement	_				
Hedonism	0.495	_			
Security	0.071	0.186	_		
Openness to change	0.263	0.413	0.322	_	


Table A105 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of ten models: European Social Survey 2006, Finland (second half-sample: n = 830)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.41	.043	.949	.963	.937	.054 (.044064)
2a	2 first-order correlated factors (10 items)-without cross-						
	loadings	4.83	.041	.942	.953	.922	.068 (.057080)
2b	2 first-order correlated factors						
	(10 items)-with cross-loadings	_	.030	.967	.977	.956	.051 (.038064)
3a	3 first-order correlated factors- without cross-loadings	4.65	.048	.921	.936	.905	.066 (.057076)
3b	3 first-order correlated factors- with cross-loadings	4.39	.045	.929	.944	.911	.064 (.055074)
4a	4 first-order correlated factors- without cross-loadings	5.03	.054	.911	.927	.927	.070 (.061079)
4b	4 first-order correlated factors-	2.03	.03 1	.,11	.,2,	.,_,	.070 (.001 .075)
	with cross-loadings	3.81	.037	.938	.953	.927	.058 (.049068)
4c	4 first-order correlated factors (11 items)-without cross-						
	loadings	7.17	.062	.871	.886	.830	.086 (.077096)
4d	4 first-order correlated factors						
5	(11 items)-with cross-loadings 2 first-order correlated factors	2.42	.030	.959	.975	.961	.041 (.030053)
	of unified values	6.17	.071	.926	.937	.908	.079 (.066093)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrix of the 2 first-order correlated factors with cross-loadings was not positive definite.

a Higher values indicate better model fit

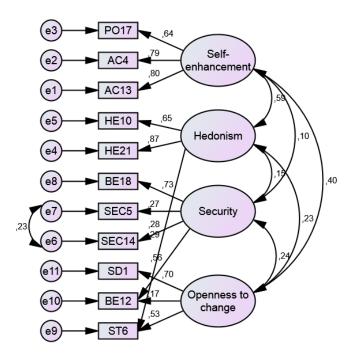

b Lower values indicate better model fit

Fig. 31 Standardized solution for the 4 first-order correlated factors (model 4d-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Finland (second half-sample: n = 830)

Table A106 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Finland (N = 1,659)

		Sub	scale	
	Self- enhancement	Hedonism	Security	Openness to change
Number of items	3	2	3	3
Mean (standard error)	3.72 (0.026)	3.18 (0.026)	2.25 (0.018)	2.68 (0.020)
95% Confidence interval	3.67-3.77	3.13-3.23	2.22-2.29	2.64-2.72
Standard deviation	1.074	1.063	0.722	0.806
Skewness (standard error)	0.034 (0.060)	0.339 (0.060)	0.657 (0.060)	0.382 (0.060)
Kurtosis (standard error)	-0.561 (0.120)	-0.180 (0.120)	0.711 (0.120)	0.190 (0.120)
Cronbach's alpha reliability coeff.	0.790	0.707	0.471	0.549
Split-half reliability coefficient	0.651	0.707	0.328	0.331
Average inter-item correlations	0.556	0.563	0.229	0.283
Minimum-maximum correlations	0.510-0.631	0.563-0.563	0.198-0.289	0.201-0.418
Range of correlations	0.120	0.000	0.091	0.216
	Averag	ge inter-item corre	lations between s	ubscales
Self-enhancement	_			
Hedonism	0.422	_		
Security	0.208	0.170	_	
Openness to change	0.275	0.241	0.179	_

Fig. 32 Standardized solution for the 4 first-order correlated factors (model 4d-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Finland (N = 1,659)

Table A107 Item analysis of Schwartz scale values of the European Social Survey, 2008: Finland (first half-sample: n = 953)

-				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.69 (1.156)	2.62-2.77	14.2	33.2	31.1	13.0	6.9	1.4	0.3	0.54	-0.07	0.342
SD11	2.26 (1.033)	2.20-2.33	23.5	42.2	22.6	8.2	2.7	0.6	0.2	0.85	0.68	0.304
UN3	2.02 (0.975)	1.95-2.08	33.8	40.6	18.4	4.7	2.1	0.3	0.1	1.02	1.14	0.225
UN8	2.29 (0.926)	2.23-2.35	18.2	45.8	26.9	6.8	1.7	0.4	0.3	0.74	0.90	0.254
UN19	2.02 (0.973)	1.96-2.08	32.9	41.6	18.5	4.7	1.6	0.6	0.1	1.09	1.57	0.302
BE12	2.29 (0.888)	2.24-2.35	18.5	41.3	32.4	5.6	0.8	0.4	0.9	0.52	0.74	0.357
BE18	1.90 (0.861)	1.85-1.96	34.3	46.3	13.5	3.9	0.7	0.3	0.9	1.12	1.99	0.393
TR9	3.00 (1.186)	2.93-3.08	9.1	25.9	35.0	16.9	10.8	2.0	0.2	0.34	-0.35	0.096
TR20	2.98 (1.326)	2.90-3.06	12.6	27.4	28.0	17.6	9.2	4.8	0.3	0.45	-0.43	0.296
CO7	2.97 (1.280)	2.89-3.05	10.3	31.5	26.8	17.0	10.5	3.6	0.4	0.48	-0.45	0.212
CO16	2.77 (1.165)	2.70-2.85	11.6	33.8	30.5	14.6	6.9	2.0	0.5	0.57	-0.01	0.295
SEC5	2.50 (1.150)	2.43-2.58	19.5	36.0	26.7	10.7	6.3	0.7	0.1	0.64	-0.06	0.247
SEC14	2.54 (1.182)	2.46-2.61	19.9	33.5	27.6	11.3	5.8	1.5	0.4	0.65	0.03	0.325
PO2	4.51 (1.094)	4.44-4.58	0.5	3.1	15.3	26.1	35.3	19.4	0.2	-0.46	-0.32	0.295
PO17	3.86 (1.228)	3.78-3.94	2.0	11.8	26.4	26.7	22.7	9.7	0.8	-0.06	-0.67	0.420
AC4	3.81 (1.261)	3.73-3.89	2.7	13.2	25.9	24.3	23.2	9.0	1.6	-0.09	-0.71	0.414
AC13	3.57 (1.279)	3.48-3.65	5.1	16.1	27.7	25.0	19.6	6.1	0.4	-0.03	-0.67	0.498
HE10	3.07 (1.272)	2.99-3.16	9.8	25.1	32.2	16.8	12.3	3.6	0.3	0.35	-0.48	0.438
HE21	3.39 (1.370)	3.31-3.48	7.6	20.6	27.8	20.7	15.6	7.7	0.1	0.17	-0.76	0.449
ST6	2.91 (1.278)	2.83-2.99	13.3	28.0	28.0	17.0	10.3	2.7	0.6	0.39	-0.50	0.411
ST15	3.89 (1.396)	3.80-3.98	5.0	12.2	23.1	21.0	24.2	13.6	0.8	-0.22	-0.81	0.378

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.158, respectively.

Table A108 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Finland (first half-sample: n = 953)

	Principal axis facto	r analysis (factors)	
Variables	-	•	Unique
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.270	0.236	0.816
SD11	0.239	0.235	0.839
UN19	-0.171	0.461	0.827
BE12	-0.113	0.490	0.795
BE18	-0.070	0.446	0.823
PO17	0.677	-0.245	0.626
AC4	0.775	-0.246	0.505
AC13	0.775	-0.160	0.484
HE10	0.565	0.198	0.544
HE21	0.672	0.109	0.472
ST6	0.264	0.515	0.546
ST15	0.573	0.271	0.463
	Correlations be	etween factors	
Self-enhancement	_		
Self-transcendence	0.436	_	

Table A109 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Finland (first half-sample: n = 953)

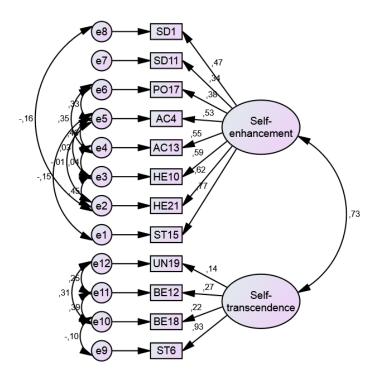

	Sub	scale
	Self-enhancement	Self- transcendence
Number of items	8	4
Mean (standard error)	3.32 (0.027)	2.28 (0.022)
95% Confidence interval	3.27-3.37	2.24-2.33
Standard deviation	0.824	0.674
Skewness (standard error)	0.178 (0.079)	0.679 (0.079)
Kurtosis (standard error)	-0.332 (0.158)	1.574 (0.158)
Cronbach's alpha reliability coeff.	0.812	0.580
Split-half reliability coefficient	0.741	0.610
Average inter-item correlations	0.343	0.279
Minimum-maximum correlations	0.155-0.698	0.188-0.407
Range of correlations	0.543	0.219
	•	tem correlations subscales
Self-enhancement	_	
Self-transcendence	0.237	_

Table A110 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of ten models: European Social Survey 2008, Finland (second half-sample: n = 953)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.40	.039	.949	.959	.930	.060 (.051069)
2a	2 first-order correlated factors- without cross-loadings	8.02	.056	.901	.912	.855	.086 (.077095)
2b	2 first-order correlated factors- with cross-loadings	_	_	.929	.938	.881	.078 (.068087)
3	2 first-order correlated factors of unified values	5.57	.061	.938	.948	.923	.069 (.057082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrix of the 2 first-order correlated factors with cross-loadings was not positive definite.

b Lower values indicate better model fit

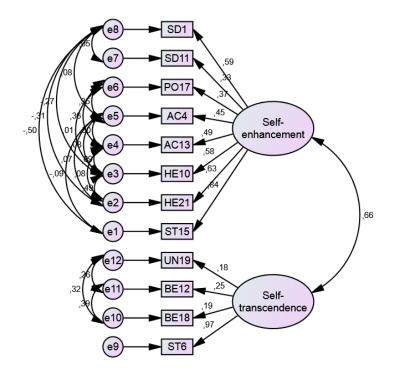


Fig. 33 Standardized solution for the 2 first-order correlated factors (model 2a) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Finland (second half-sample: n = 953)

a Higher values indicate better model fit

Table A111 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Finland (N = 1,906)

	Sub	scale
	Self-enhancement	Self- transcendence
Number of items	8	4
Mean (standard error)	3.32 (0.019)	2.31 (0.016)
95% Confidence interval	3.28-3.35	2.28-2.34
Standard deviation	0.824	0.684
Skewness (standard error)	0.167 (0.056)	0.674 (0.056)
Kurtosis (standard error)	-0.243 (0.112)	1.337 (0.112)
Cronbach's alpha reliability coeff.	0.805	0.571
Split-half reliability coefficient	0.727	0.608
Average inter-item correlations	0.333	0.272
Minimum-maximum correlations	0.165-0.677	0.174-0.418
Range of correlations	0.512	0.244
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Self-transcendence	0.237	_

Fig. 34 Standardized solution for the 2 first-order correlated factors (model 2a) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Finland (N = 1,906)

Table A112 Item analysis of Schwartz scale values of the European Social Survey, 2010: Finland (first half-sample: n = 827)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.61 (1.080)	2.54-2.68	13.3	37.5	30.4	12.7	4.6	1.1	0.5	0.61	0.23	0.258
SD11	2.28 (1.036)	2.21-2.35	21.8	44.0	22.2	7.3	3.1	0.8	0.7	0.96	1.05	0.329
UN3	2.09 (1.077)	2.02-2.17	32.8	39.7	15.5	7.1	3.1	0.7	1.1	1.11	1.08	0.299
UN8	2.44 (1.028)	2.37-2.51	16.0	42.8	25.9	10.0	4.1	0.4	0.8	0.71	0.31	0.381
UN19	2.12 (1.037)	2.05-2.19	30.5	39.5	20.7	5.8	2.5	0.7	0.2	1.01	1.10	0.374
BE12	2.38 (0.982)	2.31-2.45	16.9	41.8	29.6	7.9	1.9	1.0	0.8	0.78	1.08	0.491
BE18	1.91 (0.916)	1.85-1.97	35.9	43.9	13.9	2.9	1.9	0.4	1.1	1.29	2.39	0.385
TR9	3.11 (1.228)	3.03-3.20	8.7	24.2	31.3	20.6	12.1	2.7	0.5	0.24	-0.52	0.207
TR20	2.99 (1.375)	2.90-3.09	12.5	30.1	24.9	15.1	11.7	5.2	0.5	0.48	-0.59	0.272
CO7	2.97 (1.268)	2.88-3.06	11.1	28.4	29.3	17.3	10.5	3.1	0.2	0.41	-0.45	0.381
CO16	2.80 (1.155)	2.73-2.88	11.2	32.8	30.0	17.0	6.8	1.7	0.5	0.48	-0.17	0.316
SEC5	2.51 (1.185)	2.43-2.59	19.6	36.6	24.2	11.2	6.3	1.3	0.7	0.72	0.05	0.372
SEC14	2.41 (1.102)	2.34-2.49	21.3	35.8	28.1	9.8	3.4	1.2	0.5	0.72	0.43	0.347
PO2	4.31 (1.148)	4.24-4.39	1.0	5.4	18.0	26.2	33.5	14.9	1.0	-0.41	-0.37	0.111
PO17	3.63 (1.202)	3.55-3.71	2.5	16.2	28.4	26.2	20.3	5.4	0.8	0.02	-0.67	0.326
AC4	3.69 (1.254)	3.61-3.78	3.3	14.3	28.7	23.2	21.3	7.5	1.8	-0.01	-0.68	0.300
AC13	3.45 (1.268)	3.36-3.54	4.8	20.2	28.2	23.2	18.0	5.1	0.5	0.10	-0.73	0.462
HE10	3.03 (1.240)	2.95-3.12	10.0	25.0	32.3	18.0	10.3	3.3	1.1	0.36	-0.35	0.412
HE21	3.15 (1.255)	3.06-3.23	7.6	26.1	29.9	18.3	14.6	2.9	0.6	0.28	-0.65	0.397
ST6	2.86 (1.201)	2.78-2.94	12.5	29.5	29.3	17.5	9.6	1.2	0.5	0.34	-0.52	0.401
ST15	3.71 (1.330)	3.62-3.80	3.7	16.2	25.9	22.9	20.9	9.9	0.5	-0.01	-0.83	0.307

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A113 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Finland (first half-sample: n = 827)

	Pı	rincipal axis facto	or analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Self-	Self-	Openness to	variance
		enhancement	transcendence	change	
SD11	0.034	0.103	0.334	0.030	0.840
UN8	0.193	-0.153	0.568	0.002	0.618
UN19	0.272	-0.025	0.481	-0.112	0.665
BE12	0.223	-0.033	0.635	-0.040	0.516
BE18	0.334	-0.114	0.411	0.044	0.665
CO7	0.579	0.136	0.104	-0.008	0.629
CO16	0.719	0.110	-0.054	0.062	0.523
SEC5	0.531	0.007	0.158	0.064	0.662
SEC14	0.410	0.049	0.220	0.005	0.746
PO17	0.241	0.633	-0.184	0.047	0.623
AC4	-0.004	0.688	-0.027	-0.059	0.582
AC13	0.081	0.769	0.068	-0.040	0.420
HE10	0.014	0.075	0.114	0.599	0.510
HE21	0.140	-0.109	-0.126	1.025	0.198
ST6	-0.242	0.120	0.515	0.140	0.549
ST15	-0.293	0.286	0.200	0.327	0.437
Factors		Correlations b	etween factors		
Conservation					
Self-enhancement	-0.168	_			
Self-transcendence	0.194	0.313	_		
Openness to change	-0.213	0.603	0.413	_	

Table A114 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Finland (first half-sample: n = 827)

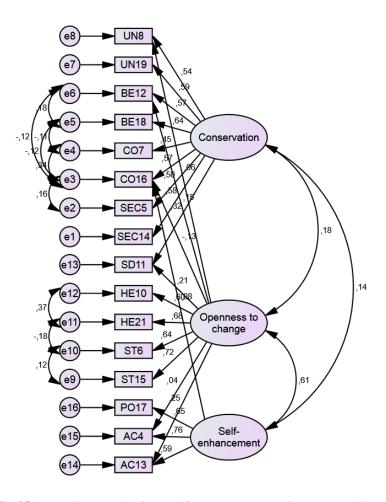
		Sub	scale	
	Conservation	Self- enhancement	Self- transcendence	Openness to change
Number of items	4	3	6	3
Mean (standard error)	2.68 (0.029)	3.59 (0.034)	2.53 (0.022)	3.09 (0.039)
95% Confidence interval	2.62-2.73	3.52-3.66	2.49-2.57	3.01-3.17
Standard deviation	0.839	0.978	0.623	1.115
Skewness (standard error)	0.352 (0.085)	0.098 (0.085)	0.425 (0.085)	0.261 (0.085)
Kurtosis (standard error)	0.067 (0.170)	-0.397 (0.170)	0.412 (0.170)	-0.395 (0.170)
Cronbach's alpha reliability coeff.	0.676	0.695	0.682	0.761
Split-half reliability coefficient	0.703	0.558	0.624	0.709
Average inter-item correlations	0.342	0.431	0.270	0.517
Minimum-maximum correlations	0.276-0.475	0.371-0.498	0.136-0.481	0.459-0.598
Range of correlations	0.199	0.128	0.345	0.139
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Self-enhancement	0.198	_		
Self-transcendence	0.241	0.189	_	
Openness to change	0.167	0.370	0.228	_

Table A115 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, Finland (first half-sample: n = 827)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Conservation	Openness to	Self-	variance				
		change	enhancement					
SD11	0.221	0.284	0.016	0.852				
UN8	0.526	0.240	-0.212	0.630				
UN19	0.540	0.092	-0.094	0.689				
BE12	0.582	0.284	-0.135	0.551				
BE18	0.557	0.111	-0.109	0.663				
CO7	0.579	-0.163	0.196	0.632				
CO16	0.597	-0.283	0.242	0.574				
SEC5	0.573	-0.096	0.088	0.669				
SEC14	0.501	-0.027	0.072	0.744				
PO17	0.060	0.049	0.608	0.603				
AC4	-0.064	0.222	0.514	0.622				
AC13	0.060	0.299	0.562	0.485				
HE10	0.041	0.610	0.145	0.546				
HE21	0.008	0.571	0.174	0.584				
ST6	0.070	0.637	-0.040	0.592				
ST15	-0.191	0.700	0.174	0.407				
Factors	Correl	ations between fa	ctors					
Conservation	_							
Openness to change	0.124	_						
Self-enhancement	0.045	0.292	_					

Table A116 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Finland (first half-sample: n = 827)

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD11	0.267	0.220	0.864
UN8	0.071	0.502	0.733
UN19	0.011	0.537	0.710
BE12	0.160	0.564	0.631
BE18	0.019	0.553	0.691
CO7	-0.033	0.579	0.669
CO16	-0.109	0.589	0.659
SEC5	-0.044	0.583	0.666
SEC14	0.011	0.509	0.739
PO17	0.413	0.073	0.815
AC4	0.521	-0.047	0.734
AC13	0.616	0.071	0.603
HE10	0.658	0.036	0.559
HE21	0.645	0.004	0.583
ST6	0.543	0.060	0.693
ST15	0.763	-0.197	0.421
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.139	_	


Table A117 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, Finland (second half-sample: n = 828)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.91	.069	.922	.936	.881	.069 (.061076)
2a	2 first-order correlated factors- without cross-loadings	6.43	.078	.859	.877	.834	.081 (.075087)
2b	2 first-order correlated factors- with cross-loadings	5.72	.068	.876	.894	.856	.076 (.069082)
3a	3 first-order correlated factors- without cross-loadings	6.85	.083	.850	.868	.819	.083 (.076089)
3b	3 first-order correlated factors- with cross-loadings	5.49	.060	.890	.908	.861	.072 (.065079)
4a	4 first-order correlated factors- without cross-loadings	7.19	.084	.826	.846	.811	.086 (.081093)
4b	4 first-order correlated factors- with cross-loadings	5.56	.063	.877	.896	.861	.074 (.068081)
5	2 first-order correlated factors of unified values	3.08	.043	.963	.974	.962	.050 (.036065)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

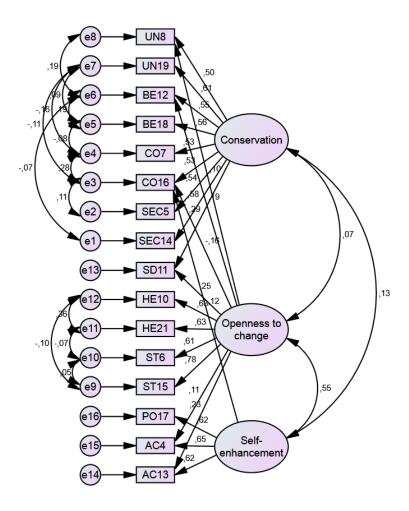

b Lower values indicate better model fit

Fig. 35 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Finland (second half-sample: n = 828)

Table A118 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Finland (N = 1,655)

		Subscale	
	Conservation	Openness to	Self-
		change	enhancement
Number of items	8	5	3
Mean (standard error)	2.43 (0.017)	2.99 (0.021)	3.61 (0.025)
95% Confidence interval	2.39-2.46	2.95-3.03	3.56-3.66
Standard deviation	0.687	0.860	1.017
Skewness (standard error)	0.584 (0.060)	0.200 (0.060)	0.050 (0.060)
Kurtosis (standard error)	1.030 (0.120)	-0.262 (0.120)	-0.552 (0.120)
Cronbach's alpha reliability coeff.	0.782	0.739	0.735
Split-half reliability coefficient	0.796	0.757	0.596
Average inter-item correlations	0.314	0.352	0.480
Minimum-maximum correlations	0.212-0.500	0.152-0.613	0.441-0.549
Range of correlations	0.289	0.461	0.108
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.202	_	
Self-enhancement	0.215	0.325	-

Fig. 36 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Finland (N = 1,655)

Table A119 Item analysis of Schwartz scale values of the European Social Survey, 2012: Finland (first half-sample: n = 1,098)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.62 (1.145)	2.55-2.69	17.7	30.7	29.1	14.5	5.6	0.8	1.7	0.43	-0.29	0.259
SD11	2.16 (1.029)	2.10-2.22	27.9	40.5	20.6	6.6	2.3	0.8	1.4	1.00	1.15	0.275
UN3	1.99 (0.993)	1.93-2.05	35.2	40.3	15.0	5.1	2.5	0.4	1.5	1.16	1.43	0.231
UN8	2.18 (0.925)	2.13-2.24	23.4	43.6	24.0	6.2	1.4	0.3	1.2	0.73	0.68	0.353
UN19	1.98 (0.973)	1.93-2.04	36.0	37.8	17.7	5.6	1.3	0.5	1.3	1.02	1.12	0.235
BE12	2.12 (0.894)	2.07-2.18	25.0	43.6	22.9	5.6	0.7	0.3	1.8	0.70	0.69	0.383
BE18	1.82 (0.823)	1.77-1.87	37.9	45.5	11.5	2.8	0.6	0.3	1.4	1.21	2.51	0.357
TR9	2.89 (1.203)	2.82-2.96	9.6	33.7	27.3	16.0	9.7	2.1	1.5	0.51	-0.33	0.179
TR20	3.03 (1.387)	2.95-3.11	13.6	26.3	25.3	15.9	12.8	4.9	1.1	0.37	-0.69	0.277
CO7	3.04 (1.339)	2.96-3.12	11.8	27.1	24.9	18.6	11.3	4.6	1.7	0.37	-0.60	0.302
CO16	2.88 (1.225)	2.80-2.95	11.9	31.5	24.9	18.3	10.0	1.5	1.8	0.38	-0.57	0.344
SEC5	2.44 (1.128)	2.37-2.50	19.4	39.6	24.0	9.5	5.1	1.2	1.3	0.83	0.44	0.270
SEC14	2.48 (1.206)	2.41-2.55	22.1	33.8	22.2	12.9	5.5	1.5	2.0	0.70	-0.05	0.338
PO2	4.54 (1.184)	4.47-4.61	1.4	5.0	11.8	24.3	33.8	22.6	1.1	-0.70	0.04	0.222
PO17	3.86 (1.272)	3.79-3.94	3.5	12.0	22.5	26.4	24.4	9.4	1.8	-0.22	-0.60	0.437
AC4	3.73 (1.340)	3.65-3.81	4.9	14.3	25.0	22.8	21.8	9.7	1.5	-0.10	-0.76	0.373
AC13	3.51 (1.289)	3.43-3.58	5.6	17.6	26.1	23.8	19.9	5.4	1.6	-0.00	-0.74	0.475
HE10	2.98 (1.232)	2.90-3.05	11.0	26.2	30.4	18.3	9.8	2.6	1.5	0.35	-0.40	0.408
HE21	2.99 (1.226)	2.91-3.06	9.9	28.0	29.2	18.4	10.1	2.6	1.7	0.37	-0.41	0.409
ST6	2.81 (1.250)	2.73-2.88	15.5	28.3	27.7	16.2	8.8	2.0	1.5	0.41	-0.44	0.389
ST15	3.88 (1.414)	3.79-3.96	6.4	12.1	19.3	23.2	24.4	12.9	1.6	-0.30	-0.74	0.348

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.074 and 0.148, respectively.

Table A120 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Finland (first half-sample: n = 1,098)

	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
UN8	0.308	0.400	-0.178	0.759
BE12	0.287	0.483	-0.170	0.698
BE18	0.169	0.512	-0.106	0.718
CO7	-0.189	0.539	0.174	0.646
CO16	-0.238	0.644	0.184	0.504
SEC14	0.020	0.406	0.080	0.815
PO17	0.020	0.178	0.581	0.585
AC4	0.111	-0.119	0.695	0.469
AC13	0.159	0.028	0.711	0.384
HE10	0.572	0.120	0.049	0.626
HE21	0.625	0.055	0.124	0.531
ST6	0.648	0.028	0.000	0.576
ST15	0.671	0.155	0.205	0.416
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.069	_		
Self-enhancement	0.340	0.178	_	

Table A121 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Finland (first half-sample: n = 1,098)

		Subscale	
	Openness to	Conservation	Self-
	change		enhancement
Number of items	4	6	3
Mean (standard error)	3.16 (0.030)	2.42 (0.020)	3.70 (0.032)
95% Confidence interval	3.10-3.22	2.38-2.46	3.64-3.76
Standard deviation	0.983	0.660	1.059
Skewness (standard error)	0.147 (0.074)	0.241 (0.074)	-0.004 (0.074)
Kurtosis (standard error)	-0.334 (0.148)	-0.015 (0.148)	-0.527 (0.148)
Cronbach's alpha reliability coeff.	0.765	0.658	0.746
Split-half reliability coefficient	0.792	0.682	0.589
Average inter-item correlations	0.450	0.254	0.494
Minimum-maximum correlations	0.336-0.580	0.150-0.458	0.415-0.591
Range of correlations	0.244	0.308	0.176
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.180	_	
Self-enhancement	0.352	0.197	_

Table A122 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Finland (first half-sample: n = 1,098)

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
UN8	0.138	0.227	0.917
BE12	0.118	0.304	0.880
BE18	0.048	0.384	0.843
CO7	-0.114	0.613	0.639
CO16	-0.163	0.721	0.499
SEC14	0.036	0.401	0.833
PO17	0.374	0.378	0.662
AC4	0.523	0.135	0.681
AC13	0.579	0.259	0.539
HE10	0.549	0.024	0.693
HE21	0.658	-0.015	0.570
ST6	0.591	-0.090	0.664
ST15	0.787	-0.193	0.402
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.139	_	

Table A123 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-12 items): European Social Survey 2012, Finland (first half-sample: n = 1,098)

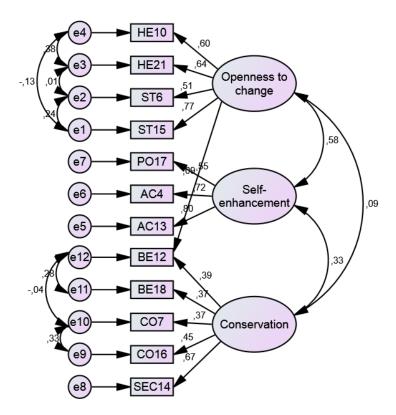

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Conservation	variance
	change	enhancement		
BE12	0.289	-0.160	0.407	0.785
BE18	0.208	-0.137	0.479	0.755
CO7	-0.135	0.115	0.566	0.641
CO16	-0.177	0.118	0.679	0.487
SEC14	0.053	0.043	0.406	0.820
PO17	0.027	0.536	0.219	0.602
AC4	0.012	0.777	-0.128	0.412
AC13	0.109	0.718	0.045	0.387
HE10	0.649	-0.044	0.143	0.578
HE21	0.700	0.030	0.083	0.478
ST6	0.602	0.025	-0.026	0.624
ST15	0.642	0.201	-0.168	0.425
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Self-enhancement	0.447	_		
Conservation	0.035	0.206	_	

Table A124 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2012, Finland (second half-sample: n = 1,099)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.35	.050	.934	.945	.898	.063 (.055071)
2a	2 first-order correlated factors- without cross-loadings	9.88	.081	.841	.854	.792	.090 (.083097)
2b	2 first-order correlated factors- with cross-loadings	8.30	.068	.871	.884	.829	.082 (.075089)
3a	3 first-order correlated factors- without cross-loadings	6.48	.063	.894	.908	.872	.071 (.064078)
3b	3 first-order correlated factors- with cross-loadings	6.61	.061	.898	.911	.869	.071 (.064079)
3c	3 first-order correlated factors (12 items)-with cross-loadings	5.26	.055	.928	.941	.909	.062 (.054070)
4	2 first-order correlated factors of unified values	5.96	.059	.931	.941	.914	.067 (.056079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. a Higher values indicate better model fit

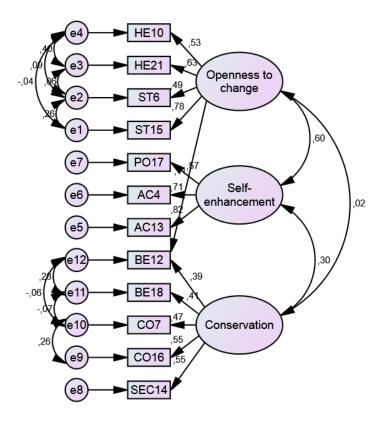

b Lower values indicate better model fit

Fig. 37 Standardized solution for the 3 first-order correlated factors (model 3c-12 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Finland (second half-sample: n = 1,099)

Table A125 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Finland (N = 2,197)

		Subscale	
	Openness to change	Self- enhancement	Conservation
Number of items	4	3	5
Mean (standard error)	3.15 (0.021)	3.67 (0.022)	2.45 (0.015)
95% Confidence interval	3.11-3.19	3.63-3.71	2.42-2.48
Standard deviation	0.988	1.045	0.707
Skewness (standard error)	0.167 (0.052)	0.010 (0.052)	0.320 (0.052)
Kurtosis (standard error)	-0.335 (0.104)	-0.528 (0.104)	-0.108 (0.104)
Cronbach's alpha reliability coeff.	0.765	0.740	0.626
Split-half reliability coefficient	0.795	0.583	0.675
Average inter-item correlations	0.449	0.486	0.259
Minimum-maximum correlations	0.327-0.599	0.423-0.582	0.126-0.451
Range of correlations	0.273	0.158	0.324
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.343	_	
Conservation	0.177	0.203	_

Fig. 38 Standardized solution for the 3 first-order correlated factors (model 3c-12 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Finland (N = 2,197)

Table A126 Item analysis of Schwartz scale values of the European Social Survey, 2014: Finland (first half-sample: n = 1,043)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.61 (1.204)	2.53-2.68	19.7	29.9	27.8	12.7	6.5	1.4	2.0	0.53	-0.19	0.275
SD11	2.15 (1.070)	2.09-2.22	30.1	38.5	18.8	7.6	3.0	0.7	1.3	0.98	0.78	0.294
UN3	1.98 (1.028)	1.92-2.04	37.9	36.4	15.8	5.4	2.0	0.8	1.7	1.21	1.60	0.214
UN8	2.14 (0.927)	2.08-2.19	25.1	43.8	21.6	5.8	1.6	0.2	1.8	0.80	0.75	0.322
UN19	1.99 (1.000)	1.93-2.05	36.0	38.1	17.0	5.5	1.4	0.8	1.3	1.15	1.58	0.273
BE12	2.14 (0.911)	2.09-2.20	23.8	45.6	22.6	4.7	1.3	0.5	1.4	0.90	1.44	0.408
BE18	1.79 (0.841)	1.74-1.84	40.8	43.2	10.4	3.0	0.5	0.5	1.6	1.40	3.27	0.399
TR9	2.95 (1.258)	2.88-3.03	11.9	26.9	28.8	18.9	8.4	3.5	1.6	0.40	-0.34	0.163
TR20	3.05 (1.380)	2.96-3.13	12.1	28.1	24.8	15.2	13.0	5.2	1.5	0.41	-0.67	0.279
CO7	3.04 (1.385)	2.95-3.12	12.9	26.7	25.6	15.1	12.7	5.3	1.7	0.40	-0.65	0.266
CO16	2.89 (1.269)	2.82-2.97	12.4	30.2	26.9	16.5	8.7	3.5	1.8	0.50	-0.31	0.342
SEC5	2.46 (1.221)	2.38-2.53	22.9	36.0	20.1	11.6	6.7	1.2	1.4	0.76	-0.07	0.276
SEC14	2.48 (1.272)	2.48-2.64	23.3	29.7	23.6	12.5	6.5	2.2	2.2	0.64	-0.18	0.389
PO2	4.52 (1.201)	4.45-4.59	2.0	3.9	13.7	22.7	34.3	22.0	1.3	-0.73	0.14	0.179
PO17	3.85 (1.246)	3.77-3.92	3.5	11.1	24.2	25.9	25.4	8.1	1.9	-0.23	-0.55	0.400
AC4	3.86 (1.370)	3.78-3.95	4.1	14.0	21.7	22.9	22.3	13.0	1.9	-0.16	-0.81	0.346
AC13	3.65 (1.308)	3.57-3.73	4.4	16.6	25.5	22.3	21.8	7.5	1.9	-0.05	-0.79	0.436
HE10	2.95 (1.303)	2.87-3.03	13.3	27.5	25.6	18.0	10.8	3.1	1.6	0.36	-0.58	0.441
HE21	3.01 (1.257)	2.93-3.08	10.1	28.4	27.8	18.6	10.5	3.2	1.4	0.38	-0.47	0.443
ST6	2.82 (1.311)	2.74-2.90	16.4	28.5	26.0	13.8	10.7	2.7	1.9	0.47	-0.50	0.421
ST15	3.85 (1.455)	3.76-3.94	6.1	13.3	22.8	17.9	23.6	14.7	1.5	-0.19	-0.92	0.297

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.076 and 0.151, respectively.

Table A127 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Finland (first half-sample: n = 1,043)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Conservation	variance
	enhancement	change		
UN8	-0.199	0.337	0.227	0.823
BE12	-0.066	0.289	0.346	0.762
BE18	-0.101	0.224	0.495	0.672
CO16	0.142	-0.228	0.674	0.547
SEC14	0.062	0.038	0.459	0.763
PO17	0.525	-0.070	0.234	0.659
AC4	0.701	0.080	-0.103	0.477
AC13	0.748	0.081	0.004	0.385
HE10	0.099	0.669	0.000	0.491
HE21	0.149	0.629	-0.003	0.510
ST6	0.014	0.559	-0.029	0.689
Factors	Correl	ations between fa	ctors	
Self-enhancement	_			
Openness to change	0.392	_		
Conservation	0.174	0.263	_	

Table A128 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Finland (first half-sample: n = 1,043)

	Subscale			
	Self- enhancement	Openness to change	Conservation	
Number of items	3	4	4	
Mean (standard error)	3.79 (0.032)	2.73 (0.026)	2.35 (0.022)	
95% Confidence interval	3.72-3.85	2.68-2.78	2.30-2.39	
Standard deviation	1.042	0.846	0.724	
Skewness (standard error)	-0.053 (0.076)	0.349 (0.076)	0.621 (0.076)	
Kurtosis (standard error)	-0.463 (0.151)	-0.137 (0.151)	1.140 (0.151)	
Cronbach's alpha reliability coeff.	0.712	0.651	0.576	
Split-half reliability coefficient	0.525	0.517	0.606	
Average inter-item correlations	0.450	0.305	0.269	
Minimum-maximum correlations	0.358-0.578	0.084-0.588	0.186-0.384	
Range of correlations	0.220	0.504	0.197	
	Average inter-item correlations between subscales			
Self-enhancement	_			
Openness to change	0.257	_		
Conservation	0.207	0.207	_	

Table A129 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Finland (first half-sample: n = 1,043)

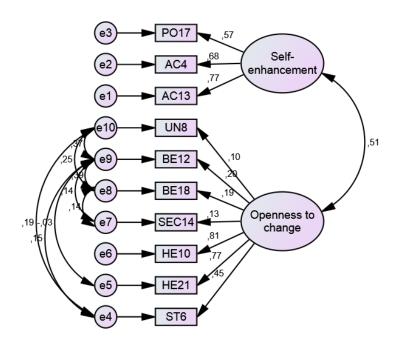

	Principal axis factor		
Variables	•	•	Unique
- -	Factor I	Factor II	variance
	Self-enhancement	Openness to change	
UN8	-0.205	0.472	0.831
BE12	-0.064	0.451	0.821
BE18	-0.102	0.449	0.833
SEC14	0.055	0.225	0.934
PO17	0.511	-0.017	0.747
AC4	0.757	-0.088	0.485
AC13	0.823	-0.052	0.362
HE10	0.144	0.606	0.525
HE21	0.194	0.563	0.537
ST6	0.050	0.511	0.711
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.495	_	

Table A130 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2014, Finland (second half-sample: n = 1,044)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2	1 first-order uncorrelated factor 2 first-order correlated factors (10 items)-without cross-	4.72	.048	.939	.951	.910	.060 (.050070)
_	loadings	4.75	.043	.943	.954	.920	.060 (.050071)
3a	3 first-order correlated factors- without cross-loadings	10.04	.079	.832	.845	.781	.093 (.085102)
3b	3 first-order correlated factors- with cross-loadings	6.61	.051	.903	.916	.864	.073 (.064083)
4	2 first-order correlated factors of unified values	5.79	.056	.926	.938	.908	.068 (.056080)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

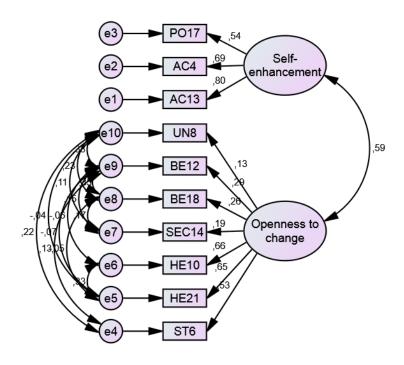


Fig. 39 Standardized solution for the 2 first-order correlated factors (model 2-10 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Finland (second half-sample: n = 1,044)

a Higher values indicate better model fit

Table A131 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Finland (N = 2.087)

	Subscale			
	Self-enhancement	Openness to change		
Number of items	3	7		
Mean (standard error)	3.76 (0.023)	2.49 (0.014)		
95% Confidence interval	3.71-3.80	2.46-2.52		
Standard deviation	1.047	0.650		
Skewness (standard error)	-0.039 (0.054)	0.428 (0.056)		
Kurtosis (standard error)	-0.468 (0.107)	0.432 (0.107)		
Cronbach's alpha reliability coeff.	0.713	0.658		
Split-half reliability coefficient	0.551	0.436		
Average inter-item correlations	0.452	0.223		
Minimum-maximum correlations	0.379-0.548	0.059-0.612		
Range of correlations	0.168	0.553		
	Average inter-i	tem correlations		
	between	subscales		
Self-enhancement	_			
Openness to change	0.199	_		

Fig. 40 Standardized solution for the 2 first-order correlated factors (model 2-10 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Finland (N = 2,087)

Table A132 Item analysis of Schwartz scale values of the European Social Survey, 2002: France (first half-sample: n = 680)

-				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.39 (1.217)	2.30-2.48	28.5	28.7	25.1	11.9	4.0	1.6	0.1	0.69	-0.02	0.328
SD11	2.31 (1.244)	2.22-2.41	33.8	25.6	20.6	14.1	4.1	1.0	0.7	0.67	-0.38	0.381
UN3	1.82 (1.058)	1.74-1.90	52.4	23.8	16.2	5.1	1.3	0.9	0.3	1.35	1.65	0.179
UN8	2.33 (1.136)	2.24-2.41	26.8	33.8	23.7	11.6	2.6	1.2	0.3	0.73	0.19	0.367
UN19	2.16 (1.085)	2.08-2.24	33.1	32.6	20.0	11.0	1.8	0.4	1.0	0.74	-0.05	0.402
BE12	2.43 (1.129)	2.35-2.52	24.6	30.6	25.3	16.2	2.9	0.3	0.1	0.39	-0.64	0.468
BE18	1.92 (0.949)	1.85-2.00	40.3	33.1	18.2	6.2	0.3	0.3	1.6	0.88	0.42	0.484
TR9	2.51 (1.285)	2.41-2.61	26.5	28.2	22.4	14.4	6.5	1.6	0.4	0.59	-0.42	0.283
TR20	3.28 (1.578)	3.16-3.40	17.1	19.1	16.6	19.9	17.1	9.0	1.3	0.09	-1.12	0.347
CO7	3.66 (1.439)	3.55-3.77	9.1	13.2	22.4	20.9	23.4	9.4	1.6	-0.21	-0.85	0.300
CO16	2.64 (1.330)	2.54-2.74	25.4	23.7	21.6	18.7	7.4	1.8	1.5	0.40	-0.73	0.484
SEC5	2.44 (1.362)	2.34-2.54	33.5	23.2	19.6	13.7	8.4	1.3	0.3	0.61	-0.66	0.404
SEC14	2.49 (1.359)	2.39-2.59	30.3	25.9	19.7	15.0	6.5	2.5	0.1	0.65	-0.45	0.418
PO2	4.65 (1.230)	4.55-4.74	3.2	4.1	8.2	17.8	42.2	24.1	0.3	-1.15	1.04	0.288
PO17	3.56 (1.451)	3.45-3.67	12.2	12.2	20.0	23.7	22.8	7.1	2.1	-0.27	-0.85	0.397
AC4	3.44 (1.429)	3.33-3.55	11.8	16.2	20.7	24.7	20.6	5.9	0.1	-0.13	-0.92	0.479
AC13	3.94 (1.445)	3.84-4.05	7.2	11.9	14.9	24.3	27.9	13.4	0.4	-0.45	-0.70	0.433
HE10	2.28 (1.195)	2.19-2.37	30.7	31.6	19.0	13.2	1.9	1.9	1.6	0.86	0.33	0.449
HE21	3.17 (1.437)	3.06-3.28	16.3	17.8	20.7	26.3	12.1	5.7	1.0	0.07	-0.86	0.365
ST6	2.77 (1.365)	2.67-2.87	21.9	24.0	23.7	17.8	9.9	2.5	0.3	0.37	-0.75	0.401
ST15	4.11 (1.422)	4.00-4.22	6.3	10.6	11.8	21.6	33.8	14.6	1.3	-0.64	-0.48	0.228

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.094 and 0.187, respectively.

Table A133 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, France (first half-sample: n = 680)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Conservation	Openness to	Self-	variance
		change	enhancement	
SD1	-0.117	0.481	0.099	0.765
SD11	0.093	0.311	0.118	0.829
UN8	0.083	0.546	-0.168	0.697
UN19	0.175	0.461	-0.084	0.719
BE12	0.304	0.469	-0.122	0.618
BE18	0.308	0.431	-0.064	0.639
TR20	0.438	0.078	0.022	0.769
CO7	0.569	-0.170	0.099	0.694
CO16	0.617	0.075	0.020	0.570
SEC5	0.583	0.011	0.050	0.637
SEC14	0.605	0.031	0.010	0.615
PO17	0.417	-0.168	0.424	0.626
AC4	0.094	0.088	0.621	0.526
AC13	0.069	0.020	0.685	0.492
HE10	-0.119	0.512	0.264	0.632
HE21	-0.177	0.409	0.318	0.703
ST6	-0.134	0.579	0.115	0.660
Factors	Correl	ations between fa	ctors	
Conservation				
Openness to change	0.392	_		
Self-enhancement	0.174	0.263	_	

Table A134 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, France (first half-sample: n = 680)

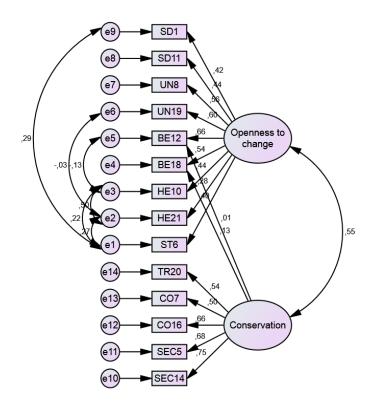
		Subscale	
	Conservation	Openness to change	Self- enhancement
Number of items	5	9	3
Mean (standard error)	2.90 (0.037)	2.42 (0.026)	3.65 (0.043)
95% Confidence interval	2.83-2.97	2.37-2.47	3.56-3.73
Standard deviation	0.964	0.690	1.121
Skewness (standard error)	0.213 (0.094)	0.335 (0.094)	-0.257 (0.094)
Kurtosis (standard error)	-0.367 (0.187)	-0.049 (0.187)	-0.552 (0.187)
Cronbach's alpha reliability coeff.	0.711	0.745	0.673
Split-half reliability coefficient	0.645	0.703	0.523
Average inter-item correlations	0.336	0.252	0.407
Minimum-maximum correlations	0.246-0.513	0.105-0.442	0.346-0.512
Range of correlations	0.266	0.337	0.166
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.207	_	
Self-enhancement	0.276	0.222	_

Table A135 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, France (first half-sample: n = 680)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	-0.101	0.508	0.781
SD11	0.113	0.347	0.829
UN8	0.073	0.351	0.847
UN19	0.175	0.328	0.807
BE12	0.300	0.290	0.743
BE18	0.312	0.302	0.722
TR20	0.461	0.025	0.776
CO7	0.613	-0.172	0.694
CO16	0.645	0.000	0.584
SEC5	0.624	-0.043	0.634
SEC14	0.637	-0.051	0.622
PO17	0.468	0.073	0.743
AC4	0.195	0.420	0.707
AC13	0.179	0.389	0.751
HE10	-0.091	0.662	0.611
HE21	-0.142	0.605	0.695
ST6	-0.113	0.603	0.688
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.473	_	

Table A136 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2002, France (first half-sample: n = 680)

	Principal axis factor a		
Variables		Unique	
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.512	-0.092	0.773
SD11	0.372	0.080	0.828
UN8	0.430	0.087	0.773
UN19	0.392	0.175	0.752
BE12	0.346	0.330	0.666
BE18	0.366	0.310	0.664
TR20	0.048	0.449	0.776
CO7	-0.167	0.564	0.741
CO16	0.037	0.625	0.587
SEC5	-0.065	0.665	0.594
SEC14	-0.055	0.678	0.572
HE10	0.652	-0.095	0.623
HE21	0.533	-0.122	0.761
ST15	0.617	-0.101	0.666
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.462	_	


Table A137 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, France (second half-sample: n = 681)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.14	.067	.853	.883	.849	.068 (.061075)
2a	2 first-order correlated factors (17 items)-without cross-						, , ,
	loadings	4.73	.073	.822	.853	.820	.074 (.068080)
2b	2 first-order correlated factors						
	(17 items)-with cross-loadings	4.00	.062	.853	.884	.855	.066 (.060073)
2c	2 first-order correlated factors						
	(14 items)-without cross-						
	loadings	2.70	.042	.918	.946	.930	.050 (.042059)
2d	2 first-order correlated factors	2.50	0.40	001	0.40	001	0.50 (0.44 , 0.50)
	(14 items)-with cross-loadings	2.69	.040	.921	.948	.931	.050 (.041059)
3a	3 first-order correlated factors-	4.20	0.65	027	0.60	026	071 (064 077)
21	without cross-loadings	4.39	.065	.837	.868	.836	.071 (.064077)
3b	3 first-order correlated factors- with cross-loadings	3.54	.051	.874	.905	.877	.061 (.054068)
4	3 first-order correlated factors	3.34	.031	.074	.903	.077	.001 (.054000)
7	of unified values	5.07	.075	.833	.860	.821	.077 (.069086)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

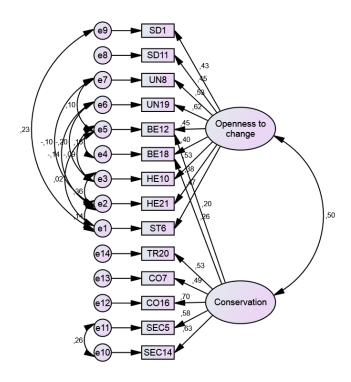

b Lower values indicate better model fit

Fig. 41 Standardized solution for the 2 first-order correlated factors (model 2d-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Finland (second half-sample: n = 681)

Table A138 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, France (N = 1,361)

	Subscale		
	Openness to change	Conservation	
Number of items	9	5	
Mean (standard error)	2.42 (0.019)	2.87 (0.027)	
95% Confidence interval	2.38-2.46	2.82-2.93	
Standard deviation	0.707	0.997	
Skewness (standard error)	0.409 (0.066)	0.193 (0.066)	
Kurtosis (standard error)	0.295 (0.133)	-0.456 (0.133)	
Cronbach's alpha reliability coeff.	0.754	0.736	
Split-half reliability coefficient	0.680	0.683	
Average inter-item correlations	0.260	0.364	
Minimum-maximum correlations	0.103-0.499	0.284-0.537	
Range of correlations	0.396	0.252	
	Average inter	-item correlations	
	between	n subscales	
Openness to change	_		
Conservation	0.221	_	

Fig. 42 Standardized solution for the 2 first-order correlated factors (model 2d-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Finland (N = 1,361)

Table A139 Item analysis of Schwartz scale values of the European Social Survey, 2004: France (first half-sample: n = 852)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.31 (1.182)	2.23-2.38	30.6	29.7	23.5	12.0	2.7	1.4	0.1	0.74	0.08	0.287
SD11	2.47 (1.335)	2.38-2.56	30.3	25.4	21.6	13.1	7.3	1.9	0.5	0.64	-0.45	0.337
UN3	1.70 (0.956)	1.63-1.76	56.0	25.4	13.1	4.3	0.7	0.5	-	1.45	2.03	0.292
UN8	2.31 (1.148)	2.23-2.38	28.1	33.9	21.8	12.7	2.0	1.4	0.1	0.76	0.23	0.346
UN19	2.12 (1.133)	2.05-2.20	36.0	32.5	17.7	10.1	1.9	1.2	0.6	0.97	0.58	0.436
BE12	2.41 (1.198)	2.33-2.49	27.9	27.5	25.4	14.7	3.3	1.2	0.1	0.55	-0.32	0.518
BE18	1.91 (1.015)	1.84-1.98	42.5	33.0	16.5	5.3	0.9	0.9	0.8	1.24	1.75	0.535
TR9	2.46 (1.263)	2.38-2.55	27.7	27.8	22.1	15.6	4.9	1.5	0.4	0.59	-0.40	0.339
TR20	3.25 (1.605)	3.14-3.36	18.7	17.7	18.4	19.2	15.3	10.1	0.6	0.13	-1.11	0.253
CO7	3.47 (1.486)	3.37-3.57	12.0	17.0	20.0	20.5	22.8	7.4	0.4	-0.10	-1.04	0.345
CO16	2.59 (1.354)	2.49-2.68	27.5	23.7	23.4	15.0	7.4	2.5	0.6	0.53	-0.54	0.448
SEC5	2.44 (1.330)	2.36-2.53	30.4	27.8	18.8	13.1	8.2	1.3	0.4	0.66	-0.53	0.396
SEC14	2.47 (1.320)	2.38-2.56	30.3	24.3	23.4	14.3	5.3	2.3	0.1	0.63	-0.34	0.459
PO2	4.66 (1.110)	4.59-4.74	1.8	3.9	6.9	22.4	43.4	21.2	0.4	-1.07	1.23	0.231
PO17	3.54 (1.506)	3.44-3.64	13.3	13.6	19.1	20.2	25.6	7.3	0.9	-0.23	-1.02	0.387
AC4	3.50 (1.472)	3.40-3.60	11.5	17.0	18.7	22.8	22.4	7.3	0.4	-0.14	-1.00	0.432
AC13	4.02 (1.394)	3.93-4.12	6.7	8.8	16.1	25.1	29.6	13.3	0.5	-0.54	-0.46	0.412
HE10	2.43 (1.189)	2.35-2.51	26.2	30.2	21.7	16.3	3.9	0.7	1.1	0.52	-0.50	0.453
HE21	3.20 (1.478)	3.10-3.30	16.8	18.1	20.2	23.7	14.8	6.0	0.5	0.07	-0.97	0.324
ST6	2.77 (1.332)	2.68-2.86	21.1	24.4	24.6	17.7	10.6	1.5	-	0.32	-0.82	0.449
ST15	4.09 (1.462)	4.00-4.19	7.7	9.2	12.9	21.4	32.6	15.6	0.6	-0.64	-0.51	0.205

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A140 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, France (first half-sample: n = 852)

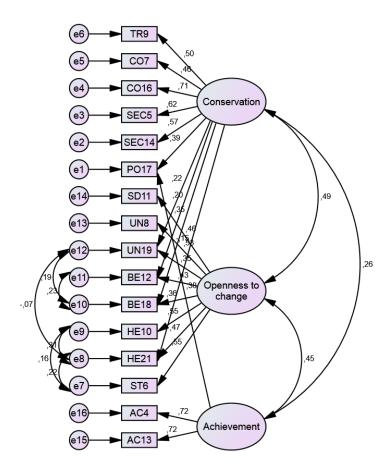
	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Conservation	Openness to	Achievement	variance			
		change					
SD11	0.050	0.332	0.085	0.850			
UN8	0.092	0.472	-0.140	0.749			
UN19	0.313	0.384	-0.163	0.664			
BE12	0.303	0.455	-0.054	0.592			
BE18	0.342	0.457	-0.066	0.553			
TR9	0.426	0.145	-0.120	0.746			
CO7	0.595	-0.130	0.097	0.685			
CO16	0.717	-0.062	0.077	0.510			
SEC5	0.619	-0.078	0.121	0.632			
SEC14	0.626	0.066	0.006	0.566			
PO17	0.403	-0.092	0.367	0.721			
AC4	0.050	0.126	0.699	0.434			
AC13	0.062	0.073	0.710	0.447			
HE10	-0.076	0.578	0.175	0.615			
HE21	-0.286	0.585	0.194	0.633			
ST6	-0.082	0.555	0.144	0.663			
Factors	Correlations between factors						
Conservation	_						
Openness to change	0.441	_					
Achievement	0.079	0.271	_				

Table A141 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, France (first half-sample: n = 852)

		Subscale	
	Conservation	Openness to change	Achievement
Number of items	6	8	2
Mean (standard error)	2.83 (0.031)	2.45 (0.025)	3.76 (0.043)
95% Confidence interval	2.77-2.89	2.40-2.50	3.68-3.85
Standard deviation	0.904	0.734	1.269
Skewness (standard error)	0.077 (0.084)	0.370 (0.084)	-0.312 (0.084)
Kurtosis (standard error)	-0.292 (0.167)	0.325 (0.167)	-0.584 (0.167)
Cronbach's alpha reliability coeff.	0.734	0.738	0.723
Split-half reliability coefficient	0.741	0.743	0.723
Average inter-item correlations	0.319	0.269	0.567
Minimum-maximum correlations	0.129-0.512	0.127-0.508	0.567-0.567
Range of correlations	0.383	0.381	0.000
	Average inter-it	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.222	_	
Achievement	0.253	0.244	_

Table A142 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, France (first half-sample: n = 852)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Self-enhancement	
SD11	0.127	0.300	0.862
UN8	0.253	0.182	0.864
UN19	0.462	0.071	0.754
BE12	0.452	0.215	0.669
BE18	0.496	0.201	0.630
TR9	0.514	-0.076	0.762
CO7	0.565	-0.097	0.717
CO16	0.723	-0.091	0.524
SEC5	0.606	-0.048	0.654
SEC14	0.686	-0.055	0.558
PO17	0.314	0.195	0.812
AC4	-0.025	0.636	0.608
AC13	-0.030	0.610	0.642
HE10	0.046	0.568	0.653
HE21	-0.168	0.610	0.685
ST6	0.043	0.518	0.712
	Correlations bet	ween factors	
Conservation	_		
Self-enhancement	0.416	_	


Table A143 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2004, France (second half-sample: n = 853)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.52	.056	.885	.907	.865	.064 (.058071)
2	2 first-order correlated factors- without cross-loadings	5.55	.065	.842	.865	.826	.073 (.067079)
3a	3 first-order correlated factors- without cross-loadings	5.57	.066	.838	.862	.825	.073 (.067079)
3b	3 first-order correlated factors- with cross-loadings	4.41	.053	.878	.902	.869	.063 (.057070)
4	3 first-order correlated factors of unified values	5.20	.072	.867	.889	.858	.070 (.063078)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

b Lower values indicate better model fit

Fig. 43 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Finland (second half-sample: n = 853)

Table A144 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, France (N = 1,705)

		Subscale	
	Conservation	Openness to change	Achievement
Number of items	6	8	2
Mean (standard error)	2.85 (0.021)	2.45 (0.018)	3.80 (0.030)
95% Confidence interval	2.81-2.89	2.42-2.49	3.74-3.85
Standard deviation	0.883	0.727	1.234
Skewness (standard error)	0.015 (0.059)	0.322 (0.059)	-0.301 (0.059)
Kurtosis (standard error)	-0.398 (0.118)	0.027 (0.118)	-0.600 (0.118)
Cronbach's alpha reliability coeff.	0.731	0.741	0.704
Split-half reliability coefficient	0.735	0.740	0.704
Average inter-item correlations	0.315	0.272	0.545
Minimum-maximum correlations	0.147-0.474	0.108-0.501	0.545-0.545
Range of correlations	0.327	0.393	0.000
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.225	_	
Achievement	0.254	0.243	_

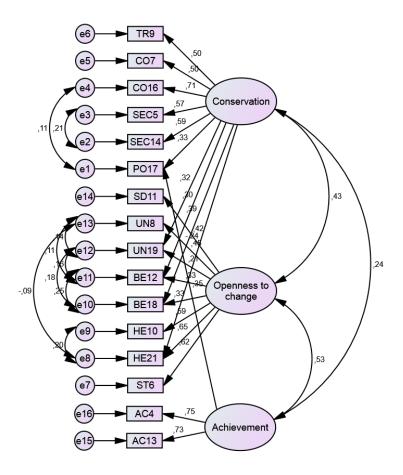


Fig. 44 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Finland (N = 1,705)

Table A145 Item analysis of Schwartz scale values of the European Social Survey, 2006: France (first half-sample: n = 993)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.70 (1.312)	2.62-2.79	22.1	25.8	22.8	19.6	7.5	1.9	0.4	0.37	-0.69	0.314
SD11	2.54 (1.402)	2.45-2.62	30.8	24.2	18.7	14.8	9.0	2.2	0.3	0.58	-0.69	0.261
UN3	1.76 (1.000)	1.70-1.82	53.0	26.7	13.7	4.7	0.8	0.8	0.3	1.46	2.22	0.309
UN8	2.28 (1.165)	2.21-2.35	30.3	32.2	21.7	11.2	3.2	1.1	0.3	0.78	0.13	0.362
UN19	2.06 (1.093)	1.99-2.13	39.3	30.3	17.6	10.5	1.6	0.4	0.3	0.85	0.02	0.347
BE12	2.48 (1.182)	2.40-2.55	25.1	28.9	23.5	18.3	3.2	0.7	0.3	0.41	-0.63	0.450
BE18	1.90 (0.986)	1.84-1.96	43.0	32.6	16.7	6.0	1.2	0.2	0.2	1.01	0.60	0.449
TR9	2.43 (1.266)	2.35-2.51	29.4	27.0	21.7	15.1	5.3	1.2	0.3	0.59	-0.48	0.315
TR20	3.32 (1.643)	3.22-3.43	18.1	18.1	16.4	18.8	16.6	11.6	0.3	0.08	-1.19	0.297
CO7	3.88 (1.503)	3.79-3.97	9.2	11.6	16.4	19.9	28.6	13.3	1.0	-0.42	-0.84	0.277
CO16	2.70 (1.391)	2.61-2.79	25.6	23.1	21.3	17.1	10.7	1.9	0.3	0.38	-0.88	0.441
SEC5	2.84 (1.454)	2.75-2.93	23.1	23.7	18.6	17.8	13.9	2.7	0.2	0.31	-1.02	0.378
SEC14	2.64 (1.368)	2.55-2.72	25.9	25.7	19.1	17.6	8.6	2.1	1.0	0.47	-0.74	0.449
PO2	4.89 (1.089)	4.82-4.95	1.5	3.3	5.6	13.5	46.1	29.5	0.4	-1.36	2.02	0.147
PO17	3.62 (1.531)	3.53-3.72	12.7	15.4	13.2	21.3	28.8	7.7	0.9	-0.33	-1.07	0.360
AC4	3.58 (1.473)	3.49-3.68	10.8	16.3	16.7	23.5	25.0	7.6	0.2	-0.23	-0.99	0.384
AC13	4.23 (1.323)	4.15-4.31	4.5	8.1	12.1	25.3	34.5	15.1	0.4	-0.72	-0.11	0.330
HE10	2.39 (1.211)	2.31-2.47	27.6	31.6	21.3	13.5	4.7	1.0	0.2	0.66	-0.25	0.386
HE21	3.20 (1.451)	3.11-3.29	15.6	19.3	19.2	24.8	15.4	5.1	0.5	0.04	-0.98	0.327
ST6	3.00 (1.431)	2.91-3.09	19.0	21.5	20.4	22.0	13.3	3.5	0.3	0.18	-0.97	0.462
ST15	4.34 (1.400)	4.25-4.43	5.4	8.5	9.0	20.2	36.9	19.7	0.3	-0.85	-0.08	0.210

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.078 and 0.155, respectively.

Table A146 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, France (first half-sample: n = 993)

	Pı				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Hedonism	Achievement	variance
	transcendence				
SD1	0.370	-0.127	-0.020	0.278	0.814
UN3	0.533	-0.076	-0.044	0.068	0.759
UN8	0.676	-0.080	-0.055	-0.004	0.619
UN19	0.425	0.133	0.067	-0.164	0.713
BE12	0.575	0.043	-0.034	0.105	0.633
BE18	0.392	0.235	0.139	-0.094	0.635
TR9	0.428	0.285	-0.088	-0.180	0.612
CO16	0.103	0.618	-0.054	0.024	0.547
SEC5	-0.047	0.535	0.012	0.173	0.691
SEC14	0.178	0.459	0.075	-0.051	0.651
PO17	-0.153	0.527	-0.027	0.249	0.714
AC4	0.011	0.168	-0.068	0.706	0.485
AC13	-0.102	0.125	0.088	0.524	0.673
HE10	0.126	0.008	0.529	0.055	0.625
HE21	-0.129	-0.010	0.925	-0.026	0.236
ST6	0.418	-0.111	0.186	0.317	0.609
Factors		Correlations be	tween factors		
Self-transcendence	_				
Conservation	0.536	_			
Hedonism	0.376	0.144	_		
Achievement	0.102	0.088	0.389	_	

Table A147 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, France (first half-sample: n = 993)

	Subscale						
	Self- transcendence	Conservation	Hedonism	Achievement			
Number of items	8	4	2	2			
Mean (standard error)	2.33 (0.022)	2.95 (0.032)	2.80 (0.037)	3.91 (0.037)			
95% Confidence interval	2.28-2.37	2.89-3.01	2.73-2.87	3.83-3.98			
Standard deviation	0.691	0.995	1.156	1.173			
Skewness (standard error)	0.175 (0.078)	0.030 (0.078)	0.283 (0.078)	-0.397 (0.078)			
Kurtosis (standard error)	-0.279 (0.155)	-0.602 (0.155)	-0.537 (0.155)	-0.467 (0.155)			
Cronbach's alpha reliability coeff.	0.721	0.638	0.664	0.576			
Split-half reliability coefficient	0.655	0.592	0.664	0.576			
Average inter-item correlations	0.253	0.309	0.505	0.406			
Minimum-maximum correlations	0.068-0.453	0.207-0.370	0.505-0.505	0.406-0.406			
Range of correlations	0.385	0.163	0.000	0.000			
	Averag	ge inter-item corre	lations between su	ıbscales			
Self-transcendence	_						
Conservation	0.223	_					
Hedonism	0.226	0.205	_				
Achievement	0.197	0.234	0.279	_			

Table A148 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, France (first half-sample: n = 993)

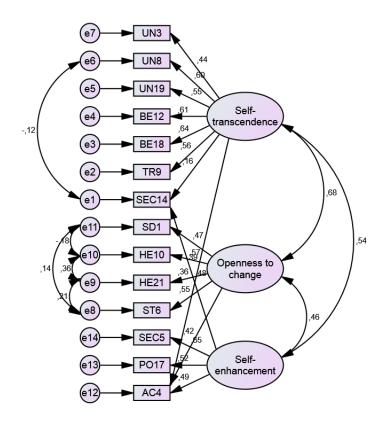
	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Self-	variance
	transcendence	change	enhancement	
SD1	0.126	0.298	0.054	0.863
UN3	0.399	0.188	-0.062	0.797
UN8	0.546	0.177	-0.113	0.675
UN19	0.547	0.060	-0.073	0.709
BE12	0.483	0.197	0.043	0.671
BE18	0.548	0.134	0.036	0.637
TR9	0.630	-0.143	0.044	0.601
CO16	0.429	-0.188	0.435	0.554
SEC5	0.189	-0.050	0.466	0.706
SEC14	0.451	-0.029	0.244	0.674
PO17	0.044	-0.081	0.541	0.713
AC4	-0.191	0.302	0.517	0.588
AC13	-0.260	0.328	0.425	0.657
HE10	0.160	0.589	-0.069	0.621
HE21	0.018	0.623	-0.067	0.631
ST6	0.190	0.538	0.044	0.613
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Openness to change	0.189	_		
Self-enhancement	0.328	0.329	_	

Table A149 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, France (first half-sample: n = 993)

	Principal axis factor	analysis (factors)	
Variables			Unique
_	Factor I	Factor II	variance
	Conservation	Self-enhancement	
SD1	0.111	0.307	0.867
UN3	0.355	0.092	0.841
UN8	0.475	0.035	0.761
UN19	0.513	-0.063	0.758
BE12	0.482	0.139	0.697
BE18	0.555	0.061	0.663
TR9	0.685	-0.232	0.598
CO16	0.620	-0.039	0.633
SEC5	0.382	0.139	0.795
SEC14	0.570	0.011	0.670
PO17	0.265	0.161	0.872
AC4	0.003	0.535	0.713
AC13	-0.116	0.553	0.729
HE10	0.064	0.510	0.711
HE21	-0.075	0.557	0.716
ST6	0.144	0.520	0.652
	Correlations bet	ween factors	
Conservation	_		
Self-enhancement	0.381	_	

Table A150 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-14 items): European Social Survey 2006, France (first half-sample: n = 993)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Self-	variance
_	transcendence	change	enhancement	
SD1	0.115	0.275	0.052	0.871
UN3	0.406	0.136	-0.036	0.793
UN8	0.609	0.091	-0.119	0.637
UN19	0.562	0.012	-0.077	0.711
BE12	0.523	0.127	0.029	0.648
BE18	0.560	0.090	0.020	0.631
TR9	0.617	-0.198	0.083	0.627
SEC5	0.067	-0.060	0.594	0.633
SEC14	0.405	-0.076	0.312	0.663
PO17	-0.005	-0.037	0.478	0.784
AC4	-0.220	0.296	0.483	0.667
HE10	0.060	0.634	-0.027	0.580
HE21	-0.046	0.666	-0.076	0.602
ST6	0.128	0.524	0.085	0.614
Factors	Correl	ations between fa	ctors	
Self-transcendence				
Openness to change	0.351	_		
Self-enhancement	0.430	0.351	_	


Table A151 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2006, France (second half-sample: n = 993)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.43	.044	.921	.942	.913	.049 (.043056)
2a	2 first-order correlated factors- without cross-loadings	5.22	.056	.865	.887	.849	.065 (.059071)
2b	2 first-order correlated factors- with cross-loadings	5.00	.054	.872	.894	.857	.063 (.058069)
3a	3 first-order correlated factors- without cross-loadings	5.78	.061	.846	.868	.829	.069 (.064075)
3b	3 first-order correlated factors- with cross-loadings	4.53	.046	.886	.908	.874	.060 (.054066)
3c	3 first-order correlated factors (14 items)-with cross-loadings	3.89	.037	.907	.928	.901	.054 (.047061)
4a	4 first-order correlated factors- without cross-loadings	5.74	.059	.842	.865	.831	.069 (.064075)
4b	4 first-order correlated factors- with cross-loadings	4.78	.048	.875	.898	.865	.062 (.056068)
5	3 first-order correlated factors of unified values	7.75	.079	.808	.828	.783	.081 (.075088)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

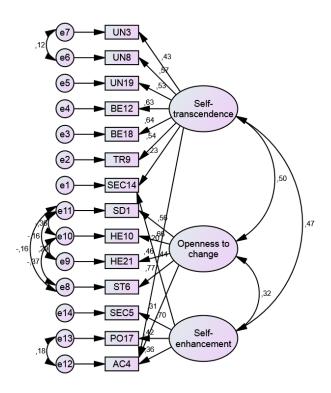

b Lower values indicate better model fit

Fig. 45 Standardized solution for the 3 first-order correlated factors (model 3c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, France (second half-sample: n = 993)

Table A152 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, France (N = 1,986)

		Subscale	
	Self-	Openness to	Self-
	transcendence	change	enhancement
Number of items	7	4	3
Mean (standard error)	2.21 (0.016)	2.81 (0.021)	3.34 (0.024)
95% Confidence interval	2.18-2.24	2.77-2.86	3.29-3.38
Standard deviation	0.726	0.936	1.088
Skewness (standard error)	0.358 (0.055)	0.126 (0.055)	-0.183 (0.055)
Kurtosis (standard error)	-0.280 (0.110)	-0.403 (0.110)	-0.558 (0.110)
Cronbach's alpha reliability coeff.	0.740	0.631	0.543
Split-half reliability coefficient	0.704	0.514	0.492
Average inter-item correlations	0.296	0.300	0.284
Minimum-maximum correlations	0.151-0.448	0.140-0.495	0.276-0.295
Range of correlations	0.297	0.355	0.020
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.231	_	
Self-enhancement	0.226	0.207	_

Fig. 46 Standardized solution for the 3 first-order correlated factors (model 3c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, France (N = 1,986)

Table A153 Item analysis of Schwartz scale values of the European Social Survey, 2008: France (first half-sample: n = 1,036)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.67 (1.326)	2.59-2.75	23.0	26.4	22.6	17.7	7.8	2.1	0.4	0.44	-0.63	0.333
SD11	2.59 (1.428)	2.50-2.67	28.6	27.5	15.9	14.2	11.2	2.2	0.4	0.58	-0.77	0.305
UN3	1.88 (1.016)	1.82-1.94	45.7	30.0	17.1	5.1	1.4	0.6	0.2	1.18	1.26	0.305
UN8	2.30 (1.126)	2.23-2.37	27.7	34.2	22.9	11.9	1.9	1.3	0.2	0.75	0.27	0.367
UN19	2.23 (1.213)	2.15-2.30	35.6	28.7	17.6	13.8	2.8	1.2	0.4	0.79	-0.11	0.357
BE12	2.37 (1.150)	2.30-2.44	27.6	30.1	23.1	16.0	2.4	0.6	0.2	0.49	-0.53	0.478
BE18	1.92 (0.971)	1.86-1.97	41.7	33.6	16.7	6.9	0.7	0.2	0.3	0.92	0.35	0.436
TR9	2.48 (1.275)	2.40-2.56	27.1	29.2	20.6	15.5	6.0	1.4	0.2	0.59	-0.47	0.294
TR20	3.33 (1.587)	3.23-3.42	17.3	18.5	13.5	22.9	18.6	8.6	0.6	-0.01	-1.18	0.305
CO7	3.87 (1.482)	3.78-3.96	8.8	12.5	15.4	19.6	31.4	11.3	1.0	-0.45	-0.84	0.265
CO16	2.73 (1.401)	2.65-2.82	23.4	26.5	18.8	17.8	10.7	2.5	0.3	0.42	-0.83	0.372
SEC5	2.82 (1.475)	2.73-2.91	24.5	22.4	19.1	17.0	13.6	3.2	0.2	0.34	-1.00	0.360
SEC14	2.72 (1.363)	2.64-2.80	22.8	26.3	20.0	18.8	8.5	2.6	1.1	0.43	-0.71	0.453
PO2	4.81 (1.152)	4.74-4.88	2.5	3.8	5.1	14.3	47.0	27.2	0.1	-1.41	2.04	0.150
PO17	3.67 (1.468)	3.58-3.76	11.1	13.5	16.0	21.6	30.6	6.4	0.8	-0.40	-0.93	0.404
AC4	3.38 (1.473)	3.29-3.47	12.1	20.2	19.6	20.3	21.2	6.4	0.3	-0.01	-1.06	0.399
AC13	4.00 (1.388)	3.92-4.08	5.7	11.6	15.1	24.3	30.8	12.3	0.3	-0.50	-0.60	0.389
HE10	2.33 (1.222)	2.25-2.40	29.6	33.4	18.5	12.0	5.2	1.1	0.2	0.79	-0.08	0.418
HE21	3.18 (1.390)	3.10-3.27	14.0	20.8	20.8	25.5	15.1	3.8	0.2	0.03	-0.93	0.376
ST6	3.01 (1.432)	2.93-3.10	18.3	23.3	18.0	21.6	16.0	2.5	0.3	0.14	-1.10	0.466
ST15	4.33 (1.387)	4.25-4.42	4.4	9.0	10.8	20.8	34.2	20.7	0.2	-0.75	-0.25	0.228

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.076 and 0.152, respectively.

Table A154 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, France (first half-sample: n = 1,036)

	Pı	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Self-	Openness to	Achievement	variance
		transcendence	change		
SD1	-0.161	0.415	0.074	0.202	0.768
SD11	-0.008	0.088	0.304	0.074	0.846
UN3	-0.057	0.580	-0.064	0.012	0.725
UN8	-0.054	0.713	-0.103	-0.007	0.592
UN19	0.270	0.303	0.002	-0.050	0.760
BE12	0.159	0.473	0.113	-0.011	0.600
BE18	0.227	0.397	0.195	-0.181	0.601
TR20	0.551	-0.029	-0.038	-0.029	0.726
CO16	0.569	0.116	-0.143	0.004	0.636
SEC5	0.516	-0.075	-0.023	0.157	0.717
SEC14	0.681	-0.067	0.099	-0.058	0.557
PO17	0.448	-0.021	-0.051	0.253	0.715
AC4	0.035	0.064	-0.043	0.747	0.435
AC13	0.093	-0.117	0.213	0.506	0.605
HE10	-0.046	-0.008	0.745	-0.040	0.492
HE21	-0.025	-0.123	0.755	0.014	0.509
ST6	-0.055	0.270	0.340	0.175	0.641
Factors		Correlations be	etween factors		
Conservation	_				
Self-transcendence	0.509	_			
Openness to change	0.273	0.519	_		
Achievement	0.230	0.190	0.455	_	

Table A155 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, France (first half-sample: n = 1,036)

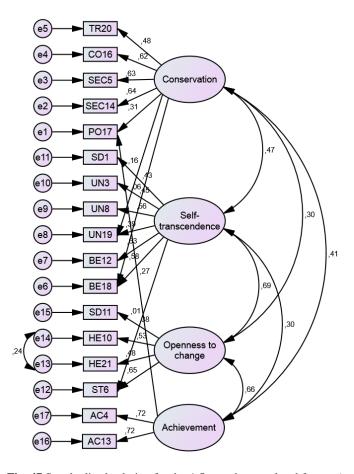
		Subs	scale	
	Conservation	Self- transcendence	Openness to change	Achievement
Number of items	8	4	2	2
Mean (standard error)	2.33 (0.022)	2.95 (0.032)	2.80 (0.037)	3.91 (0.037)
95% Confidence interval	2.28-2.37	2.89-3.01	2.73-2.87	3.83-3.98
Standard deviation	0.691	0.995	1.156	1.173
Skewness (standard error)	0.175 (0.078)	0.030 (0.078)	0.283 (0.078)	-0.397 (0.078)
Kurtosis (standard error)	-0.279 (0.155)	-0.602 (0.155)	-0.537 (0.155)	-0.467 (0.155)
Cronbach's alpha reliability coeff.	0.721	0.638	0.664	0.576
Split-half reliability coefficient	0.655	0.592	0.664	0.576
Average inter-item correlations	0.253	0.309	0.505	0.406
Minimum-maximum correlations	0.068-0.453	0.207-0.370	0.505-0.505	0.406-0.406
Range of correlations	0.385	0.163	0.000	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Self-transcendence	0.220	_		
Openness to change	0.187	0.236	_	
Achievement	0.237	0.212	0.288	_

Table A156 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, France (first half-sample: n = 1,036)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	enhancement	transcendence		
SD1	0.304	0.255	-0.066	0.807
SD11	0.322	0.160	-0.038	0.845
UN3	0.028	0.461	0.013	0.774
UN8	0.003	0.549	0.034	0.684
UN19	-0.029	0.356	0.255	0.760
BE12	0.120	0.508	0.155	0.602
BE18	0.008	0.575	0.147	0.590
TR20	-0.093	0.104	0.492	0.737
CO16	-0.133	0.178	0.558	0.631
SEC5	0.082	-0.016	0.508	0.719
SEC14	-0.022	0.168	0.562	0.604
PO17	0.167	-0.052	0.491	0.707
AC4	0.588	-0.210	0.223	0.603
AC13	0.644	-0.249	0.182	0.565
HE10	0.532	0.280	-0.179	0.588
HE21	0.558	0.164	-0.147	0.638
ST6	0.472	0.278	-0.044	0.630
Factors	Corre	lations between fa	ctors	
Self-enhancement				
Self-transcendence	0.338	_		
Conservation	0.268	0.321	_	

Table A157 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, France (first half-sample: n = 1,036)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.410	0.019	0.826
SD11	0.394	0.002	0.844
UN8	0.200	0.252	0.855
UN19	0.075	0.405	0.805
BE12	0.290	0.353	0.707
BE18	0.213	0.379	0.745
TR20	-0.121	0.560	0.727
CO16	-0.141	0.654	0.628
SEC5	0.009	0.493	0.753
SEC14	-0.033	0.646	0.599
PO17	0.080	0.453	0.759
AC4	0.431	0.103	0.767
AC13	0.474	0.052	0.752
HE10	0.676	-0.105	0.590
HE21	0.659	-0.124	0.618
ST6	0.592	0.037	0.631
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.410	_	


Table A158 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, France (second half-sample: n = 1,037)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.59	.045	.902	.927	.893	.050 (.044056)
2a	2 first-order correlated factors (16 items)-without cross-						
	loadings	5.32	.059	.843	.868	.833	.065 (.059070)
2b	2 first-order correlated factors						
	(16 items)-with cross-loadings	5.15	.057	.850	.874	.840	.063 (.058069)
3a	3 first-order correlated factors-			0			0.7.4.4.0.4.0.0.7.0.
21.	without cross-loadings	4.00	.051	.867	.896	.876	.054 (.049059)
3b	3 first-order correlated factors-	3.63	.045	.886	.914	.891	050 (045 056)
4a	with cross-loadings 4 first-order correlated factors-	3.03	.043	.000	.914	.891	.050 (.045056)
4 a	without cross-loadings	3.54	.044	.884	.913	.895	.050 (.044055)
4b	4 first-order correlated factors-	3.34	.011	.004	.713	.075	.030 (.044 .033)
	with cross-loadings	3.15	.038	.901	.929	.911	.046 (.040051)
5	3 first-order correlated factors						, ,
	of unified values	5.81	.064	.843	.865	.830	.068 (.061075)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

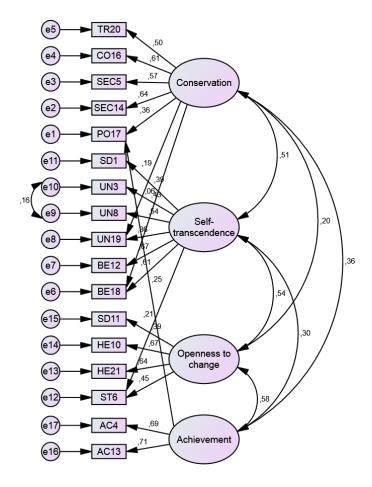

b Lower values indicate better model fit

Fig. 47 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, France (second half-sample: n = 1,037)

Table A159 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, France (N = 2,073)

		Sub	scale	
	Conservation	Self- transcendence	Openness to change	Achievement
Number of items	5	6	4	2
Mean (standard error)	3.05 (0.021)	2.21 (0.016)	2.75 (0.021)	3.71 (0.027)
95% Confidence interval	3.01-3.09	2.18-2.24	2.71-2.80	3.65-3.76
Standard deviation	0.971	0.707	0.941	1.243
Skewness (standard error)	-0.033 (0.054)	0.362 (0.054)	0.205 (0.054)	-0.262 (0.054)
Kurtosis (standard error)	-0.519 (0.107)	-0.202 (0.107)	-0.392 (0.107)	-0.596 (0.107)
Cronbach's alpha reliability coeff.	0.684	0.689	0.636	0.656
Split-half reliability coefficient	0.633	0.639	0.680	0.656
Average inter-item correlations	0.305	0.277	0.311	0.488
Minimum-maximum correlations	0.214-0.405	0.180-0.458	0.194-0.465	0.488-0.488
Range of correlations	0.190	0.278	0.271	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Self-transcendence	0.218	_		
Openness to change	0.186	0.233		
Achievement	0.250	0.215	0.283	_

Fig. 48 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, France (N = 2,073)

Table A160 Item analysis of Schwartz scale values of the European Social Survey, 2010: France (first half-sample: n = 864)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.57 (1.311)	2.49-2.66	26.6	25.2	21.8	17.8	6.7	1.5	0.3	0.45	-0.69	0.343
SD11	2.55 (1.393)	2.46-2.65	28.8	27.0	17.7	14.1	10.0	2.0	0.5	0.59	-0.69	0.294
UN3	1.85 (1.068)	1.78-1.92	49.1	28.6	13.8	5.1	2.4	0.7	0.3	1.38	1.67	0.314
UN8	2.39 (1.173)	2.31-2.46	26.5	32.3	22.3	14.4	3.5	0.9	0.1	0.61	-0.24	0.393
UN19	2.32 (1.220)	2.24-2.40	30.9	31.7	17.5	14.5	4.4	0.8	0.2	0.70	-0.33	0.341
BE12	2.37 (1.144)	2.29-2.44	27.1	31.7	22.1	16.0	2.4	0.6	0.1	0.52	-0.48	0.448
BE18	1.91 (0.977)	1.85-1.98	42.5	32.5	17.5	6.3	1.0	0.1	0.1	0.93	0.31	0.457
TR9	2.41 (1.200)	2.33-2.49	26.4	31.9	21.3	14.4	4.7	0.8	0.5	0.61	-0.35	0.353
TR20	3.27 (1.589)	3.16-3.38	16.3	21.9	15.4	20.7	15.3	10.1	0.3	0.14	-1.13	0.295
CO7	3.96 (1.426)	3.87-4.06	6.1	12.8	15.6	20.5	31.4	12.4	1.2	-0.46	-0.75	0.337
CO16	2.71 (1.390)	2.62-2.81	23.3	26.7	19.7	17.9	8.3	3.4	0.7	0.49	-0.65	0.473
SEC5	2.77 (1.429)	2.67-2.86	23.6	25.7	18.5	16.6	13.0	2.3	0.3	0.39	-0.94	0.422
SEC14	2.66 (1.371)	2.57-2.75	24.5	26.0	20.8	15.7	9.0	2.5	1.3	0.50	-0.64	0.421
PO2	4.73 (1.138)	4.66-4.81	1.9	4.7	6.4	15.4	48.1	23.1	0.3	-1.26	1.48	0.193
PO17	3.73 (1.442)	3.64-3.83	9.1	13.7	17.6	20.7	30.4	7.5	0.9	-0.38	-0.88	0.362
AC4	3.40 (1.452)	3.30-3.50	11.3	20.3	18.6	22.1	21.3	5.9	0.5	-0.06	-1.04	0.418
AC13	4.09 (1.385)	3.99-4.18	5.3	10.8	13.5	24.3	31.7	14.0	0.3	-0.56	-0.50	0.358
HE10	2.40 (1.214)	2.31-2.48	27.5	31.8	19.9	15.4	3.9	1.2	0.2	0.64	-0.29	0.462
HE21	3.22 (1.398)	3.12-3.31	14.0	19.6	20.1	26.7	15.0	4.2	0.3	-0.00	-0.92	0.376
ST6	3.02 (1.417)	2.93-3.12	17.4	23.6	19.8	20.1	16.7	2.3	0.1	0.14	-1.08	0.429
ST15	4.26 (1.416)	4.17-4.35	5.3	10.0	10.3	20.3	35.4	18.4	0.3	-0.74	-0.34	0.242

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.166, respectively.

Table A161 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, France (first half-sample: n = 864)

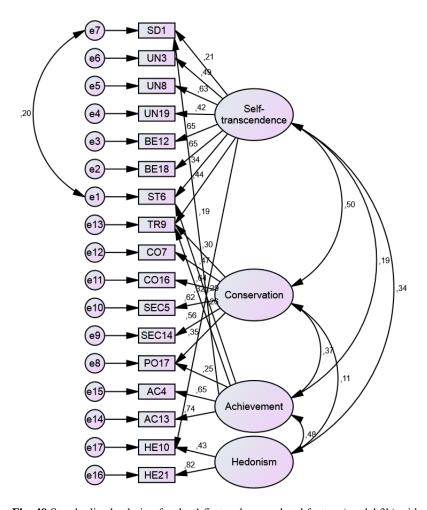
	Pr	incipal axis facto	r analysis (factors)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Achievement	Hedonism	variance
	Transcendence				
SD1	0.531	-0.178	0.287	-0.099	0.738
UN3	0.529	0.031	0.001	-0.102	0.746
UN8	0.701	-0.097	-0.033	0.019	0.551
UN19	0.381	0.150	-0.087	0.033	0.770
BE12	0.570	0.012	0.038	0.026	0.648
BE18	0.567	0.176	-0.103	0.009	0.557
TR9	0.332	0.356	-0.221	0.035	0.637
CO7	-0.122	0.510	0.190	0.014	0.709
CO16	0.107	0.625	-0.007	0.000	0.539
SEC5	-0.022	0.598	0.109	0.025	0.609
SEC14	0.113	0.525	0.049	-0.053	0.659
PO17	-0.077	0.369	0.364	-0.035	0.715
AC4	0.043	0.166	0.709	-0.075	0.451
AC13	-0.074	0.056	0.643	0.118	0.513
HE10	0.221	0.059	0.037	0.439	0.626
HE21	-0.096	-0.023	0.004	0.851	0.347
ST6	0.387	-0.128	0.273	0.172	0.683
Factors		Correlations be	etween factors		
Self-transcendence	_				
Conservation	0.458	_			
Achievement	0.084	0.191	_		
Hedonism	0.475	0.196	0.354	_	

Table A162 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, France (first half-sample: n = 864)

	Subscale							
	Self- transcendence	Conservation	Achievement	Hedonism				
Number of items	7	6	2	2				
Mean (standard error)	2.35 (0.025)	3.04 (0.030)	3.74 (0.042)	2.81 (0.038)				
95% Confidence interval	2.30-2.40	2.98-3.10	3.66-3.83	2.73-2.88				
Standard deviation	0.730	0.878	1.229	1.109				
Skewness (standard error)	0.428 (0.083)	-0.043 (0.083)	-0.301 (0.083)	0.222 (0.083)				
Kurtosis (standard error)	0.086 (0.166)	-0.557 (0.166)	-0.593 (0.166)	-0.514 (0.166)				
Cronbach's alpha reliability coeff.	0.720	0.707	0.668	0.705				
Split-half reliability coefficient	0.650	0.721	0.668	0.606				
Average inter-item correlations	0.279	0.286	0.502	0.439				
Minimum-maximum correlations	0.157-0.464	0.092-0.406	0.502-0.502	0.439-0.439				
Range of correlations	0.307	0.314	0.000	0.000				
	Averag	ge inter-item corre	lations between su	ibscales				
Self-transcendence	_							
Conservation	0.215	_						
Achievement	0.213	0.248	_					
Hedonism	0.258	0.224	0.293					

Table A163 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, France (first half-sample: n = 864)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	0.290	0.123	0.875
UN3	0.502	-0.058	0.766
UN8	0.646	-0.131	0.627
UN19	0.501	-0.044	0.763
BE12	0.567	-0.005	0.680
BE18	0.698	-0.073	0.544
TR9	0.591	-0.063	0.674
CO7	0.093	0.438	0.770
CO16	0.414	0.277	0.669
SEC5	0.259	0.390	0.707
SEC14	0.343	0.273	0.740
PO17	-0.015	0.540	0.715
AC4	-0.110	0.731	0.512
AC13	-0.175	0.648	0.632
HE10	0.382	0.150	0.790
ST6	0.279	0.203	0.840
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.363	_	


Table A164 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2010, France (second half-sample: n = 864)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.34	.056	.862	.889	.845	.062 (.056068)
2a	2 first-order correlated factors (16 items)-without cross-						
	loadings	6.01	.068	.794	.821	.774	.076 (.070082)
2b	2 first-order correlated factors						
_	(16 items)-with cross-loadings	4.32	.052	.857	.885	.850	.062 (.056068)
3a	4 first-order correlated factors-		0.45	5 0.5	00.5	505	050 (055 050)
21.	without cross-loadings	5.75	.067	.796	.825	.787	.073 (.067078)
3b 4	4 first-order correlated factors- with cross-loadings 3 first-order correlated factors	3.34	.044	.884	.915	.891	.052 (.046058)
7	of unified values	7.04	.077	.791	.814	.766	.084 (.076091)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

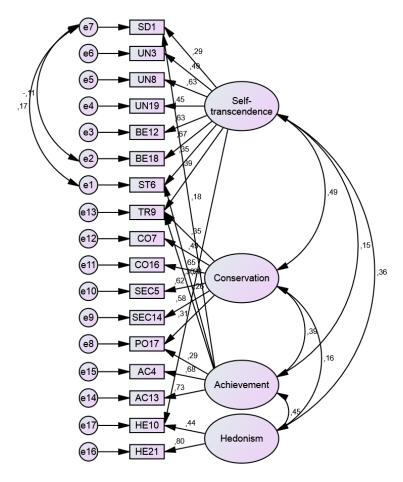

b Lower values indicate better model fit

Fig. 49 Standardized solution for the 4 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, France (second half-sample: n = 864)

Table A165 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, France (N = 1,728)

		Sub	scale	
	Self- transcendence	Conservation	Achievement	Hedonism
Number of items	7	6	2	2
Mean (standard error)	2.34 (0.017)	3.05 (0.021)	3.80 (0.029)	2.76 (0.027)
95% Confidence interval	2.30-2.37	3.00-3.09	3.75-3.86	2.71-2.81
Standard deviation	0.721	0.874	1.225	1.105
Skewness (standard error)	0.322 (0.059)	-0.055 (0.059)	-0.315 (0.059)	0.236 (0.059)
Kurtosis (standard error)	-0.102 (0.118)	-0.477 (0.118)	-0.614 (0.118)	-0.562 (0.118
Cronbach's alpha reliability coeff.	0.710	0.701	0.661	0.605
Split-half reliability coefficient	0.717	0.704	0.661	0.605
Average inter-item correlations	0.269	0.280	0.495	0.439
Minimum-maximum correlations	0.137-0.467	0.095-0.390	0.495-0.495	0.439-0.439
Range of correlations	0.330	0.294	0.000	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.209	_		
Achievement	0.211	0.238	_	
Hedonism	0.253	0.215	0.294	_

Fig. 50 Standardized solution for the 4 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, France (N = 1,728)

Table A166 Item analysis of Schwartz scale values of the European Social Survey, 2012: France (first half-sample: n = 984)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.63 (1.251)	2.55-2.71	20.9	29.5	24.6	16.9	5.9	1.8	0.4	0.49	-0.40	0.308
SD11	2.46 (1.346)	2.38-2.55	30.0	28.0	18.4	14.5	6.3	2.4	0.3	0.70	-0.35	0.306
UN3	1.83 (0.991)	1.77-1.89	47.9	30.0	15.0	5.2	1.2	0.4	0.3	1.22	1.30	0.289
UN8	2.27 (1.097)	2.21-2.34	28.2	34.3	22.4	12.0	2.5	0.4	0.2	0.63	-0.19	0.375
UN19	2.29 (1.196)	2.22-2.37	30.6	33.6	17.1	13.2	4.6	0.6	0.3	0.75	-0.24	0.319
BE12	2.27 (1.103)	2.20-2.34	28.0	35.5	19.4	14.2	1.8	0.5	0.5	0.64	-0.25	0.417
BE18	1.93 (1.006)	1.87-1.99	41.0	35.2	15.8	6.2	1.3	0.5	0.1	1.12	1.13	0.444
TR9	2.36 (1.187)	2.29-2.43	27.8	32.8	20.3	13.9	4.3	0.7	0.1	0.65	-0.31	0.284
TR20	3.41 (1.565)	3.31-3.51	14.1	19.4	16.5	20.1	20.1	9.5	0.3	-0.01	-1.15	0.305
CO7	3.99 (1.426)	3.90-4.08	6.5	11.0	16.5	21.5	30.1	13.5	0.9	-0.47	-0.67	0.287
CO16	2.64 (1.344)	2.56-2.73	24.0	27.8	20.6	16.4	9.1	1.8	0.2	0.48	-0.69	0.414
SEC5	2.60 (1.383)	2.51-2.69	25.9	28.4	20.2	12.5	10.4	2.3	0.3	0.60	-0.59	0.387
SEC14	2.41 (1.219)	2.33-2.48	26.8	31.6	20.7	14.0	4.7	1.2	0.9	0.67	-0.22	0.417
PO2	4.83 (1.079)	4.77-4.90	1.4	3.4	6.1	15.2	47.0	26.5	0.4	-1.28	1.81	0.173
PO17	3.69 (1.442)	3.60-3.78	9.8	14.8	14.9	22.7	30.5	6.2	1.1	-0.40	-0.91	0.428
AC4	3.45 (1.433)	3.36-3.53	11.4	16.9	20.5	23.1	21.8	5.8	0.5	-0.12	-0.96	0.417
AC13	4.01 (1.365)	3.93-4.10	6.1	11.0	12.1	27.4	32.2	10.8	0.4	-0.61	-0.41	0.398
HE10	2.38 (1.170)	2.31-2.46	26.5	32.6	21.0	15.0	3.8	0.6	0.4	0.58	-0.40	0.430
HE21	3.18 (1.364)	3.09-3.26	13.3	21.8	18.3	29.5	13.1	3.6	0.4	0.01	-0.90	0.370
ST6	3.07 (1.415)	2.98-3.16	15.8	24.2	18.6	22.8	14.4	3.7	0.6	0.16	-0.98	0.426
ST15	4.23 (1.407)	4.14-4.32	5.5	9.5	11.7	19.9	36.2	17.0	0.3	-0.73	-0.34	0.273

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.166, respectively.

Table A167 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, France (first half-sample: n = 984)

	Pt				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Achievement	Self-	Openness to	variance
			transcendence	change	
SD1	-0.171	0.231	0.485	-0.014	0.750
SD11	0.013	0.042	0.167	0.245	0.848
UN8	0.014	-0.037	0.612	-0.042	0.651
UN19	0.355	-0.177	0.295	-0.003	0.710
BE12	0.177	-0.021	0.529	-0.055	0.649
BE18	0.366	-0.127	0.323	0.091	0.620
TR20	0.502	0.031	-0.011	-0.049	0.758
CO16	0.567	0.031	0.035	-0.015	0.656
SEC5	0.541	0.203	-0.085	-0.042	0.666
SEC14	0.510	0.010	0.034	0.064	0.694
PO17	0.442	0.324	-0.130	0.056	0.654
AC4	0.101	0.742	0.031	-0.056	0.426
AC13	0.032	0.648	0.048	0.031	0.540
HE10	0.050	-0.068	-0.018	0.719	0.506
HE21	-0.034	0.005	-0.077	0.710	0.563
ST6	-0.165	0.258	0.385	0.223	0.636
Factors		Correlations b	etween factors		
Conservation	_				
Achievement	0.234	_			
Self-transcendence	0.433	0.138	_		
Openness to change	0.309	0.356	0.592	_	

Table A168 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, France (first half-sample: n = 984)

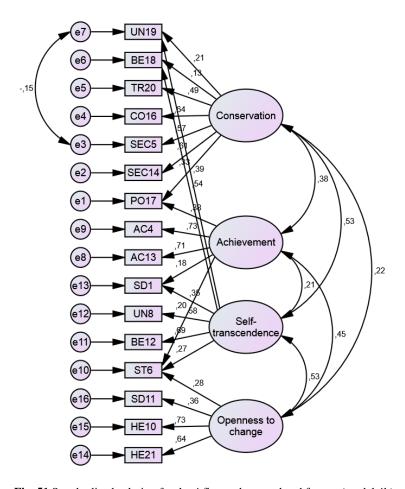
		Sub	scale	
	Conservation	Achievement	Self- transcendence	Openness to change
Number of items	7	2	4	3
Mean (standard error)	2.71 (0.025)	3.73 (0.039)	2.56 (0.026)	2.67 (0.030)
95% Confidence interval	2.66-2.76	3.65-3.81	2.51-2.61	2.62-2.73
Standard deviation	0.793	1.217	0.814	0.949
Skewness (standard error)	0.082 (0.078)	-0.347 (0.078)	0.198 (0.078)	0.289 (0.078)
Kurtosis (standard error)	-0.285 (0.156)	-0.491 (0.156)	-0.417 (0.156)	-0.288 (0.156)
Cronbach's alpha reliability coeff.	0.706	0.677	0.581	0.567
Split-half reliability coefficient	0.671	0.677	0.496	0.556
Average inter-item correlations	0.260	0.513	0.261	0.310
Minimum-maximum correlations	0.111-0.400	0.513-0.513	0.197-0.355	0.217-0.457
Range of correlations	0.289	0.000	0.157	0.240
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Achievement	0.227	_		
Self-transcendence	0.203	0.222	_	
Openness to change	0.203	0.236	0.240	_

Table A169 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2012, France (first half-sample: n = 984)

	Principal axis factor analysis (factors)										
	Factor I	Factor II	Factor III	Unique							
Item	Conservation	Openness to	Self-	variance							
		change	enhancement								
SD1	-0.075	0.434	0.115	0.809							
SD11	0.027	0.372	0.044	0.844							
UN8	0.165	0.435	-0.141	0.728							
UN19	0.454	0.155	-0.191	0.713							
BE12	0.311	0.342	-0.100	0.703							
BE18	0.460	0.272	-0.134	0.619							
TR20	0.517	-0.122	0.076	0.757							
CO16	0.591	-0.060	0.080	0.656							
SEC5	0.519	-0.148	0.264	0.668							
SEC14	0.527	0.015	0.065	0.696							
PO17	0.385	-0.056	0.390	0.664							
AC4	0.045	0.091	0.710	0.447							
AC13	-0.023	0.180	0.632	0.539							
HE10	0.006	0.590	0.049	0.636							
HE21	-0.081	0.537	0.113	0.715							
ST6	-0.125	0.593	0.195	0.633							
Factors	Correlations between factors										
Conservation	_										
Openness to change	0.456	_									
Self-enhancement	0.199	0.169	_								

Table A170 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, France (first half-sample: n = 984)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	-0.056	0.465	0.806
SD11	0.015	0.382	0.848
UN8	0.063	0.379	0.829
UN19	0.313	0.097	0.862
BE12	0.219	0.298	0.799
BE18	0.342	0.221	0.760
TR20	0.529	-0.117	0.767
CO16	0.594	-0.055	0.676
SEC5	0.627	-0.104	0.661
SEC14	0.525	0.015	0.717
PO17	0.529	0.031	0.702
AC4	0.310	0.230	0.780
AC13	0.234	0.294	0.791
HE10	-0.019	0.600	0.651
HE21	-0.074	0.573	0.708
ST6	-0.084	0.651	0.623
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.492	_	


Table A171 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2012, France (second half-sample: n = 984)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.73	.047	.914	.935	.900	.053 (.046059)
2a	2 first-order correlated factors- without cross-loadings	8.55	.074	.758	.779	.723	.088 (.082093)
2b	2 first-order correlated factors- with cross-loadings	7.47	.067	.795	.816	.763	.081 (.076087)
3a	3 first-order correlated factors- without cross-loadings	6.74	.068	.807	.830	.789	.076 (.071082)
3b	3 first-order correlated factors- with cross-loadings	4.85	.053	.867	.891	.859	.063 (.057068)
4a	4 first-order correlated factors- without cross-loadings	7.28	.069	.792	.814	.770	.080 (.074086)
4b	4 first-order correlated factors- with cross-loadings	3.84	.044	.897	.921	.896	.054 (.048060)
5	3 first-order correlated factors of unified values	7.55	.076	.819	.838	.793	.082 (.075089)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

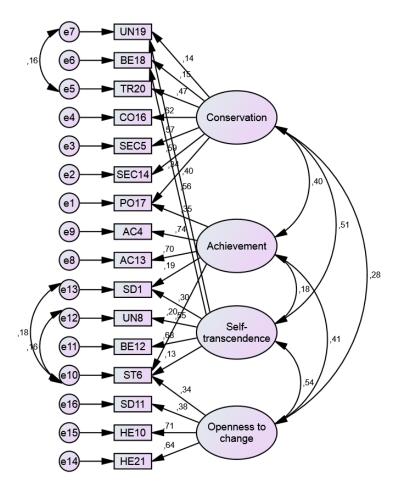

b Lower values indicate better model fit

Fig. 51 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, France (second half-sample: n = 984)

Table A172 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, France (N = 1,968)

		Sub	scale	
	Conservation	Achievement	Self- transcendence	Openness to change
Number of items	7	2	4	3
Mean (standard error)	2.68 (0.018)	3.73 (0.027)	2.56 (0.019)	2.65 (0.021)
95% Confidence interval	2.64-2.71	3.68-3.79	2.53-2.60	2.61-2.69
Standard deviation	0.795	1.216	0.843	0.941
Skewness (standard error)	0.095 (0.055)	-0.331 (0.055)	0.239 (0.055)	0.259 (0.055)
Kurtosis (standard error)	-0.441 (0.110)	-0.542 (0.110)	-0.447 (0.110)	-0.385 (0.110)
Cronbach's alpha reliability coeff.	0.711	0.675	0.614	0.567
Split-half reliability coefficient	0.609	0.675	0.549	0.569
Average inter-item correlations	0.265	0.510	0.288	0.313
Minimum-maximum correlations	0.126-0.382	0.510-0.510	0.225-0.366	0.209-0.470
Range of correlations	0.256	0.000	0.141	0.262
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Achievement	0.233	_		
Self-transcendence	0.220	0.237	_	
Openness to change	0.203	0.248	0.251	_

Fig. 52 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, France (N = 1,968)

Table A173 Item analysis of Schwartz scale values of the European Social Survey, 2014: France (first half-sample: n = 958)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.51 (1.274)	2.43-2.59	26.7	27.2	21.4	17.1	5.1	1.6	0.8	0.52	-0.51	0.324
SD11	2.59 (1.364)	2.50-2.68	27.8	24.4	21.0	15.9	8.9	1.8	0.3	0.49	-0.73	0.273
UN3	1.85 (1.048)	1.78-1.92	48.3	28.7	13.9	6.1	1.4	0.8	0.8	1.34	1.66	0.219
UN8	2.29 (1.152)	2.22-2.37	28.8	33.4	20.8	12.9	2.2	1.3	0.6	0.76	0.14	0.299
UN19	2.31 (1.216)	2.23-2.39	30.6	32.2	18.4	13.8	3.3	1.5	0.3	0.78	-0.01	0.344
BE12	2.40 (1.155)	2.32-2.47	26.1	31.7	21.1	17.0	3.0	0.4	0.6	0.48	-0.61	0.416
BE18	1.93 (0.995)	1.86-1.99	40.8	35.7	14.1	7.5	1.0	0.3	0.5	1.05	0.77	0.429
TR9	2.36 (1.184)	2.29-2.44	27.2	33.3	19.8	13.7	4.4	0.7	0.8	0.67	-0.25	0.258
TR20	3.35 (1.585)	3.25-3.45	14.9	20.5	16.6	19.8	16.9	10.6	0.6	0.08	-1.13	0.283
CO7	3.88 (1.479)	3.79-3.98	8.5	12.2	15.4	21.2	28.0	12.8	1.9	-0.42	-0.80	0.271
CO16	2.70 (1.379)	2.61-2.79	22.3	29.2	19.1	15.9	10.0	2.7	0.7	0.51	-0.67	0.318
SEC5	2.75 (1.408)	2.66-2.84	22.4	27.3	19.4	15.0	12.6	2.4	0.7	0.44	-0.84	0.321
SEC14	2.57 (1.350)	2.48-2.65	26.4	28.2	18.8	15.8	7.4	2.4	1.0	0.59	-0.52	0.372
PO2	4.81 (1.116)	4.74-4.88	2.0	3.3	5.9	16.0	45.6	26.5	0.6	-1.31	1.85	0.224
PO17	3.74 (1.421)	3.65-3.83	8.0	14.3	18.6	20.7	29.2	7.8	1.4	-0.34	-0.87	0.343
AC4	3.52 (1.452)	3.43-3.61	9.9	19.0	17.3	22.7	23.4	6.9	0.8	-0.15	-1.02	0.387
AC13	4.20 (1.346)	4.11-4.28	3.9	10.5	11.6	24.9	32.0	16.1	0.9	-0.61	-0.37	0.366
HE10	2.40 (1.197)	2.32-2.48	25.7	34.6	19.5	14.1	4.9	0.8	0.4	0.67	0.26	0.379
HE21	3.23 (1.394)	3.14-3.32	13.4	19.5	20.5	27.9	12.9	5.2	0.6	0.04	-0.83	0.336
ST6	2.97 (1.392)	2.89-3.06	18.2	23.0	20.3	21.3	14.7	2.0	0.6	0.15	-1.04	0.447
ST15	4.21 (1.451)	4.12-4.30	6.7	8.5	12.6	20.3	32.9	18.8	0.3	-0.69	-0.41	0.275

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.158, respectively.

Table A174 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, France (first half-sample: n = 958)

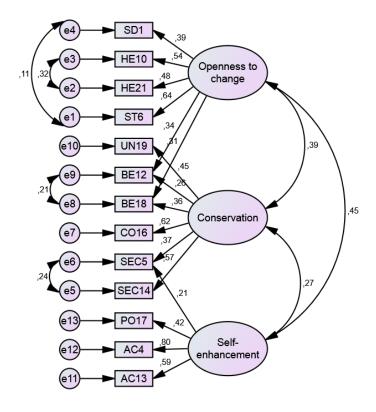
	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
SD1	0.303	0.046	0.130	0.858
UN19	0.171	0.385	-0.079	0.803
BE12	0.265	0.398	-0.080	0.733
BE18	0.358	0.422	-0.129	0.645
CO16	-0.114	0.594	-0.003	0.674
SEC5	-0.190	0.427	0.319	0.676
SEC14	-0.072	0.548	0.108	0.675
PO17	-0.019	0.214	0.368	0.777
AC4	0.081	-0.055	0.741	0.439
AC13	0.175	-0.072	0.584	0.604
HE10	0.611	-0.031	0.037	0.624
HE21	0.599	-0.070	0.011	0.657
ST6	0.551	0.015	0.153	0.625
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Conservation	0.289	_		
Self-enhancement	0.249	0.295	_	

Table A175 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, France (first half-sample: n = 958)

		Subscale	
	Openness to	Conservation	Self-
	change		enhancement
Number of items	4	6	3
Mean (standard error)	2.78 (0.029)	2.44 (0.024)	3.82 (0.034)
95% Confidence interval	2.72-2.84	2.40-2.49	3.75-3.89
Standard deviation	0.902	0.755	1.061
Skewness (standard error)	0.230 (0.079)	0.164 (0.079)	-0.342 (0.079)
Kurtosis (standard error)	-0.257 (0.158)	-0.462 (0.158)	-0.327 (0.158)
Cronbach's alpha reliability coeff.	0.623	0.643	0.621
Split-half reliability coefficient	0.660	0.469	0.586
Average inter-item correlations	0.293	0.236	0.354
Minimum-maximum correlations	0.135-0.472	0.092-0.437	0.294-0.473
Range of correlations	0.337	0.345	0.179
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.179	_	
Self-enhancement	0.224	0.194	_

Table A176 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, France (first half-sample: n = 958)

**	Principal axis factor a	** .		
Variables	Factor I Openness to change	Factor II Conservation	Unique variance	
SD1	0.355	0.061	0.853	
UN19	0.138	0.262	0.884	
BE12	0.228	0.256	0.838	
BE18	0.301	0.234	0.800	
CO16	-0.111	0.517	0.765	
SEC5	-0.107	0.619	0.657	
SEC14	-0.048	0.566	0.699	
PO17	0.098	0.405	0.796	
AC4	0.287	0.308	0.754	
AC13	0.346	0.228	0.768	
HE10	0.634	-0.109	0.639	
HE21	0.612	-0.157	0.675	
ST6	0.623	0.001	0.611	
	Correlations betw	veen factors		
Openness to change	_			
Conservation	0.385	_		


Table A177 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2014, France (second half-sample: n = 959)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.66	.047	.918	.939	.906	.053 (.045061)
2a	2 first-order correlated factors- without cross-loadings	8.55	.068	.794	.812	.733	.089 (.081096)
2b	2 first-order correlated factors - with cross-loadings	6.58	_	.850	.869	.803	.076 (.069084)
3a	3 first-order correlated factors- without cross-loadings	5.85	.063	.851	.873	.829	.071 (.064079)
3b	3 first-order correlated factors- with cross-loadings	5.56	.054	.890	.911	.874	.061 (.053069)
4	3 first-order correlated factors of unified values	6.86	.073	.800	.822	.773	.078 (.071085)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Iteration limit reached in model 2b. The results are therefore incorrect.

a Higher values indicate better model fit

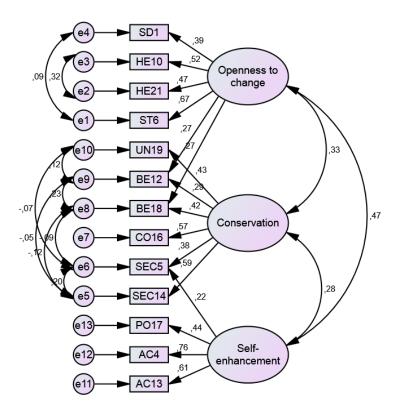

b Lower values indicate better model fit

Fig. 53 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, France (second half-sample: n = 959)

Table A178 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, France (N = 1,917)

		Subscale	
	Openness to change	Conservation	Self- enhancement
Number of items	4	6	3
Mean (standard error)	2.78 (0.021)	2.43 (0.017)	3.76 (0.024)
95% Confidence interval	2.74-2.82	2.39-2.46	3.71-3.80
Standard deviation	0.910	0.763	1.059
Skewness (standard error)	0.253 (0.056)	0.293 (0.056)	-0.301 (0.056)
Kurtosis (standard error)	-0.151 (0.112)	-0.131 (0.112)	-0.343 (0.112)
Cronbach's alpha reliability coeff.	0.626	0.664	0.614
Split-half reliability coefficient	0.661	0.504	0.447
Average inter-item correlations	0.296	0.252	0.347
Minimum-maximum correlations	0.132-0.483	0.120-0.435	0.256-0.479
Range of correlations	0.350	0.316	0.223
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.194	_	
Self-enhancement	0.225	0.203	_

Fig. 54 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, France (N = 1,917)

Table A179 Item analysis of Schwartz scale values of the European Social Survey, 2002: Germany (first half-sample: n = 1,416)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.45 (1.115)	2.40-2.51	19.4	38.1	25.6	10.7	4.6	1.0	0.6	0.73	0.25	0.342
SD11	1.99 (0.950)	1.94-2.04	34.4	40.3	18.3	4.4	2.0	0.1	0.5	0.98	0.96	0.425
UN3	2.11 (1.060)	2.06-2.17	31.3	40.3	17.5	6.4	3.1	0.7	0.7	1.08	1.11	0.229
UN8	2.25 (1.063)	2.19-2.31	23.4	44.1	20.3	6.9	3.2	1.2	0.9	1.07	1.30	0.283
UN19	2.18 (1.033)	2.12-2.23	28.1	39.8	20.6	8.3	2.1	0.6	0.6	0.86	0.61	0.291
BE12	2.29 (0.995)	2.23-2.34	21.1	42.8	24.8	7.6	2.7	0.4	0.6	0.78	0.65	0.347
BE18	1.82 (0.840)	1.78-1.87	38.3	46.0	11.3	2.8	0.8	0.4	0.4	1.30	2.84	0.388
TR9	2.83 (1.292)	2.77-2.90	14.7	31.2	24.6	15.6	10.7	2.3	0.8	0.46	-0.55	0.144
TR20	2.99 (1.401)	2.92-3.06	14.6	27.4	24.0	16.4	12.0	5.1	0.5	0.41	-0.69	0.243
CO7	3.44 (1.458)	3.36-3.51	9.7	19.9	23.1	18.1	19.9	8.3	1.0	0.06	-0.99	0.292
CO16	2.97 (1.320)	2.90-3.04	13.1	27.5	25.9	17.7	11.4	3.5	0.9	0.37	-0.60	0.368
SEC5	2.35 (1.190)	2.28-2.41	26.5	35.8	21.0	9.6	5.2	1.3	0.6	0.85	0.25	0.349
SEC14	2.36 (1.213)	2.29-2.42	27.0	35.4	19.7	9.8	6.4	1.0	0.7	0.82	0.04	0.398
PO2	4.21 (1.270)	4.14-4.27	2.5	8.1	17.5	24.2	31.8	15.2	0.7	-0.48	-0.42	0.288
PO17	3.39 (1.379)	3.32-3.46	8.9	19.2	26.0	20.3	18.6	6.2	0.8	0.07	-0.84	0.382
AC4	3.66 (1.379)	3.59-3.74	6.0	16.3	23.5	21.9	22.5	9.0	0.8	-0.10	-0.86	0.394
AC13	3.05 (1.306)	2.98-3.12	11.4	25.8	27.5	18.4	12.6	3.4	0.8	0.30	-0.64	0.517
HE10	2.73 (1.208)	2.67-2.79	14.2	33.1	29.4	13.1	7.4	2.3	0.6	0.60	-0.05	0.437
HE21	3.19 (1.365)	3.11-3.26	11.2	23.0	25.5	21.5	13.1	5.4	0.4	0.22	-0.73	0.458
ST6	3.15 (1.350)	3.08-3.22	10.7	25.1	25.5	19.4	14.3	4.4	0.6	0.25	-0.76	0.410
ST15	4.27 (1.380)	4.20-4.34	3.5	8.8	16.4	20.8	28.2	21.6	0.7	-0.52	-0.58	0.299

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.065 and 0.130, respectively.

Table A180 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Germany (first half-sample: n = 1.416)

	Principal a	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Conservation	Self-	variance			
	change		enhancement				
SD1	0.406	-0.067	0.111	0.792			
SD11	0.424	0.104	0.067	0.757			
BE12	0.138	0.423	-0.097	0.807			
BE18	0.214	0.352	-0.053	0.819			
CO16	-0.183	0.608	0.160	0.584			
SEC5	-0.089	0.600	0.084	0.623			
SEC14	0.089	0.666	-0.102	0.565			
PO17	-0.103	0.069	0.642	0.609			
AC4	0.147	-0.127	0.652	0.507			
AC13	0.239	0.045	0.540	0.510			
HE10	0.778	0.045	-0.069	0.426			
HE21	0.663	0.079	0.010	0.527			
ST6	0.675	-0.078	0.011	0.553			
Factors	Correl	ations between fa	ctors				
Openness to change	_						
Conservation	0.201	_					
Self-enhancement	0.464	0.307	_				

Table A181 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Germany (first half-sample: n = 1,416)

		Subscale	
	Openness to	Conservation	Self-
	change		enhancement
Number of items	5	5	3
Mean (standard error)	2.70 (0.022)	2.36 (0.020)	3.37 (0.028)
95% Confidence interval	2.66-2.75	2.32-2.39	3.31-3.42
Standard deviation	0.846	0.739	1.062
Skewness (standard error)	0.381 (0.065)	0.356 (0.065)	0.032 (0.065)
Kurtosis (standard error)	-0.036 (0.130)	0.026 (0.130)	-0.383 (0.130)
Cronbach's alpha reliability coeff.	0.741	0.671	0.686
Split-half reliability coefficient	0.728	0.659	0.568
Average inter-item correlations	0.362	0.288	0.422
Minimum-maximum correlations	0.220-0.603	0.175-0.408	0.387-0.488
Range of correlations	0.383	0.233	0.101
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.201	_	
Self-enhancement	0.305	0.212	_

Table A182 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Germany (first half-sample: n = 1,416)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.482	-0.081	0.784
SD11	0.463	0.072	0.761
BE12	0.063	0.362	0.852
BE18	0.168	0.300	0.853
CO16	-0.109	0.686	0.561
SEC5	-0.060	0.633	0.617
SEC14	0.010	0.573	0.668
PO17	0.288	0.253	0.811
AC4	0.518	0.073	0.704
AC13	0.567	0.185	0.585
HE10	0.698	-0.053	0.531
HE21	0.647	0.010	0.578
ST6	0.673	-0.145	0.582
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.287	_	

Table A183 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-11 items): European Social Survey 2002, Germany (first half-sample: n = 1,416)

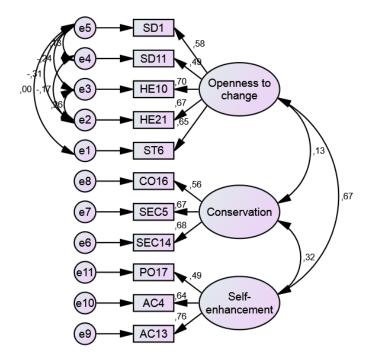

	s (factors)			
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
SD1	0.354	-0.130	0.176	0.792
SD11	0.396	0.045	0.114	0.776
CO16	-0.127	0.623	0.127	0.577
SEC5	-0.030	0.607	0.054	0.618
SEC14	0.150	0.642	-0.118	0.580
PO17	-0.111	0.110	0.626	0.619
AC4	0.112	-0.094	0.657	0.511
AC13	0.217	0.059	0.553	0.505
HE10	0.825	0.058	-0.109	0.380
HE21	0.694	0.085	-0.014	0.504
ST6	0.647	-0.108	0.042	0.565
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.149	_		
Self-enhancement	0.491	0.265	_	

Table A184 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2002, Germany (second half-sample: n = 1,417)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.06	.041	.939	.948	.902	.060 (.053067)
2a	2 first-order correlated factors- without cross-loadings	7.86	.062	.902	.913	.867	.070 (.063076)
2b	2 first-order correlated factors- with cross-loadings	7.66	.060	.907	.917	.871	.069 (.062075)
3a	3 first-order correlated factors- without cross-loadings	7.56	.061	.899	.910	.873	.068 (.062074)
3b	3 first-order correlated factors- with cross-loadings	7.50	.060	.901	.913	.874	.068 (.062074)
3c	3 first-order correlated factors (11 items)-without						,
4	cross-loadings	5.92	.041	.942	.951	.923	.059 (.051067)
4	3 first-order correlated factors of unified values	9.01	.068	.837	.852	.814	.075 (.070081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

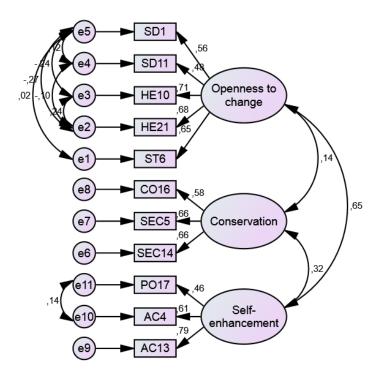


Fig. 55 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Germany (second half-sample: n = 1,417)

a Higher values indicate better model fit

Table A185 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Germany (N = 2,833)

	Subscale					
	Openness to change	Conservation	Self- enhancement			
Number of items	5	3	3			
Mean (standard error)	2.70 (0.016)	2.57 (0.018)	3.35 (0.020)			
95% Confidence interval	2.67-2.73	2.53-2.60	3.31-3.39			
Standard deviation	0.851	0.955	1.042			
Skewness (standard error)	0.425 (0.046)	0.424 (0.046)	0.045 (0.046)			
Kurtosis (standard error)	0.038 (0.092)	-0.211 (0.092)	-0.392 (0.092)			
Cronbach's alpha reliability coeff.	0.739	0.661	0.676			
Split-half reliability coefficient	0.734	0.583	0.558			
Average inter-item correlations	0.360	0.397	0.411			
Minimum-maximum correlations	0.213-0.605	0.375-0.431	0.377-0.479			
Range of correlations	0.392	0.056	0.102			
	Average inter-i	tem correlations be	etween subscales			
Openness to change	_					
Conservation	0.201	_				
Self-enhancement	0.305	0.243	_			

Fig. 56 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Germany (N = 2,833)

Table A186 Item analysis of Schwartz scale values of the European Social Survey, 2004: Germany (first half-sample: n = 1,435)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.58 (1.170)	2.52-2.64	16.2	38.0	26.4	10.2	6.1	1.9	1.1	0.77	0.31	0.339
SD11	2.08 (0.970)	2.03-2.13	28.5	45.9	16.0	5.8	2.5	0.3	1.0	1.07	1.28	0.345
UN3	2.18 (1.024)	2.13-2.24	23.4	49.1	16.9	5.2	3.8	0.8	0.8	1.22	1.77	0.295
UN8	2.26 (0.947)	2.21-2.31	17.4	51.4	20.6	6.5	2.4	0.7	1.1	1.08	1.74	0.268
UN19	2.25 (1.027)	2.20-2.30	22.0	45.9	20.1	6.9	3.4	0.7	1.0	1.01	1.14	0.261
BE12	2.28 (0.977)	2.23-2.33	19.4	46.6	22.8	7.6	2.0	0.8	0.8	0.93	1.23	0.344
BE18	1.80 (0.750)	1.76-1.84	35.4	52.3	8.4	2.5	0.7	-	0.7	1.10	2.19	0.340
TR9	2.77 (1.211)	2.71-2.83	10.6	39.5	24.9	12.9	8.8	2.4	0.9	0.71	-0.07	0.026
TR20	2.95 (1.365)	2.88-3.02	11.9	34.0	22.1	14.1	12.3	4.6	0.9	0.54	-0.59	0.224
CO7	3.33 (1.353)	3.26-3.40	5.9	27.9	23.1	15.9	21.5	4.5	1.2	0.21	-1.03	0.219
CO16	2.84 (1.252)	2.78-2.91	10.3	38.1	24.0	13.2	11.1	2.4	0.8	0.63	-0.36	0.303
SEC5	2.51 (1.195)	2.45-2.57	18.3	41.0	22.0	8.8	7.8	1.4	0.8	0.84	0.19	0.236
SEC14	2.46 (1.176)	2.40-2.53	18.8	41.5	19.4	10.2	7.0	1.1	2.0	0.86	0.20	0.330
PO2	4.19 (1.259)	4.12-4.25	2.2	8.8	18.8	20.8	35.5	13.1	0.8	-0.49	-0.51	0.210
PO17	3.30 (1.286)	3.23-3.36	5.4	25.9	27.1	18.8	17.6	4.2	1.0	0.25	-0.81	0.326
AC4	3.44 (1.318)	3.37-3.50	5.6	21.6	26.6	18.0	22.6	4.5	1.1	0.07	-0.94	0.351
AC13	3.04 (1.240)	2.98-3.11	7.5	30.9	29.1	15.4	13.4	2.6	1.0	0.44	-0.54	0.467
HE10	2.60 (1.110)	2.54-2.66	13.3	40.6	26.3	12.6	5.4	1.3	0.5	0.71	0.22	0.390
HE21	3.20 (1.273)	3.14-3.27	7.5	24.5	29.3	20.1	13.9	4.0	0.7	0.27	-0.61	0.373
ST6	3.06 (1.283)	2.99-3.13	8.4	30.0	28.2	15.2	13.8	3.4	1.0	0.43	-0.59	0.375
ST15	4.30 (1.324)	4.23-4.37	2.5	9.4	15.8	17.6	35.6	18.1	1.0	-0.59	-0.51	0.213

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.065 and 0.129, respectively.

Table A187 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Germany (first half-sample: n = 1,435)

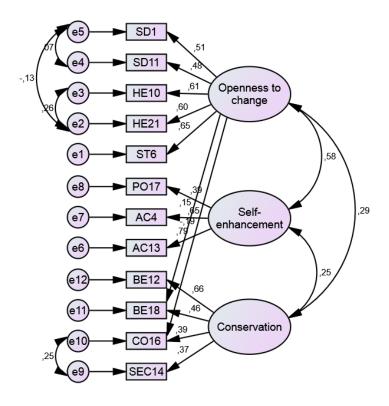
	Principal a	xis factor analysis	s (factors)	
Item	Factor I Openness to change	Factor II Self- enhancement	Factor III Conservation	Unique variance
SD1	0.365	0.175	-0.036	0.778
SD11	0.405	0.133	0.037	0.760
BE12	0.201	-0.072	0.367	0.837
BE18	0.255	-0.073	0.372	0.809
CO16	-0.220	0.107	0.592	0.600
SEC14	0.016	0.020	0.509	0.733
PO17	-0.095	0.549	0.122	0.693
AC4	0.076	0.645	-0.111	0.555
AC13	0.205	0.589	0.006	0.492
HE10	0.742	-0.044	0.028	0.475
HE21	0.666	-0.038	0.079	0.568
ST6	0.671	0.009	-0.030	0.546
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Self-enhancement	0.486	_		
Conservation	0.076	0.256	_	

Table A188 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Germany (first half-sample: n = 1,435)

		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	5	3	4
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	· ·	e	•
Mean (standard error)	2.70 (0.021)	3.26 (0.026)	2.35 (0.018)
95% Confidence interval	2.66-2.75	3.21-3.31	2.31-2.38
Standard deviation	0.810	0.983	0.679
Skewness (standard error)	0.620 (0.065)	0.182 (0.065)	0.506 (0.065)
Kurtosis (standard error)	0.465 (0.129)	-0.387 (0.129)	0.319 (0.129)
Cronbach's alpha reliability coeff.	0.732	0.650	0.525
Split-half reliability coefficient	0.718	0.512	0.603
Average inter-item correlations	0.353	0.383	0.229
Minimum-maximum correlations	0.209-0.561	0.330-0.471	0.132-0.424
Range of correlations	0.351	0.141	0.292
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.291	_	
Conservation	0.174	0.173	_
			

Table A189 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Germany (first half-sample: n = 1,435)

	Principal axis factor a		
Variables	-	•	Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.473	0.014	0.772
SD11	0.476	0.052	0.755
BE12	0.095	0.250	0.914
BE18	0.146	0.253	0.892
CO16	-0.261	0.576	0.693
SEC14	-0.065	0.437	0.822
PO17	0.165	0.429	0.745
AC4	0.412	0.236	0.714
AC13	0.503	0.309	0.556
HE10	0.714	-0.106	0.526
HE21	0.624	-0.045	0.626
ST6	0.693	-0.123	0.557
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.308	_	


Table A190 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2004, Germany (second half-sample: n = 1,435)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.17	.034	.946	.958	.930	.047 (.040055)
2a	2 first-order correlated factors- without cross-loadings	7.97	.060	.885	.898	.846	.070 (.063077)
2b	2 first-order correlated factors- with cross-loadings	6.70	.048	.910	.922	.874	.063 (.056070)
3a	3 first-order correlated factors- without cross-loadings	6.50	.051	.900	.914	.879	.062 (.055069)
3b	3 first-order correlated factors- with cross-loadings	5.48	.043	.919	.933	.901	.056 (.049063)
4	3 first-order correlated factors of unified values	8.32	.068	.843	.858	.821	.071 (.066077)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

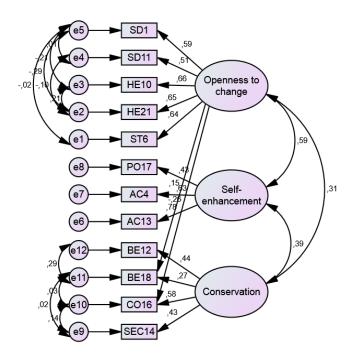

b Lower values indicate better model fit

Fig. 57 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Germany (second half-sample: n = 1,435)

Table A191 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Germany (N = 2,870)

		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	5	3	4
Mean (standard error)	2.69 (0.015)	3.26 (0.018)	2.36 (0.013)
95% Confidence interval	2.66-2.72	3.22-3.29	2.33-2.38
Standard deviation	0.800	0.977	0.677
Skewness (standard error)	0.506 (0.046)	0.168 (0.046)	0.497 (0.046)
Kurtosis (standard error)	0.221 (0.091)	-0.398 (0.091)	0.349 (0.091)
Cronbach's alpha reliability coeff.	0.722	0.643	0.537
Split-half reliability coefficient	0.702	0.484	0.610
Average inter-item correlations	0.343	0.376	0.236
Minimum-maximum correlations	0.206-0.551	0.316-0.490	0.143-0.387
Range of correlations	0.344	0.174	0.244
	Average inter-i	tem correlations be	etween subscales
Openness to change			
Self-enhancement	0.279	_	
Conservation	0.172	0.177	_

Fig. 58 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Germany (N = 2,780)

Table A192 Item analysis of Schwartz scale values of the European Social Survey, 2006: Germany (first half-sample: n = 1,458)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.48 (1.156)	2.43-2.54	17.6	40.4	23.7	8.5	6.5	1.4	0.6	0.89	0.46	0.360
SD11	2.01 (0.920)	1.96-2.05	31.2	44.9	16.2	5.3	1.3	0.3	0.9	1.01	1.28	0.305
UN3	2.11 (0.989)	2.06-2.16	27.4	45.9	16.9	5.2	3.0	0.4	1.2	1.12	1.46	0.316
UN8	2.35 (0.992)	2.30-2.40	15.3	49.8	21.8	7.3	3.7	0.7	1.4	1.04	1.29	0.327
UN19	2.19 (0.986)	2.13-2.24	24.5	44.2	20.3	7.3	2.0	0.5	1.2	0.92	1.01	0.349
BE12	2.27 (0.952)	2.22-2.32	19.3	46.8	22.0	8.5	2.4	0.1	0.9	0.74	0.40	0.360
BE18	1.83 (0.792)	1.79-1.88	34.5	51.3	10.2	1.7	1.2	0.2	0.9	1.32	3.45	0.362
TR9	2.79 (1.180)	2.73-2.85	10.2	38.3	24.8	15.1	8.7	1.6	1.2	0.60	-0.24	0.108
TR20	2.96 (1.349)	2.89-3.03	11.4	33.2	22.8	15.6	11.2	4.7	1.0	0.53	-0.54	0.269
CO7	3.34 (1.393)	3.27-3.41	6.8	27.0	22.7	15.2	20.9	5.8	1.6	0.21	-1.02	0.218
CO16	2.90 (1.257)	2.84-2.97	11.0	32.7	26.3	14.5	12.1	2.1	1.2	0.47	-0.52	0.275
SEC5	2.52 (1.190)	2.46-2.58	18.0	40.5	21.9	9.0	8.2	1.1	1.2	0.79	0.07	0.316
SEC14	2.43 (1.198)	2.37-2.49	21.0	40.7	18.4	10.1	6.4	1.5	1.9	0.91	0.31	0.331
PO2	4.11 (1.265)	4.05-4.18	2.5	9.5	19.5	21.8	33.5	11.9	1.2	-0.44	-0.55	0.206
PO17	3.28 (1.263)	3.21-3.34	5.5	24.8	29.4	18.4	16.8	3.8	1.2	0.26	-0.72	0.377
AC4	3.32 (1.307)	3.25-3.39	6.0	25.0	26.0	19.2	18.2	4.5	1.2	0.20	-0.84	0.377
AC13	2.92 (1.183)	2.86-2.98	8.6	32.5	30.7	15.2	9.9	2.1	1.0	0.52	-0.25	0.446
HE10	2.60 (1.152)	2.54-2.66	15.2	38.7	25.0	12.2	6.8	1.1	1.1	0.66	-0.02	0.412
HE21	3.17 (1.300)	3.10-3.24	8.2	26.1	27.9	17.6	15.3	3.8	1.0	0.29	-0.71	0.405
ST6	3.00 (1.305)	2.93-3.07	11.0	29.8	25.2	16.7	12.8	3.2	1.3	0.39	-0.64	0.389
ST15	4.22 (1.361)	4.15-4.29	2.7	10.2	18.2	17.9	31.1	18.9	1.1	-0.46	-0.71	0.198

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.064 and 0.128, respectively.

Table A193 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Germany (first half-sample: n = 1,458)

	Pr	incipal axis facto	or analysis (factors)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Openness to	Self-	Security	variance
	transcendence	change	enhancement	·	
SD1	0.327	0.109	0.291	-0.254	0.635
SD11	0.250	0.266	0.068	-0.055	0.779
UN8	0.552	-0.051	-0.030	0.093	0.697
UN19	0.712	-0.015	-0.111	-0.052	0.542
BE12	0.533	0.081	-0.100	0.130	0.672
BE18	0.551	-0.021	0.013	0.082	0.680
TR20	0.548	-0.037	0.062	0.059	0.679
CO16	0.141	-0.046	0.102	0.581	0.599
SEC14	0.086	0.065	0.048	0.621	0.581
PO17	-0.044	-0.020	0.496	0.184	0.740
AC4	-0.117	-0.031	0.821	-0.009	0.394
AC13	0.020	0.064	0.622	0.044	0.555
HE10	0.030	0.796	-0.068	-0.010	0.401
HE21	-0.178	0.824	-0.002	0.114	0.417
ST6	0.105	0.509	0.078	-0.083	0.621
Factors		Correlations b	etween factors		
Self-transcendence	_				
Openness to change	0.387	_			
Self-enhancement	0.300	0.546	_		
Security	0.150	-0.102	0.016	_	

Table A194 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Germany (first half-sample: n = 1,458)

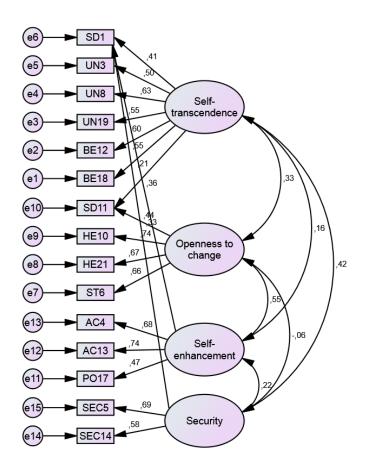
		Sub	scale	
	Self- transcendence	Openness to change	Self- enhancement	Security
Number of items	6	4	3	2
Mean (standard error)	2.21 (0.016)	2.69 (0.023)	3.17 (0.025)	2.48 (0.026)
95% Confidence interval	2.17-2.24	2.65-2.74	3.12-3.22	2.42-2.53
Standard deviation	0.625	0.867	0.968	1.009
Skewness (standard error)	0.700 (0.064)	0.410 (0.064)	0.291 (0.064)	0.767 (0.064)
Kurtosis (standard error)	0.801 (0.128)	-0.044 (0.128)	-0.244 (0.128)	0.379 (0.128)
Cronbach's alpha reliability coeff.	0.705	0.716	0.664	0.599
Split-half reliability coefficient	0.684	0.761	0.521	0.599
Average inter-item correlations	0.295	0.383	0. 398	0.427
Minimum-maximum correlations	0.169-0.390	0.228-0.577	0.309-0.497	0.427-0.427
Range of correlations	0.221	0.349	0.189	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Openness to change	0.239	_		
Self-enhancement	0.209	0.291	_	
Security	0.228	0.198	0.229	_

Table A195 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, Germany (first half-sample: n = 1,458)

	Principal a	xis factor analysis	s (factors)		
•	Factor I	Factor II	Factor III	Unique	
Item	Openness to	Self-	Self-	variance	
	change	transcendence	enhancement		
SD1	0.460	0.123	0.065	0.725	
SD11	0.388	0.196	0.014	0.776	
UN3	0.040	0.541	-0.023	0.703	
UN8	0.178	0.600	-0.169	0.601	
UN19	0.106	0.563	-0.045	0.660	
BE12	0.089	0.529	0.014	0.690	
BE18	0.108	0.505	0.040	0.699	
SEC5	-0.292	0.385	0.365	0.683	
SEC14	-0.231	0.352	0.333	0.742	
PO17	0.045	-0.007	0.518	0.717	
AC4	0.276	-0.181	0.594	0.501	
AC13	0.294	-0.036	0.514	0.565	
HE10	0.714	0.073	-0.016	0.472	
HE21	0.584	-0.032	0.123	0.607	
ST6	0.611	0.065	0.017	0.599	
Factors	Correlations between factors				
Openness to change	_				
Self-transcendence	0.194	_			
Self-enhancement	0.315	0.215	_		

Table A196 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Germany (first half-sample: n = 1.458)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.469	0.094	0.740
SD11	0.369	0.160	0.797
UN3	-0.033	0.564	0.694
UN8	0.011	0.568	0.672
UN19	0.019	0.568	0.670
BE12	0.038	0.552	0.679
BE18	0.074	0.529	0.686
SEC5	-0.071	0.414	0.844
SEC14	-0.032	0.382	0.862
PO17	0.339	0.057	0.868
AC4	0.584	-0.101	0.690
AC13	0.581	0.006	0.660
HE10	0.667	-0.013	0.561
HE21	0.659	-0.097	0.601
ST6	0.592	-0.002	0.650
	Correlations bet	tween factors	
Self-enhancement	_		
Self-transcendence	0.356	_	


Table A197 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2006, Germany (second half-sample: n = 1,458)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFIª	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.48	.046	.927	.936	.869	.061 (.055068)
2	2 first-order correlated factors- without cross-loadings	5.90	.054	.898	.913	.883	.058 (.053063)
3a	3 first-order correlated factors- without cross-loadings	6.43	.056	.880	.896	.870	.061 (.056066)
3b	3 first-order correlated factors- with cross-loadings	5.16	.046	.911	.926	.901	.053 (.048059)
4a	4 first-order correlated factors- without cross-loadings	7.66	.066	.857	.873	.841	.068 (.063073)
4b	4 first-order correlated factors- with cross-loadings	5.02	.044	.910	.926	.904	.053 (.047058)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

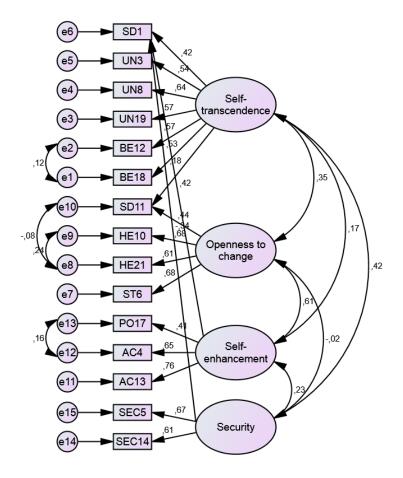

b Lower values indicate better model fit

Fig. 59 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Germany (second half-sample: n = 1,458)

Table A198 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Germany (N = 2,916)

		Sub	scale	
	Self- transcendence	Openness to change	Self- enhancement	Security
Number of items	6	4	3	2
Mean (standard error)	2.22 (0.012)	2.71 (0.016)	3.21 (0.018)	2.48 (0.019)
95% Confidence interval	2.20-2.25	2.68-2.74	3.17-3.24	2.44-2.52
Standard deviation	0.621	0.868	0.970	1.007
Skewness (standard error)	0.723 (0.045)	0.389 (0.045)	0.286 (0.045)	0.797 (0.045)
Kurtosis (standard error)	1.028 (0.091)	0.014 (0.091)	-0.302 (0.091)	0.425 (0.091)
Cronbach's alpha reliability coeff.	0.693	0.723	0.664	0.587
Split-half reliability coefficient	0.676	0.760	0.521	0.587
Average inter-item correlations	0.284	0.395	0. 398	0.415
Minimum-maximum correlations	0.154-0.385	0.256-0.553	0.319-0.498	0.415-0.415
Range of correlations	0.232	0.297	0.179	0.000
	Averag	ge inter-item corre	elations between su	ıbscales
Self-transcendence	_			
Openness to change	0.235	_		
Self-enhancement	0.197	0.294	_	
Security	0.220	0.192	0.224	_

Fig. 60 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Germany (N = 2,916)

Table A199 Item analysis of Schwartz scale values of the European Social Survey, 2008: Germany (first half-sample: n = 1,375)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.56 (1.211)	2.50-2.63	18.1	37.6	24.1	10.2	7.1	1.9	1.0	0.77	0.13	0.314
SD11	2.03 (1.002)	1.98-2.08	32.1	44.1	15.0	4.9	2.5	0.7	0.7	1.26	1.94	0.336
UN3	2.15 (1.003)	2.10-2.21	24.8	48.5	16.6	5.5	3.3	0.6	0.7	1.16	1.60	0.222
UN8	2.20 (0.966)	2.15-2.25	21.1	50.3	18.5	6.0	2.5	0.7	0.9	1.11	1.71	0.313
UN19	2.13 (1.023)	2.07-2.18	28.1	43.9	18.1	6.0	2.5	0.9	0.7	1.12	1.52	0.278
BE12	2.12 (0.906)	2.07-2.16	23.3	51.1	17.5	5.3	2.0	0.2	0.6	1.01	1.47	0.389
BE18	1.79 (0.781)	1.74-1.83	37.2	50.8	8.2	1.9	0.9	0.3	0.7	1.44	4.10	0.438
TR9	2.78 (1.247)	2.71-2.84	12.1	38.3	23.6	12.2	11.3	1.8	0.8	0.63	-0.37	0.085
TR20	2.82 (1.293)	2.75-2.89	14.0	33.7	23.6	14.8	10.5	2.6	0.7	0.53	-0.48	0.321
CO7	3.41 (1.409)	3.34-3.49	7.3	25.2	19.9	17.7	23.1	5.7	1.1	0.07	-1.09	0.277
CO16	2.89 (1.295)	2.82-2.96	12.5	33.1	23.3	16.0	11.6	2.6	0.9	0.47	-0.58	0.331
SEC5	2.45 (1.251)	2.39-2.52	21.6	41.2	17.7	8.0	9.2	1.5	0.9	0.91	0.11	0.280
SEC14	2.53 (1.239)	2.46-2.59	19.7	39.6	18.5	11.0	7.6	1.8	1.8	0.80	0.02	0.356
PO2	4.25 (1.256)	4.18-4.32	2.6	7.7	16.9	20.6	37.9	13.7	0.7	-0.62	-0.29	0.267
PO17	3.30 (1.296)	3.23-3.37	6.3	24.4	27.9	18.0	18.7	3.9	0.9	0.20	-0.83	0.357
AC4	3.45 (1.375)	3.37-3.52	6.4	23.3	22.9	17.6	23.6	5.3	0.8	0.05	-1.05	0.382
AC13	2.94 (1.251)	2.87-3.01	9.5	33.5	26.8	14.6	12.0	2.5	1.1	0.51	-0.47	0.500
HE10	2.59 (1.189)	2.53-2.65	16.9	36.9	25.3	12.4	6.1	1.8	0.5	0.70	0.08	0.439
HE21	3.21 (1.299)	3.14-3.28	8.4	24.3	27.3	20.1	15.6	3.6	0.6	0.20	-0.75	0.417
ST6	3.07 (1.338)	3.00-3.15	11.8	26.0	25.4	18.0	14.4	3.4	1.1	0.27	-0.77	0.392
ST15	4.36 (1.338)	4.29-4.43	3.0	8.8	13.5	18.3	35.7	20.2	0.6	-0.69	-0.34	0.218

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.066 and 0.132, respectively.

Table A200 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Germany (first half-sample: n = 1,375)

	Pr	rincipal axis facto	or analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Openness to	Self-	Self-	Conservation	variance
	change	enhancement	transcendence		
SD1	0.111	0.229	0.321	-0.203	0.712
SD11	0.235	0.112	0.249	-0.082	0.770
UN8	-0.072	-0.090	0.636	0.021	0.654
BE12	-0.027	-0.088	0.612	0.225	0.566
BE18	0.067	0.003	0.501	0.171	0.649
TR20	0.074	-0.036	0.156	0.469	0.721
CO16	-0.104	0.101	0.093	0.593	0.590
SEC14	0.080	0.067	-0.001	0.517	0.710
PO17	-0.017	0.504	-0.114	0.237	0.710
AC4	-0.023	0.728	-0.076	-0.045	0.527
AC13	0.037	0.690	0.023	0.070	0.464
HE10	0.732	0.035	-0.012	0.011	0.442
HE21	0.907	-0.089	-0.159	0.140	0.353
ST6	0.453	0.050	0.249	-0.174	0.580
Factors		Correlations b	etween factors		
Openness to change	_				
Self-enhancement	0.561	_			
Self-transcendence	0.447	0.380	_		
Conservation	-0.031	0.120	0.211	_	

Table A201 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Germany (first half-sample: n = 1,375)

		Sub	scale	
	Openness to change	Self- enhancement	Self- transcendence	Conservation
Number of items	3	3	5	3
Mean (standard error)	2.96 (0.028)	3.23 (0.027)	2.14 (0.017)	2.75 (0.025)
95% Confidence interval	2.91-3.01	3.18-3.28	2.11-2.17	2.70-2.79
Standard deviation	1.032	1.007	0.615	0.937
Skewness (standard error)	0.339 (0.066)	0.244 (0.066)	0.881 (0.066)	0.357 (0.066)
Kurtosis (standard error)	-0.276 (0.132)	-0.406 (0.132)	1.719 (0.132)	-0.282 (0.132)
Cronbach's alpha reliability coeff.	0.734	0.656	0.611	0.573
Split-half reliability coefficient	0.679	0.502	0.562	0.490
Average inter-item correlations	0.484	0.390	0.254	0.310
Minimum-maximum correlations	0.417-0.584	0.332-0.494	0.166-0.381	0.282-0.338
Range of correlations	0.167	0.162	0.215	0.056
	Averag	ge inter-item corre	lations between su	ibscales
Openness to change	_			
Self-enhancement	0.315	_		
Self-transcendence	0.256	0.209	_	
Conservation	0.186	0.218	0.189	_

Table A202 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, Germany (first half-sample: n = 1,375)

	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
SD1	0.434	-0.028	0.100	0.777
SD11	0.439	0.044	0.046	0.777
UN8	0.259	0.342	-0.178	0.803
BE12	0.220	0.527	-0.147	0.654
BE18	0.291	0.424	-0.057	0.694
TR20	-0.041	0.527	0.034	0.723
CO16	-0.258	0.612	0.176	0.591
SEC14	-0.112	0.471	0.160	0.744
PO17	-0.043	0.142	0.507	0.706
AC4	0.158	-0.109	0.619	0.549
AC13	0.216	0.049	0.598	0.479
HE10	0.684	-0.025	0.090	0.488
HE21	0.594	0.017	0.082	0.599
ST6	0.685	-0.051	-0.021	0.556
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.254	_		
Self-enhancement	0.369	0.239	_	

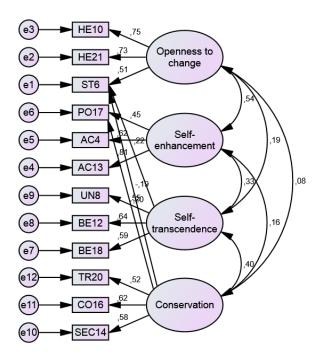
Table A203 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Germany (first half-sample: n = 1,375)

Variables	Principal axis factor a	Liniana	
variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.485	-0.038	0.775
SD11	0.459	0.009	0.787
UN8	0.144	0.221	0.910
BE12	0.117	0.401	0.796
BE18	0.239	0.341	0.775
TR20	-0.042	0.506	0.755
CO16	-0.195	0.688	0.573
SEC14	-0.048	0.526	0.737
PO17	0.219	0.307	0.815
AC4	0.448	0.106	0.758
AC13	0.509	0.233	0.611
HE10	0.725	-0.061	0.498
HE21	0.630	-0.015	0.609
ST6	0.649	-0.118	0.614
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.318	_	

Note: Component and factor loadings >.22 are in boldface.

Table A204 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (4 factors-12 items): European Social Survey 2006, Germany (first half-sample: n = 1,375)

	Pr	rincipal axis facto	or analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Openness to	Self-	Self-	Conservation	variance
	change	enhancement	transcendence		
UN8	-0.057	-0.034	0.626	-0.041	0.655
BE12	-0.027	-0.046	0.628	0.154	0.538
BE18	0.082	0.031	0.466	0.135	0.668
TR20	0.066	-0.054	0.135	0.465	0.721
CO16	-0.110	0.063	0.059	0.606	0.587
SEC14	0.065	0.034	-0.009	0.517	0.715
PO17	-0.014	0.468	-0.113	0.239	0.709
AC4	-0.032	0.757	-0.011	-0.106	0.483
AC13	0.069	0.644	0.036	0.051	0.497
HE10	0.706	0.060	0.011	-0.020	0.451
HE21	0.884	-0.086	-0.145	0.130	0.343
ST6	0.456	0.094	0.269	-0.224	0.582
Factors		Correlations b	etween factors		
Openness to change	_				
Self-enhancement	0.516	_			
Self-transcendence	0.368	0.268	_		
Conservation	0.071	0.250	0.370	_	


Table A205 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2008, Germany (second half-sample: n = 1,376)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.15	.044	.924	.937	.896	.055 (.049061)
2a	2 first-order correlated factors- without cross-loadings	9.42	.065	.843	.856	.789	.078 (.073084)
2b	2 first-order correlated factors- with cross-loadings	9.39	.063	.849	.861	.790	.078 (.072084)
3a	3 first-order correlated factors- without cross-loadings	6.14	.050	.896	.911	.871	.061 (.055067)
3b	3 first-order correlated factors- with cross-loadings	5.97	.047	.905	.919	.875	.060 (.054066)
4a	4 first-order correlated factors- without cross-loadings	8.73	.066	.838	.853	.806	.075 (.070081)
4b	4 first-order correlated factors- with cross-loadings	5.75	.045	.901	.916	.881	.059 (.053065)
4c	4 first-order correlated factors (12 items)-with cross-loadings	4.92	.039	.928	.941	.914	.053 (.047061)
5	3 first-order correlated factors of unified values	9.08	.069	.820	.836	.793	.077 (.071083)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

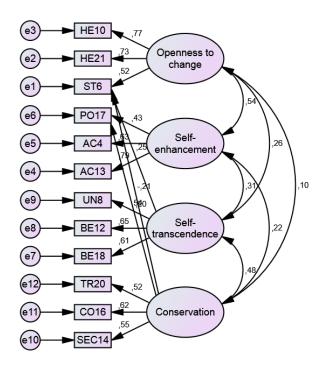

b Lower values indicate better model fit

Fig. 61 Standardized solution for the 4 first-order correlated factors (model 4c-12 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Germany (second half-sample: n = 1,376)

Table A206 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Germany (N = 2,751)

		Sub	scale	
	Openness to change	Self- enhancement	Self- transcendence	Conservation
Number of items	3	3	3	3
Mean (standard error)	2.96 (0.019)	3.22 (0.019)	2.04 (0.013)	2.78 (0.018)
95% Confidence interval	2.93-3.00	3.18-3.26	2.02-2.07	2.74-2.81
Standard deviation	1.016	1.008	0.676	0.947
Skewness (standard error)	0.362 (0.047)	0.267 (0.047)	1.012 (0.047)	0.393 (0.047)
Kurtosis (standard error)	-0.197 (0.093)	-0.390 (0.093)	2.025 (0.093)	-0.219 (0.093)
Cronbach's alpha reliability coeff.	0.734	0.664	0.627	0.583
Split-half reliability coefficient	0.674	0.519	0.524	0.499
Average inter-item correlations	0.466	0.398	0.364	0.319
Minimum-maximum correlations	0.399-0.572	0.338-0.492	0.360-0.371	0.295-0.353
Range of correlations	0.174	0.155	0.011	0.058
	Averag	ge inter-item corre	lations between su	ibscales
Openness to change	_			
Self-enhancement	0.313	_		
Self-transcendence	0.246	0.219	_	
Conservation	0.175	0.212	0.235	_

Fig. 62 Standardized solution for the 4 first-order correlated factors (model 4c-12 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Germany (second half-sample: n = 2,751)

Table A207 Item analysis of Schwartz scale values of the European Social Survey, 2010: Germany (first half-sample: n = 1,515)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.43 (1.151)	2.37-2.48	20.2	39.5	25.0	7.2	5.8	1.5	0.8	0.92	0.63	0.300
SD11	1.96 (0.916)	1.91-2.01	33.5	45.4	14.5	5.0	1.7	0.1	0.3	1.06	1.21	0.333
UN3	1.91 (0.950)	1.87-1.96	36.6	45.2	10.9	4.5	2.2	0.3	0.3	1.35	2.20	0.301
UN8	2.19 (0.975)	2.14-2.24	21.1	51.9	17.0	5.6	3.3	0.5	0.5	1.17	1.73	0.345
UN19	2.07 (1.009)	2.01-2.12	31.3	42.9	16.6	5.7	2.6	0.5	0.4	1.11	1.35	0.290
BE12	2.02 (0.899)	1.98-2.07	29.4	46.3	17.8	4.9	0.9	0.4	0.4	0.97	1.45	0.416
BE18	1.72 (0.760)	1.68-1.76	41.4	48.3	7.6	1.7	0.4	0.4	0.3	1.50	4.64	0.389
TR9	2.64 (1.245)	2.58-2.70	16.0	39.7	20.4	12.9	8.6	1.8	0.5	0.71	-0.20	0.073
TR20	2.81 (1.423)	2.74-2.88	17.4	34.0	20.6	10.5	12.3	4.8	0.5	0.63	-0.56	0.299
CO7	3.28 (1.388)	3.21-3.35	7.4	28.7	22.1	15.6	20.3	5.0	0.9	0.24	-1.02	0.308
CO16	2.78 (1.265)	2.71-2.84	13.0	37.3	22.9	13.0	10.8	2.2	0.9	0.61	-0.38	0.307
SEC5	2.32 (1.180)	2.26-2.38	25.5	41.1	17.4	8.5	6.5	0.9	0.2	0.94	0.33	0.282
SEC14	2.27 (1.105)	2.21-2.32	23.8	45.1	16.3	8.3	4.6	0.9	1.1	1.05	0.87	0.401
PO2	4.24 (1.241)	4.18-4.31	2.0	8.1	17.5	21.1	37.1	13.6	0.6	-0.56	-0.40	0.233
PO17	3.27 (1.314)	3.21-3.34	7.3	24.9	25.1	20.5	17.0	4.2	1.0	0.18	-0.82	0.353
AC4	3.45 (1.369)	3.38-3.52	6.4	22.7	24.0	18.0	22.8	5.5	0.7	0.06	-1.01	0.349
AC13	2.93 (1.280)	2.87-3.00	10.8	32.5	26.7	14.3	11.9	3.0	0.9	0.50	-0.48	0.432
HE10	2.47 (1.124)	2.41-2.52	17.6	42.6	21.7	11.1	5.9	0.7	0.4	0.78	0.15	0.392
HE21	3.18 (1.346)	3.11-3.25	9.4	26.5	24.6	19.3	15.6	4.3	0.4	0.24	-0.82	0.414
ST6	2.87 (1.333)	2.81-2.94	13.7	33.1	23.6	14.0	12.1	3.2	0.4	0.52	-0.57	0.384
ST15	4.33 (1.413)	4.25-4.40	4.3	9.0	13.8	17.2	33.1	22.1	0.4	-0.68	-0.45	0.225

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.063 and 0.126, respectively.

Table A208 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Germany (first half-sample: n = 1,515)

	Pr	incipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Openness to	Conservation	Self-	variance
	transcendence	change		enhancement	
SD1	0.447	-0.005	-0.206	0.171	0.735
SD11	0.319	0.242	-0.113	0.043	0.756
UN3	0.517	-0.013	0.047	-0.085	0.747
UN8	0.582	-0.029	0.065	-0.059	0.673
BE12	0.590	-0.021	0.152	-0.040	0.613
BE18	0.570	-0.003	0.053	0.005	0.658
CO7	0.012	0.017	0.608	0.012	0.624
CO16	0.018	-0.072	0.719	0.039	0.464
SEC14	0.126	0.134	0.463	0.008	0.706
PO17	-0.034	-0.038	0.267	0.445	0.717
AC4	-0.042	-0.040	-0.037	0.716	0.539
AC13	-0.007	0.081	0.024	0.629	0.543
HE10	0.031	0.741	-0.028	-0.057	0.470
HE21	-0.146	0.819	0.120	-0.014	0.416
ST6	0.147	0.422	-0.088	0.124	0.668
Factors		Correlations b	etween factors		
Self-transcendence	_				
Openness to change	0.442	_			
Conservation	0.228	0.005	_		
Self-enhancement	0.326	0.512	0.171	_	

Table A209 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Germany (first half-sample: n = 1,515)

		Sub	scale	
	Self-	Openness to	Conservation	Self-
	transcendence	change		enhancement
Number of items	6	3	3	3
Mean (standard error)	2.04 (0.015)	2.84 (0.026)	2.77 (0.025)	3.22 (0.026)
95% Confidence interval	2.01-2.07	2.79-2.89	2.73-2.82	3.17-3.27
Standard deviation	0.584	1.004	0.959	0.998
Skewness (standard error)	0.897 (0.063)	0.375 (0.063)	0.508 (0.063)	0.146 (0.063)
Kurtosis (standard error)	1.924 (0.126)	-0.239 (0.126)	-0.035 (0.126)	-0.454 (0.126)
Cronbach's alpha reliability coeff.	0.672	0.698	0.638	0.623
Split-half reliability coefficient	0.648	0.617	0.613	0.476
Average inter-item correlations	0.265	0.442	0.371	0.356
Minimum-maximum correlations	0.165-0.387	0.394-0.535	0.321-0.447	0.305-0.454
Range of correlations	0.222	0.140	0.126	0.149
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Openness to change	0.235	_		
Conservation	0.194	0.191	_	
Self-enhancement	0.194	0.283	0.228	_

Table A210 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, Germany (first half-sample: n = 1,515)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	transcendence	enhancement		
SD1	0.336	0.135	-0.095	0.820
SD11	0.399	0.153	-0.109	0.753
UN3	0.499	-0.138	0.104	0.778
UN8	0.534	-0.114	0.137	0.730
BE12	0.559	-0.092	0.225	0.661
BE18	0.530	-0.039	0.134	0.710
CO7	0.083	0.049	0.577	0.649
CO16	0.053	0.029	0.719	0.474
SEC14	0.237	0.094	0.438	0.713
PO17	-0.121	0.461	0.351	0.715
AC4	-0.172	0.664	0.101	0.631
AC13	-0.097	0.701	0.127	0.553
HE10	0.387	0.356	-0.181	0.567
HE21	0.255	0.424	-0.059	0.651
ST6	0.317	0.356	-0.136	0.651
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.467	_		
Conservation	0.059	-0.024	_	

Table A211 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Germany (first half-sample: n = 1,515)

** * * 1 1	Principal axis factor a	** '	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.376	-0.047	0.864
SD11	0.448	-0.046	0.806
BE12	0.213	0.266	0.858
BE18	0.272	0.182	0.871
CO7	-0.087	0.601	0.654
CO16	-0.178	0.761	0.448
SEC14	0.108	0.482	0.733
PO17	0.220	0.369	0.780
AC4	0.424	0.134	0.777
AC13	0.511	0.177	0.667
HE10	0.667	-0.091	0.574
HE21	0.609	0.022	0.622
ST6	0.597	-0.061	0.656
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.220	_	

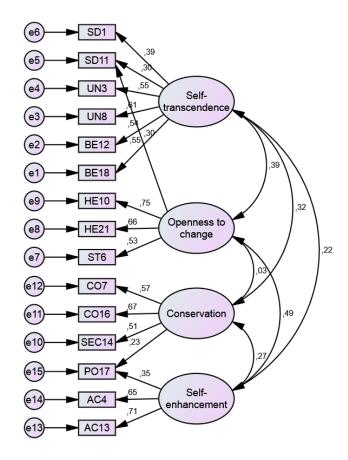

Note: Component and factor loadings >.22 are in boldface.

Table A212 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, Germany (second half-sample: n = 1,516)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.20	.033	.948	.960	.917	.046 (.040052)
2a	2 first-order correlated factors (13 items)-without cross-						
	loadings	12.77	.080	.786	.798	.719	.088 (.082094)
2b	2 first-order correlated factors (13 items)-with cross-loadings	12.23	.075	.799	.811	.732	.086 (.080092)
3a	3 first-order correlated factors-	14.06	.079	.732	.744	.660	002 (000 000)
3b	without cross-loadings 3 first-order correlated factors-	14.00			./44	.000	.093 (.088098)
4	with cross-loadings	9.51	.057	.832	.846	.779	.075 (.070080)
4a	4 first-order correlated factors- without cross-loadings	9.61	.064	.805	.821	.776	.075 (.071080)
4b	4 first-order correlated factors- with cross-loadings	8.25	.058	.837	.853	.812	.069 (.064074)
5	3 first-order correlated factors						, ,
	of unified values	9.23	.066	.811	.827	.783	.074 (.068079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

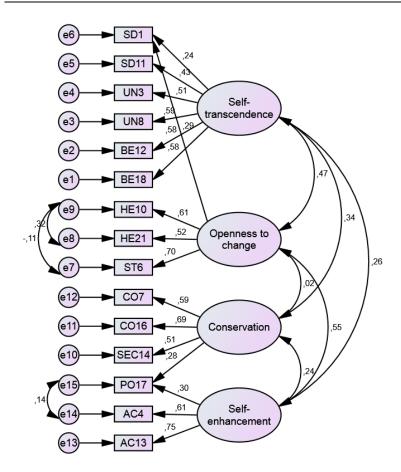


Fig. 63 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Germany (second half-sample: n = 1,516)

a Higher values indicate better model fit

Table A213 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Germany (N = 3,031)

		Sub	scale	
	Self- transcendence	Openness to change	Conservation	Self- enhancement
Number of items	6	3	3	3
Mean (standard error)	2.04 (0.011)	2.83 (0.018)	2.79 (0.017)	3.21 (0.018)
95% Confidence interval	2.02-2.06	2.79-2.86	2.76-2.83	3.17-3.25
Standard deviation	0.590	0.988	0.956	0.999
Skewness (standard error)	0.778 (0.044)	0.405 (0.044)	0.513 (0.044)	0.170 (0.044)
Kurtosis (standard error)	1.224 (0.089)	-0.215 (0.089)	-0.036 (0.089)	-0.406 (0.089)
Cronbach's alpha reliability coeff.	0.670	0.685	0.622	0.621
Split-half reliability coefficient	0.656	0.663	0.591	0.472
Average inter-item correlations	0.263	0.426	0.355	0.353
Minimum-maximum correlations	0.180-0.354	0.367-0.531	0.312-0.418	0.288-0.456
Range of correlations	0.175	0.164	0.106	0.169
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Openness to change	0.232	_		
Conservation	0.188	0.181		
Self-enhancement	0.189	0.273	0.225	_

Fig. 64 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Germany (N = 3,031)

Table A214 Item analysis of Schwartz scale values of the European Social Survey, 2012: Germany (first half-sample: n = 1,479)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.42 (1.112)	2.36-2.48	19.6	39.0	26.1	8.0	4.9	1.2	1.1	0.85	0.61	0.287
SD11	1.90 (0.956)	1.85-1.95	38.1	43.1	10.8	4.8	2.1	0.3	0.7	1.34	2.08	0.306
UN3	1.94 (1.002)	1.89-2.00	36.6	43.7	11.5	4.1	3.0	0.5	0.5	1.41	2.26	0.210
UN8	2.11 (0.910)	2.06-2.16	22.7	52.6	17.4	3.6	2.4	0.5	0.8	1.22	2.41	0.282
UN19	2.05 (0.996)	2.00-2.10	32.3	41.4	17.4	5.5	2.6	0.3	0.5	1.03	1.02	0.236
BE12	1.99 (0.856)	1.95-2.04	28.3	50.0	16.4	3.3	1.1	0.3	0.5	1.07	2.13	0.362
BE18	1.67 (0.722)	1.63-1.71	43.5	48.4	5.7	0.8	0.8	0.2	0.5	1.56	5.19	0.363
TR9	2.60 (1.206)	2.54-2.66	16.3	39.9	21.8	11.4	9.0	1.0	0.7	0.69	-0.20	0.085
TR20	2.82 (1.428)	2.74-2.89	17.6	33.1	20.8	11.3	11.7	5.1	0.4	0.62	-0.55	0.232
CO7	3.43 (1.439)	3.35-3.50	7.5	24.7	21.8	14.7	23.7	6.8	0.7	0.10	-1.12	0.257
CO16	2.86 (1.293)	2.80-2.93	12.1	35.6	22.9	13.2	13.3	2.1	0.8	0.52	-0.61	0.315
SEC5	2.35 (1.176)	2.29-2.41	23.5	41.3	18.8	8.0	6.7	1.0	0.7	0.95	0.40	0.266
SEC14	2.22 (1.084)	2.16-2.27	25.6	44.2	16.4	7.4	4.7	0.5	1.3	1.05	0.83	0.369
PO2	4.38 (1.240)	4.32-4.45	2.0	6.2	16.5	19.3	37.9	17.7	0.4	-0.65	-0.23	0.203
PO17	3.34 (1.310)	3.27-3.41	5.1	26.2	26.1	16.9	20.6	4.1	0.9	0.21	-0.95	0.342
AC4	3.31 (1.344)	3.24-3.38	7.6	23.5	27.5	16.6	19.7	4.5	0.6	0.17	-0.89	0.347
AC13	2.92 (1.248)	2.86-2.99	9.2	34.7	27.0	13.6	12.2	2.5	0.8	0.55	-0.44	0.513
HE10	2.41 (1.129)	2.36-2.47	20.3	40.2	23.9	8.3	5.7	0.9	0.6	0.84	0.41	0.433
HE21	3.07 (1.340)	3.00-3.14	10.4	29.2	24.7	17.2	13.9	4.1	0.5	0.36	-0.72	0.430
ST6	2.89 (1.333)	2.82-2.96	14.8	30.3	23.2	16.0	12.5	2.6	0.6	0.41	-0.71	0.406
ST15	4.19 (1.381)	4.12-4.26	4.2	9.5	17.2	17.0	34.8	16.6	0.7	-0.57	-0.57	0.219

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.064 and 0.127, respectively.

Table A215 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Germany (first half-sample: n = 1,479)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Conservation	variance
	change	enhancement		
SD11	0.338	0.011	0.131	0.842
BE12	0.206	-0.083	0.396	0.788
BE18	0.282	-0.047	0.315	0.795
CO16	-0.170	0.144	0.537	0.684
SEC14	0.058	-0.039	0.528	0.715
PO17	-0.139	0.512	0.221	0.684
AC4	0.093	0.685	-0.187	0.513
AC13	0.137	0.628	0.064	0.477
HE10	0.744	-0.023	0.044	0.444
HE21	0.647	0.078	0.002	0.528
ST6	0.608	0.027	-0.077	0.633
Factors	Correl	ations between fa	actors	
Openness to change	_			
Self-enhancement	0.457	_		
Conservation	0.247	0.291	_	

Table A216 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Germany (first half-sample: n = 1,479)

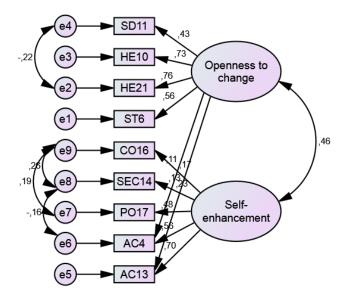
		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	4	3	4
Mean (standard error)	2.57 (0.022)	3.19 (0.026)	2.19 (0.017)
95% Confidence interval	2.52-2.61	3.14-3.24	2.15-2.22
Standard deviation	0.865	0.996	0.651
Skewness (standard error)	0.485 (0.064)	0.351 (0.064)	0.499 (0.064)
Kurtosis (standard error)	-0.002 (0.127)	-0.417 (0.127)	0.284 (0.127)
Cronbach's alpha reliability coeff.	0.691	0.646	0.498
Split-half reliability coefficient	0.745	0.501	0.527
Average inter-item correlations	0.356	0.380	0.235
Minimum-maximum correlations	0.201-0.557	0.292-0.480	0.102-0.375
Range of correlations	0.356	0.187	0.274
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.274	_	
Conservation	0.201	0.192	_

Table A217 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Germany (first half-sample: n = 1,479)

V	Principal axis factor	Liniana	
Variables	Factor I Openness to change	Factor II Self-enhancement	Unique variance
SD11	0.336	0.060	0.864
BE18	0.243	0.132	0.892
CO16	-0.143	0.415	0.865
SEC14	0.025	0.268	0.921
PO17	-0.095	0.659	0.617
AC4	0.257	0.360	0.715
AC13	0.264	0.541	0.500
HE10	0.759	-0.078	0.475
HE21	0.709	-0.026	0.515
ST6	0.660	-0.126	0.628
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.481	_	

Table A218 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-9 items): European Social Survey 2012, Germany (first half-sample: n = 1,479)

	Principal axis factor		
Variables	Factor I Openness to change	Factor II Self-enhancement	Unique variance
SD11	0.328	0.062	0.869
CO16	-0.153	0.413	0.868
SEC14	0.015	0.265	0.926
PO17	-0.110	0.662	0.621
AC4	0.248	0.374	0.707
AC13	0.248	0.557	0.493
HE10	0.754	-0.071	0.479
HE21	0.711	-0.020	0.508
ST6	0.655	-0.118	0.633
	Correlations be	tween factors	
Openness to change	_		
Self-enhancement	0.481	_	


Table A219 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2012, Germany (second half-sample: n = 1,479)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.97	.034	.953	.964	.936	.045 (.037053)
2a	2 first-order correlated factors- without cross(10 items)-						
	loadings	5.19	.040	.935	.947	.917	.053 (.045062)
2b	2 first-order correlated factors(10 items)-with cross-						
	loadings	4.99	.037	.942	.953	.921	.052 (.043061)
2c	2 first-order correlated factors(10 items)-with cross-						
	loadings	3.71	.028	.968	.977	.958	.043 (.033053)
3a	3 first-order correlated factors-						
	without cross-loadings	7.36	.049	.891	.903	.864	.066 (.059073)
3b	3 first-order correlated factors-						
	with cross-loadings	7.65	.048	.892	.904	.858	.067 (.060074)
4	3 first-order correlated factors of unified values	8.02	.067	.799	.818	.771	.069 (.063075)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

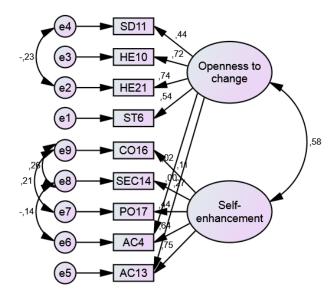

b Lower values indicate better model fit

Fig. 65 Standardized solution for the 2 first-order correlated factors (model 2c-9 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Germany (second half-sample: n = 1,479)

Table A220 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Germany (N = 2,958)

	Su	bscale
	Openness to change	Self-enhancement
Number of items	4	5
Mean (standard error)	2. 55 (0.015)	2.90 (0.014)
95% Confidence interval	2.52-2.58	2.87-2.93
Standard deviation	0.840	0.760
Skewness (standard error)	0.474 (0.045)	0.304 (0.045)
Kurtosis (standard error)	0.008 (0.090)	-0.203 (0.090)
Cronbach's alpha reliability coeff.	0.678	0.578
Split-half reliability coefficient	0.634	0.508
Average inter-item correlations	0.342	0.214
Minimum-maximum correlations	0.186-0.544	0.054-0.475
Range of correlations	0.358	0.421
	Average inter-	-item correlations
	between	n subscales
Openness to change	_	
Self-enhancement	0.202	_

Fig. 66 Standardized solution for the 2 first-order correlated factors (model 2c-9 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Germany (N = 2,958)

Table A221 Item analysis of Schwartz scale values of the European Social Survey, 2014: Germany (first half-sample: n = 1,512)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.38 (1.150)	2.32-2.44	23.5	36.2	24.5	8.9	4.9	1.2	0.9	0.81	0.36	0.231
SD11	1.92 (0.996)	1.87-1.97	38.8	40.4	13.6	3.2	2.6	0.7	0.7	1.41	2.41	0.282
UN3	1.90 (0.973)	1.85-1.94	37.8	45.0	9.6	3.8	2.4	0.7	0.7	1.56	3.05	0.181
UN8	2.08 (0.898)	2.03-2.12	24.3	52.9	15.1	5.0	1.9	0.3	0.5	1.15	2.01	0.300
UN19	1.99 (0.964)	1.94-2.04	34.5	41.2	16.6	5.1	1.8	0.3	0.5	1.06	1.25	0.259
BE12	1.91 (0.838)	1.87-1.96	33.2	47.3	14.6	3.6	0.7	0.1	0.5	0.97	1.37	0.303
BE18	1.60 (0.722)	1.57-1.64	50.2	41.5	6.2	0.9	0.7	0.1	0.5	1.53	4.28	0.350
TR9	2.60 (1.198)	2.54-2.66	16.1	39.2	24.2	10.4	8.1	1.5	0.5	0.74	0.01	0.060
TR20	2.92 (1.371)	2.85-2.99	13.2	32.5	23.8	13.7	11.2	5.0	0.6	0.56	-0.51	0.248
CO7	3.52 (1.410)	3.45-3.59	6.3	22.6	22.3	16.5	24.1	7.1	1.1	0.02	-1.07	0.305
CO16	2.88 (1.293)	2.82-2.95	12.8	32.4	24.8	13.9	12.7	2.2	1.2	0.47	-0.59	0.323
SEC5	2.39 (1.237)	2.33-2.45	25.6	37.0	19.4	8.9	7.1	1.5	0.5	0.88	0.16	0.287
SEC14	2.20 (1.122)	2.15-2.26	27.9	42.2	16.3	7.0	4.8	0.9	0.9	1.09	0.93	0.387
PO2	4.46 (1.195)	4.40-4.52	1.5	5.6	15.0	18.9	40.4	18.1	0.5	-0.71	-0.07	0.193
PO17	3.45 (1.325)	3.38-3.51	5.4	21.8	27.1	17.9	21.6	5.3	0.9	0.11	-0.92	0.347
AC4	3.59 (1.373)	3.52-3.66	5.6	19.4	24.6	17.6	25.4	6.9	0.5	-0.04	-1.00	0.340
AC13	3.07 (1.326)	3.01-3.14	9.3	29.9	26.7	14.8	14.5	4.0	0.8	0.41	-0.67	0.465
HE10	2.44 (1.181)	2.38-2.50	20.6	40.6	21.5	9.1	6.2	1.5	0.5	0.89	0.39	0.392
HE21	3.18 (1.335)	3.11-3.24	10.4	23.5	26.9	18.5	16.6	3.4	0.6	0.18	-0.82	0.410
ST6	2.96 (1.371)	2.89-3.03	14.5	28.4	23.9	15.4	13.7	3.5	0.5	0.38	-0.75	0.391
ST15	4.28 (1.387)	4.21-4.35	4.0	8.3	17.6	14.5	35.7	19.3	0.5	-0.62	-0.52	0.234

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.063 and 0.126, respectively.

Table A222 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Germany (first half-sample: n = 1,512)

	Principal a	Principal axis factor analysis (factors)			
	Factor I	Factor II	Factor III	Unique	
Item	Openness to	Conservation	Self-	variance	
	change		enhancement		
UN8	0.262	0.201	-0.117	0.907	
BE12	0.240	0.277	-0.079	0.875	
BE18	0.296	0.216	-0.063	0.873	
CO7	-0.067	0.565	0.102	0.645	
CO16	-0.074	0.647	0.042	0.570	
SEC14	0.177	0.494	-0.053	0.728	
PO17	-0.099	0.201	0.490	0.695	
AC4	0.017	-0.107	0.684	0.556	
AC13	0.131	0.035	0.617	0.520	
HE10	0.721	-0.056	0.040	0.461	
HE21	0.691	0.010	0.045	0.493	
ST6	0.533	-0.016	0.060	0.687	
Factors	Correl	Correlations between factors			
Openness to change	_				
Conservation	0.101	_			
Self-enhancement	0.422	0.302	_		

Table A223 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Germany (first half-sample: n = 1,512)

	Subscale			
	Openness to	Conservation	Self-	
	change		enhancement	
Number of items	5	4	3	
Mean (standard error)	2.45(0.019)	2.63 (0.020)	3.37 (0.026)	
95% Confidence interval	2.41-2.49	2.59-2.67	3.32-3.42	
Standard deviation	0.727	0.786	1.021	
Skewness (standard error)	0.468 (0.063)	0.327 (0.063)	0.147 (0.063)	
Kurtosis (standard error)	0.618 (0.126)	-0.089 (0.126)	-0.462 (0.126)	
Cronbach's alpha reliability coeff.	0.646	0.574	0.637	
Split-half reliability coefficient	0.690	0.496	0.498	
Average inter-item correlations	0.261	0.245	0.369	
Minimum-maximum correlations	0.070-0.564	0.118-0.395	0.307-0.453	
Range of correlations	0.494	0.277	0.146	
	Average inter-item correlations between subscales			
Openness to change	_			
Conservation	0.169	_		
Self-enhancement	0.214	0.198	_	

Table A224 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Germany (first half-sample: n = 1,512)

	Principal axis factor a	•		
Variables	Variables			
	Factor I	Factor II	variance	
	Openness to change	Conservation		
CO7	-0.095	0.608	0.653	
CO16	-0.141	0.624	0.639	
SEC14	0.065	0.405	0.817	
PO17	0.151	0.439	0.747	
AC4	0.386	0.214	0.759	
AC13	0.458	0.307	0.618	
HE10	0.731	-0.125	0.500	
HE21	0.695	-0.051	0.534	
ST6	0.548	-0.060	0.714	
	Correlations bety	veen factors		
Openness to change	_			
Conservation	0.276	_		

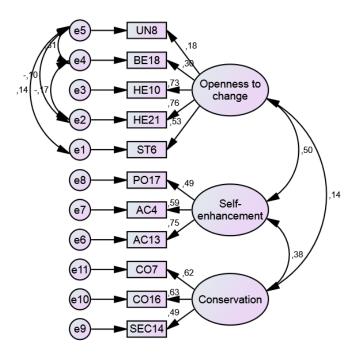
Table A225 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-11 items): European Social Survey 2014, Germany (first half-sample: n = 1,512)

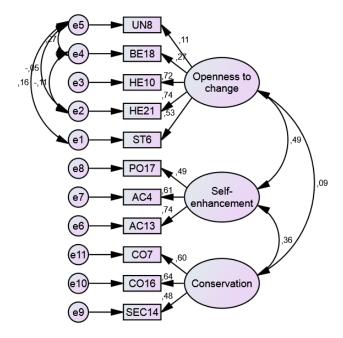
	Dringing! o	vic factor analysis	(factors)	
Item	Factor I Openness to change	xis factor analysis Factor II Self- enhancement	Factor III Conservation	Unique variance
UN8	0.244	-0.094	0.170	0.927
BE18	0.273	-0.035	0.179	0.897
CO7	-0.034	0.070	0.584	0.632
CO16	-0.040	0.013	0.654	0.571
SEC14	0.199	-0.071	0.489	0.736
PO17	-0.092	0.478	0.210	0.699
AC4	-0.007	0.701	-0.110	0.549
AC13	0.115	0.625	0.030	0.518
HE10	0.735	0.017	-0.051	0.452
HE21	0.720	0.011	0.020	0.471
ST6	0.522	0.063	-0.026	0.697
Factors	Correlations between factors			
Openness to change	_			
Self-enhancement	0.454	_		
Conservation	0.078	0.316	_	

Table A226 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2014, Germany (second half-sample: n = 1,513)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.76	.032	.948	.958	.908	.050 (.042058)
2a	2 first-order correlated factors (9 items)-without cross-						
21	loadings	13.78	.086	.846	.855	.791	.092 (.083101)
2b	2 first-order correlated factors (9 items)-with cross-loadings	12.22	.074	.869	.878	.816	.086 (.077095)
3a	3 first-order correlated factors- without cross-loadings	8.98	.065	.840	.854	.804	.073 (.067079)
3b	3 first-order correlated factors-						,
3c	with cross-loadings 3 first-order correlated	8.63	.059	.849	.864	.812	.071 (.065077)
4	factors(11 items)-without cross-loadings	6.47	.050	.915	.927	.892	.060 (.053068)
4	3 first-order correlated factors of unified values	9.16	.071	.778	.796	.743	.073 (.068079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.




Fig. 67 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Germany (second half-sample: n = 1,513)

a Higher values indicate better model fit

b Lower values indicate better model fit

Table A227 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Germany (N = 3,025)

		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	5	3	3
Mean (standard error)	2.44 (0.013)	3.37 (0.018)	2.92 (0.017)
95% Confidence interval	2.42-2.47	3.33-3.41	2.88-2.95
Standard deviation	0.700	1.014	0.955
Skewness (standard error)	0.441 (0.045)	0.141 (0.045)	0.332 (0.045)
Kurtosis (standard error)	0.406 (0.089)	-0.521 (0.089)	-0.270 (0.089)
Cronbach's alpha reliability coeff.	0.623	0.641	0.591
Split-half reliability coefficient	0.637	0.498	0.571
Average inter-item correlations	0.238	0.373	0.325
Minimum-maximum correlations	0.046-0.543	0.310-0.460	0.277-0.387
Range of correlations	0.497	0.150	0.110
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.200	_	
Conservation	0.146	0.225	_

Fig. 68 Standardized solution for the 3 first-order correlated factors (model 3c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Germany (N = 3,025)

Table A228 Item analysis of Schwartz scale values of the European Social Survey, 2002: Hungary (first half-sample: n = 822)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.48 (1.307)	2.39-2.57	23.8	36.7	20.2	9.2	6.2	3.5	0.2	0.94	0.31	0.428
SD11	2.19 (1.162)	2.11-2.27	32.0	35.0	20.6	6.0	3.6	1.8	1.0	1.12	1.14	0.494
UN3	2.29 (1.281)	2.20-2.37	32.5	32.1	19.3	7.5	5.5	2.6	0.5	1.03	0.52	0.302
UN8	2.57 (1.194)	2.49-2.65	18.4	34.2	29.4	9.6	6.0	2.2	0.2	0.74	0.29	0.418
UN19	1.87 (1.020)	1.80-1.94	44.0	34.1	16.7	1.8	1.6	1.5	0.4	1.56	3.21	0.529
BE12	2.46 (1.112)	2.38-2.53	20.6	32.8	31.3	8.8	4.0	1.3	1.2	0.70	0.45	0.516
BE18	2.08 (1.046)	2.01-2.15	33.7	35.6	21.7	4.7	2.4	0.9	1.0	1.05	1.23	0.506
TR9	2.50 (1.206)	2.42-2.58	22.0	32.4	28.0	9.6	5.8	1.8	0.4	0.73	0.17	0.226
TR20	2.67 (1.348)	2.57-2.76	21.7	29.6	23.7	13.5	7.5	3.6	0.4	0.63	-0.29	0.331
CO7	3.41 (1.473)	3.31-3.51	11.3	18.6	21.7	20.4	18.5	8.4	1.1	0.03	-0.97	0.147
CO16	2.41 (1.212)	2.33-2.49	24.1	35.0	24.8	7.7	5.2	2.3	0.9	0.92	0.57	0.428
SEC5	1.85 (1.073)	1.77-1.92	46.5	33.6	12.8	2.7	1.6	2.1	0.9	1.76	3.66	0.454
SEC14	2.06 (1.123)	1.99-2.14	36.5	35.2	18.6	4.5	2.7	1.8	0.7	1.29	1.81	0.495
PO2	3.79 (1.396)	3.69-3.88	7.2	12.4	20.1	24.8	25.4	9.9	0.2	-0.31	-0.73	0.254
PO17	3.19 (1.362)	3.10-3.29	11.4	21.5	26.2	21.3	13.6	5.1	0.9	0.18	-0.73	0.391
AC4	2.72 (1.363)	2.62-2.81	20.4	29.9	22.9	12.9	10.1	3.2	0.6	0.57	-0.49	0.525
AC13	3.02 (1.345)	2.92-3.11	13.9	24.9	24.9	20.4	10.9	4.0	0.9	0.29	-0.66	0.536
HE10	2.84 (1.325)	2.75-2.94	16.2	28.6	25.1	15.7	10.1	3.2	1.2	0.46	-0.52	0.434
HE21	2.45 (1.151)	2.37-2.52	22.5	33.0	28.6	10.1	4.1	1.5	0.2	0.70	0.27	0.514
ST6	2.80 (1.427)	2.70-2.90	21.2	27.0	20.9	15.9	10.6	4.1	0.2	0.48	-0.70	0.447
ST15	4.15 (1.502)	4.05-4.26	6.6	10.2	13.5	22.6	23.8	22.6	0.6	-0.51	-0.70	0.235

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A229 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Hungary (first half-sample: n = 822)

	s (factors)			
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Self-	variance
	transcendence	change	enhancement	
SD1	0.074	0.638	-0.102	0.610
SD11	0.284	0.276	0.124	0.696
UN3	0.427	0.083	-0.121	0.826
UN8	0.481	0.218	-0.191	0.727
UN19	0.743	0.049	-0.057	0.456
BE12	0.537	0.126	0.017	0.629
BE18	0.601	-0.034	0.132	0.566
TR20	0.507	-0.194	0.140	0.725
CO16	0.579	-0.240	0.230	0.596
SEC5	0.637	0.064	-0.101	0.614
SEC14	0.572	0.048	0.034	0.626
PO17	0.032	-0.090	0.646	0.613
AC4	0.024	0.542	0.170	0.572
AC13	-0.114	0.407	0.484	0.484
HE10	-0.077	0.294	0.421	0.658
HE21	0.071	0.335	0.340	0.614
ST6	-0.037	0.760	-0.070	0.489
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Openness to change	0.408	_		
Self-enhancement	0.474	0.491	_	

Table A230 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Hungary (first half-sample: n = 822)

		Subscale	
	Self-	Openness to	Self-
	transcendence	change	enhancement
Number of items	10	3	4
Mean (standard error)	2.24 (0.025)	2.67 (0.038)	2.88 (0.033)
95% Confidence interval	2.20-2.29	2.59-2.74	2.81-2.94
Standard deviation	0.711	1.079	0.937
Skewness (standard error)	0.945 (0.085)	0.597 (0.085)	0.156 (0.085)
Kurtosis (standard error)	2.116 (0.170)	0.029 (0.170)	-0.293 (0.170)
Cronbach's alpha reliability coeff.	0.815	0.699	0.692
Split-half reliability coefficient	0.788	0.629	0.723
Average inter-item correlations	0.315	0.437	0.363
Minimum-maximum correlations	0.150-0.556	0.424-0.446	0.247-0.451
Range of correlations	0.406	0.022	0.204
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.269	_	
Self-enhancement	0.264	0.337	_

Table A231 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Hungary (first half-sample: n = 822)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Self-enhancement	
SD1	-0.021	0.570	0.687
SD11	0.280	0.355	0.693
UN3	0.387	0.003	0.849
UN8	0.406	0.095	0.786
UN19	0.729	-0.003	0.471
BE12	0.532	0.124	0.633
BE18	0.644	0.031	0.564
TR20	0.568	-0.125	0.735
CO16	0.659	-0.113	0.630
SEC5	0.608	-0.011	0.637
SEC14	0.581	0.056	0.626
PO17	0.184	0.288	0.828
AC4	-0.011	0.667	0.562
AC13	-0.048	0.704	0.537
HE10	-0.014	0.555	0.700
HE21	0.107	0.552	0.623
ST6	-0.124	0.694	0.592
	Correlations bet	ween factors	
Conservation	_		
Self-enhancement	0.517	_	

Table A232 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2002, Hungary (first half-sample: n = 822)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD11	0.245	0.397	0.678
UN3	0.443	-0.081	0.836
UN8	0.490	-0.036	0.777
UN19	0.736	-0.007	0.465
BE12	0.555	0.085	0.634
BE18	0.610	0.086	0.564
TR20	0.506	-0.028	0.758
CO16	0.590	-0.008	0.657
SEC5	0.645	-0.060	0.622
SEC14	0.570	0.074	0.625
PO17	0.091	0.411	0.782
AC13	-0.061	0.675	0.585
HE10	-0.148	0.741	0.546
HE21	0.034	0.643	0.561
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.537	_	

Table A233 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-13 items): European Social Survey 2002, Hungary (first half-sample: n = 822)

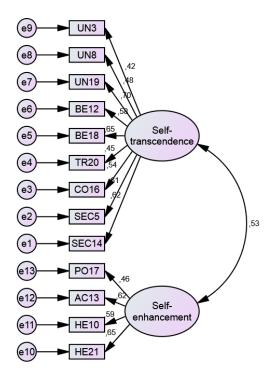

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
UN3	0.441	-0.087	0.837
UN8	0.488	-0.032	0.776
UN19	0.734	-0.016	0.473
BE12	0.554	0.086	0.638
BE18	0.610	0.095	0.560
TR20	0.502	-0.009	0.752
CO16	0.584	0.011	0.653
SEC5	0.646	-0.066	0.621
SEC14	0.571	0.066	0.631
PO17	0.095	0.439	0.756
AC13	-0.053	0.697	0.548
HE10	-0.104	0.689	0.587
HE21	0.065	0.601	0.595
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.506	_	

Table A234 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2002, Hungary (second half-sample: n = 822)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.75	.051	.900	.923	.884	.058 (.051064)
2a	2 first-order correlated factors						
	(17 items)-without cross-loadings	4.62	.059	.843	.872	.847	.066 (.061072)
2b	2 first-order correlated factors	4 22	055	051	002	960	064 (059 060)
2c	(17 items)-with cross-loadings 2 first-order correlated factors	4.32	.055	.854	.883	.860	.064 (.058069)
	(14 items)-without cross-	4.50	051	0.61	000	966	0.65 (0.50 , 0.72)
2d	loadings 2 first-order correlated factors	4.52	.051	.861	.888	.866	.065 (.059073)
20	(14 items)-with cross-loadings	4.37	.049	.868	.894	.871	.064 (.057071)
2e	2 first-order correlated factors (13 items)-without cross-						, ,
	loadings	6.75	.041	.908	.921	.903	.059 (.054065)
3a	3 first-order correlated factors-						
21	without cross-loadings	5.39	.064	.815	.843	.815	.073 (.068079)
3b	3 first-order correlated factors- with cross-loadings	4.63	.051	.850	.877	.847	.066 (.061072)
4	5 first-order correlated factors of unified values	3.86	.054	.851	.884	.859	.059 (.054064)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

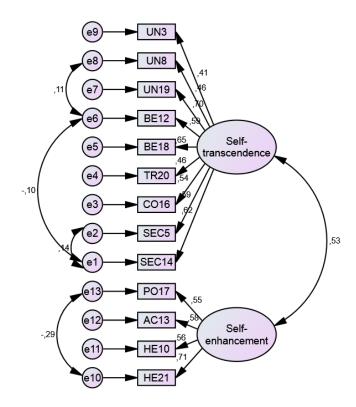


Fig. 69 Standardized solution for the 2 first-order correlated factors (model 2e-13 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Hungary (second half-sample: n = 822)

a Higher values indicate better model fit

Table A235 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Hungary (N = 1,644)

	Subscale				
	Self- transcendence	Self-enhancement			
Number of items	9	4			
Mean (standard error)	2.18 (0.017)	2.84 (0.023)			
95% Confidence interval	2.15-2.22	2.79-2.88			
Standard deviation	0.702	0.915			
Skewness (standard error)	0.876 (0.060)	0.261 (0.060)			
Kurtosis (standard error)	1.930 (0.121)	-0.030 (0.121)			
Cronbach's alpha reliability coeff.	0.797	0.702			
Split-half reliability coefficient	0.767	0.628			
Average inter-item correlations	0.315	0.333			
Minimum-maximum correlations	0.147-0.498	0.221-0.407			
Range of correlations	0.351	0.186			
	Average inte	r-item correlations			
	betwee	en subscales			
Self-transcendence	_				
Self-enhancement	0.251	_			

Fig. 70 Standardized solution for the 2 first-order correlated factors (model 2e-13 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Hungary (N = 1,644)

Table A236 Item analysis of Schwartz scale values of the European Social Survey, 2004: Hungary (first half-sample: n = 734)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.37 (1.264)	2.28-2.46	25.7	39.0	18.5	6.8	6.9	2.5	0.5	1.04	0.55	0.309
SD11	2.06 (1.106)	1.98-2.14	37.3	32.8	19.6	5.4	2.5	1.4	1.0	1.17	1.37	0.495
UN3	1.97 (1.098)	1.89-2.05	41.6	33.9	15.9	4.5	2.6	1.4	0.1	1.36	1.92	0.349
UN8	2.40 (1.137)	2.31-2.48	22.5	36.6	26.8	8.0	4.4	1.5	0.1	0.84	0.59	0.421
UN19	1.63 (0.801)	1.58-1.69	52.5	34.7	10.5	1.2	0.8	0.1	0.1	1.44	2.83	0.495
BE12	2.28 (1.081)	2.21-2.36	27.1	33.4	27.8	8.4	2.3	1.0	-	0.72	0.40	0.501
BE18	1.79 (0.885)	1.73-1.86	43.6	38.7	14.3	1.9	0.7	0.7	0.1	1.41	3.21	0.519
TR9	2.40 (1.208)	2.31-2.49	25.5	33.7	24.0	9.3	5.7	1.5	0.4	0.80	0.18	0.281
TR20	2.57 (1.396)	2.46-2.67	26.6	29.2	20.6	12.3	6.9	4.2	0.3	0.75	-0.23	0.352
CO7	3.51 (1.469)	3.40-3.61	9.9	18.5	19.8	21.9	20.3	8.9	0.7	-0.05	-0.99	0.204
CO16	2.34 (1.233)	2.25-2.43	28.1	33.5	23.4	7.1	5.2	2.3	0.4	0.96	0.58	0.414
SEC5	1.75 (0.932)	1.68-1.81	47.7	36.6	10.8	2.2	1.0	1.1	0.7	1.78	4.49	0.430
SEC14	2.06 (1.160)	1.98-2.15	37.5	36.1	15.1	5.9	3.1	1.9	0.4	1.32	1.63	0.424
PO2	3.82 (1.409)	3.72-3.92	7.2	12.5	17.7	26.4	24.9	10.9	0.3	-0.34	-0.71	0.244
PO17	3.16 (1.436)	3.05-3.26	14.2	21.1	25.1	19.9	12.7	6.7	0.4	0.23	-0.79	0.448
AC4	2.67 (1.343)	2.58-2.77	20.0	33.0	21.9	12.4	9.3	3.1	0.3	0.66	-0.35	0.498
AC13	3.04 (1.358)	2.94-3.14	12.8	25.9	25.6	19.8	10.2	5.2	0.5	0.36	-0.59	0.497
HE10	2.68 (1.283)	2.58-2.77	17.6	34.6	23.3	12.8	8.4	2.6	0.7	0.65	-0.23	0.440
HE21	2.25 (1.128)	2.16-2.33	29.0	34.9	24.5	7.2	2.7	1.6	-	0.95	0.90	0.521
ST6	2.68 (1.367)	2.58-2.78	21.8	30.4	21.1	14.4	8.9	3.3	0.1	0.59	-0.47	0.437
ST15	4.16 (1.430)	4.06-4.26	4.5	10.9	15.1	23.7	25.2	20.6	-	-0.45	-0.69	0.142

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.180, respectively.

Table A237 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Hungary (first half-sample: n = 734)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	-0.165	0.606	0.709
SD11	0.243	0.392	0.689
UN3	0.365	0.075	0.833
UN8	0.373	0.151	0.780
UN19	0.613	0.041	0.597
BE12	0.456	0.182	0.673
BE18	0.692	-0.029	0.542
TR20	0.592	-0.151	0.719
CO16	0.689	-0.192	0.625
SEC5	0.502	0.034	0.729
SEC14	0.558	-0.037	0.708
PO17	0.429	0.096	0.764
AC4	-0.006	0.676	0.548
AC13	-0.032	0.682	0.556
HE10	0.171	0.387	0.753
HE21	0.320	0.340	0.670
ST6	-0.073	0.670	0.596
	Correlations bet	ween factors	
Self-transcendence			
Self-enhancement	0.515	_	

Table A238 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Hungary (first half-sample: n = 734)

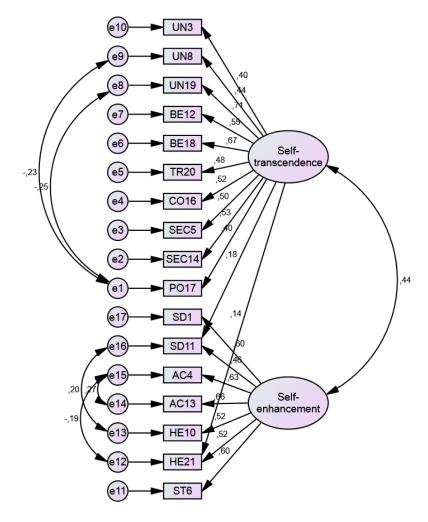

	Subscale				
	Self-	Self-enhancement			
	transcendence				
Number of items	10	7			
Mean (standard error)	2.19 (0.025)	2.54 (0.030)			
95% Confidence interval	2.15-2.24	2.48-2.60			
Standard deviation	0.665	0.823			
Skewness (standard error)	0.666 (0.090)	0.596 (0.090)			
Kurtosis (standard error)	1.536 (0.180)	0.530 (0.180)			
Cronbach's alpha reliability coeff.	0.788	0.771			
Split-half reliability coefficient	0.749	0.711			
Average inter-item correlations	0.291	0.324			
Minimum-maximum correlations	0.115-0.476	0.155-0.548			
Range of correlations	0.362	0.393			
	Average inter	-item correlations			
	betwee	n subscales			
Self-transcendence	_				
Self-enhancement	0.243	_			

Table A239 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2004, Hungary (second half-sample: n = 734)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2a	1 first-order uncorrelated factor 2 first-order correlated factors-	4.26	.058	.878	.902	.847	.067 (.060074)
2a	without cross-loadings	3.39	.053	.874	.907	.888	.057 (.051063)
2b	2 first-order correlated factors- with cross-loadings	3.24	.050	.882	.914	.895	.055 (.049062)
3	5 first-order correlated factors of unified values	3.77	.058	.839	.876	.850	.061 (.056067)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

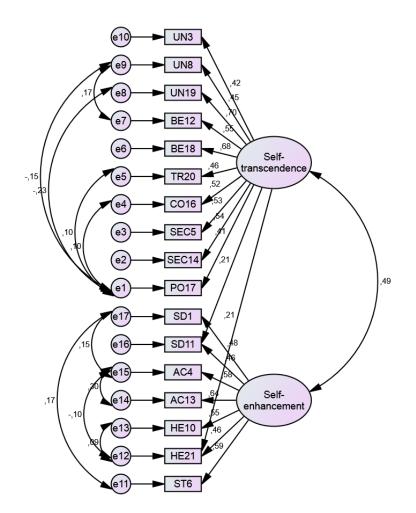


Fig. 71 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Hungary (second half-sample: n = 734)

a Higher values indicate better model fit

Table A240 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Hungary (N = 1,468)

	Subscale				
	Self-	Self-enhancement			
	transcendence				
Number of items	10	7			
Mean (standard error)	2.19 (0.017)	2.51 (0.022)			
95% Confidence interval	2.16-2.22	2.47-2.55			
Standard deviation	0.643	0.831			
Skewness (standard error)	0.608 (0.064)	0.609 (0.064)			
Kurtosis (standard error)	1.419 (0.128)	0.566 (0.128)			
Cronbach's alpha reliability coeff.	0.777	0.783			
Split-half reliability coefficient	0.722	0.720			
Average inter-item correlations	0.276	0.340			
Minimum-maximum correlations	0.050-0.489	0.204-0.559			
Range of correlations	0.438	0.355			
	Average inte	r-item correlations			
	betwee	en subscales			
Self-transcendence	_				
Self-enhancement	0.232	_			

Fig. 72 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Hungary (N = 1,468)

Table A241 Item analysis of Schwartz scale values of the European Social Survey, 2006: Hungary (first half-sample: n = 739)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.61 (1.400)	2.51-2.71	23.1	32.7	21.4	8.8	8.0	5.0	0.9	0.83	-0.07	0.396
SD11	2.06 (1.088)	1.98-2.14	37.2	33.3	16.1	10.0	1.4	0.8	1.2	0.98	0.57	0.449
UN3	2.03 (1.090)	1.96-2.11	36.3	38.2	14.9	5.5	3.1	1.1	0.9	1.27	1.62	0.333
UN8	2.52 (1.116)	2.44-2.60	18.5	34.4	29.5	11.6	3.8	1.4	0.8	0.63	0.25	0.414
UN19	1.76 (0.917)	1.69-1.82	47.9	34.2	12.0	3.1	1.2	0.4	1.1	1.44	2.56	0.472
BE12	2.32 (1.105)	2.24-2.40	26.0	33.7	24.1	11.2	2.4	0.9	1.6	0.71	0.19	0.487
BE18	1.79 (0.910)	1.72-1.86	44.7	37.6	12.0	3.7	0.5	0.7	0.8	1.43	2.89	0.428
TR9	2.48 (1.196)	2.40-2.57	22.2	33.0	26.0	10.8	5.4	1.6	0.9	0.72	0.11	0.226
TR20	2.40 (1.338)	2.30-2.49	31.4	28.3	20.3	10.7	5.8	3.0	0.5	0.85	0.02	0.283
CO7	3.67 (1.513)	3.56-3.78	9.5	15.6	21.2	16.8	24.4	11.6	0.9	-0.15	-1.04	0.162
CO16	2.37 (1.195)	2.29-2.46	25.3	35.3	21.8	11.1	3.4	2.2	0.9	0.88	0.49	0.364
SEC5	1.69 (0.863)	1.63-1.76	50.2	35.2	8.8	4.2	0.4	0.3	0.9	1.44	2.42	0.390
SEC14	1.87 (1.038)	1.79-1.94	45.7	31.4	15.3	3.5	1.9	1.1	1.1	1.45	2.40	0.331
PO2	3.96 (1.443)	3.85-4.06	6.2	11.8	19.5	18.1	29.6	13.9	0.8	-0.38	-0.81	0.366
PO17	3.12 (1.539)	3.01-3.23	16.6	24.1	20.6	13.0	17.7	7.0	0.9	0.28	-1.05	0.369
AC4	2.77 (1.411)	2.66-2.87	19.5	30.6	22.6	11.2	10.1	4.9	1.1	0.64	-0.43	0.546
AC13	3.10 (1.363)	3.00-3.20	11.5	24.9	27.9	17.2	11.5	5.8	1.2	0.38	-0.57	0.556
HE10	2.60 (1.301)	2.51-2.70	21.7	31.7	22.5	13.5	6.2	3.1	1.4	0.68	-0.12	0.460
HE21	2.25 (1.135)	2.17-2.33	28.8	35.5	21.1	9.5	2.6	1.5	1.1	0.93	0.69	0.493
ST6	2.76 (1.418)	2.65-2.86	20.4	30.0	21.7	12.7	9.3	5.0	0.8	0.63	-0.45	0.458
ST15	4.30 (1.455)	4.19-4.40	5.4	8.3	13.7	19.6	27.5	24.4	1.2	-0.64	-0.49	0.265

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.180, respectively.

Table A242 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Hungary (first half-sample: n = 739)

	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	transcendence	enhancement	
SD1	0.739	-0.118	-0.070	0.545
SD11	0.357	0.271	0.008	0.719
UN3	0.029	0.377	0.067	0.831
UN8	0.291	0.314	-0.085	0.770
UN19	0.267	0.567	-0.193	0.541
BE12	0.316	0.410	-0.042	0.645
BE18	-0.027	0.644	0.060	0.579
CO16	-0.175	0.543	0.169	0.708
SEC5	-0.030	0.588	0.007	0.666
SEC14	-0.055	0.519	0.024	0.745
PO2	0.224	-0.162	0.533	0.603
PO17	-0.240	0.335	0.552	0.624
AC4	0.494	-0.010	0.347	0.493
AC13	0.483	-0.050	0.427	0.432
HE10	0.299	0.075	0.301	0.709
HE21	0.452	0.210	0.012	0.669
ST6	0.685	-0.051	0.015	0.547
Factors	Corre	lations between fa	ctors	
Openness to change	_			
Self-transcendence	0.399	_		
Self-enhancement	0.431	0.217	_	

Table A243 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Hungary (first half-sample: n = 739)

		Subscale	
	Openness to	Self-	Self-
	change	transcendence	enhancement
		0	
Number of items	6	8	3
Mean (standard error)	2.59 (0.033)	2.04 (0.023)	3.23 (0.038)
95% Confidence interval	2.52-2.65	2.00-2.09	3.15-3.30
Standard deviation	0.905	0.624	1.021
Skewness (standard error)	0.717 (0.090)	0.510 (0.090)	0.085 (0.090)
Kurtosis (standard error)	0.564 (0.180)	0.075 (0.180)	-0.472 (0.180)
Cronbach's alpha reliability coeff.	0.782	0.750	0.518
Split-half reliability coefficient	0.789	0.717	0.398
Average inter-item correlations	0.370	0.282	0.269
Minimum-maximum correlations	0.261-0.557	0.161-0.452	0.207-0.367
Range of correlations	0.296	0.291	0.160
	Average inter-i	tem correlations be	tween subscales
Openness to change			
Self-transcendence	0.245	_	
Self-enhancement	0.303	0.216	_

Table A244 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Hungary (first half-sample: n = 739)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.614	-0.077	0.662
SD11	0.301	0.299	0.735
UN3	0.024	0.407	0.824
UN8	0.167	0.341	0.802
UN19	0.041	0.598	0.617
BE12	0.216	0.437	0.674
BE18	-0.059	0.677	0.576
CO16	-0.101	0.554	0.735
SEC5	-0.104	0.635	0.649
SEC14	-0.108	0.563	0.729
PO2	0.575	-0.138	0.725
PO17	0.153	0.275	0.861
AC4	0.718	-0.002	0.486
AC13	0.766	-0.044	0.443
HE10	0.487	0.087	0.716
HE21	0.401	0.235	0.695
ST6	0.636	-0.024	0.609
	Correlations bet	ween factors	
Self-enhancement	_		
Self-transcendence	0.470	_	

Table A245 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2004, Hungary (first half-sample: n = 739)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.687	-0.114	0.590
SD11	0.307	0.289	0.737
UN3	0.022	0.425	0.811
UN8	0.202	0.335	0.782
UN19	0.093	0.590	0.591
BE12	0.292	0.392	0.652
BE18	-0.006	0.611	0.630
CO16	-0.066	0.487	0.789
SEC5	-0.108	0.661	0.620
SEC14	-0.137	0.616	0.682
AC4	0.710	-0.034	0.517
AC13	0.711	-0.052	0.527
HE21	0.428	0.209	0.688
ST6	0.701	-0.070	0.551
	Correlations betw	veen factors	<u> </u>
Self-enhancement	_		
Conservation	0.477	_	

Table A246 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-13 items): European Social Survey 2004, Hungary (first half-sample: n = 739)

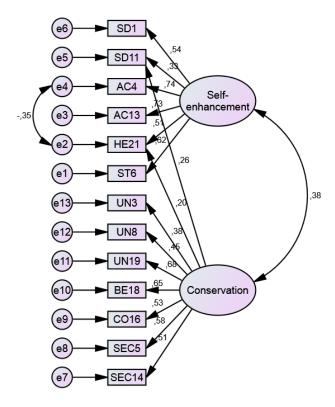

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.678	-0094	0.587
SD11	0.312	0.303	0.729
UN3	0.034	0.419	0.811
UN8	0.211	0.315	0.798
UN19	0.109	0.587	0.587
BE18	0.018	0.572	0.663
CO16	-0.048	0.462	0.803
SEC5	-0.092	0.671	0.596
SEC14	-0.125	0.633	0.653
AC4	0.703	-0.021	0.518
AC13	0.701	-0.041	0.532
HE21	0.429	0.227	0.679
ST6	0.692	-0.055	0.551
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.437	_	

Table A247 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2006, Hungary (second half-sample: n = 740)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.81	.059	.871	.893	.831	.072 (.065079)
2a	2 first-order correlated factors (17 items)-without cross-						
	loadings	4.25	.062	.852	.882	.856	.066 (.060073)
2b	2 first-order correlated factors		0.50	0.50	000	0.42	0.55 (0.50 , 0.54)
2c	(17 items)-with cross-loadings 2 first-order correlated factors	4.11	.060	.860	.889	.862	.065 (.059071)
2C	(14 items)-without cross-						
	loadings	3.63	.054	.891	.918	.898	.060 (.052068)
2d	2 first-order correlated factors						
_	(14 items)-with cross-loadings	3.20	.047	.907	.933	.915	.055 (.047063)
2e	2 first-order correlated factors	2.06	0.41	010	046	020	050 (042 - 050)
3a	(13 items)-with cross-loadings 3 first-order correlated factors-	2.86	.041	.919	.946	.930	.050 (.042059)
Ju	without cross-loadings	4.54	.063	.841	.870	.843	.069 (.063075)
3b	3 first-order correlated factors-						(
	with cross-loadings	_	_	_	_	_	_
4	5 first-order correlated factors	4.55	0.67	014	0.45	01.4	0.60 (0.64 .677)
	of unified values	4.57	.065	.814	.847	.814	.069 (.064075)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 3b is probably unidentified, so it will be probably necessary to impose 1 additional constraint.

b Lower values indicate better model fit

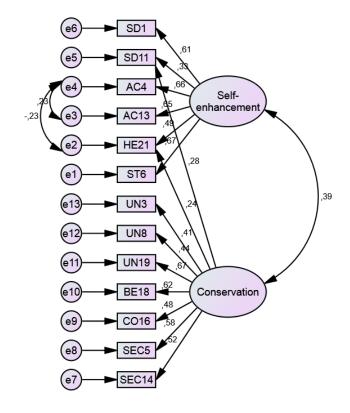


Fig. 73 Standardized solution for the 2 first-order correlated factors (model 2e-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Hungary (second half-sample: n = 740)

a Higher values indicate better model fit

Table A248 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Hungary (N = 1,479)

	Sub	scale
	Self-enhancement	Conservation
Number of items	10	7
Mean (standard error)	2.19 (0.017)	2.51 (0.022)
95% Confidence interval	2.16-2.22	2.47-2.55
Standard deviation	0.643	0.831
Skewness (standard error)	0.608 (0.064)	0.609 (0.064)
Kurtosis (standard error)	1.419 (0.128)	0.566 (0.128)
Cronbach's alpha reliability coeff.	0.777	0.783
Split-half reliability coefficient	0.722	0.720
Average inter-item correlations	0.276	0.340
Minimum-maximum correlations	0.050-0.489	0.204-0.559
Range of correlations	0.438	0.355
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Conservation	0.235	_

Fig. 74 Standardized solution for the 2 first-order correlated factors (model 2e-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Hungary (N = 1,479)

Table A249 Item analysis of Schwartz scale values of the European Social Survey, 2008: Hungary (first half-sample: n = 726)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.56 (1.339)	2.46-2.66	23.4	34.2	18.9	12.0	7.9	3.0	0.7	0.76	-0.19	0.424
SD11	2.11 (1.061)	2.04-2.19	32.8	35.8	21.2	5.2	3.6	0.4	1.0	0.97	0.75	0.462
UN3	2.19 (1.135)	2.11-2.28	30.9	36.5	19.4	7.4	3.9	1.1	0.8	1.01	0.76	0.317
UN8	2.63 (1.157)	2.55-2.72	16.7	31.7	30.0	13.8	4.7	1.8	1.4	0.56	0.08	0.459
UN19	1.86 (0.907)	1.79-1.92	40.6	38.2	15.3	3.2	1.2	0.3	1.2	1.16	1.71	0.544
BE12	2.32 (1.039)	2.25-2.40	22.9	36.6	27.4	8.5	2.8	0.6	1.2	0.68	0.34	0.533
BE18	1.95 (0.973)	1.88-2.02	37.6	38.6	16.1	4.7	1.5	0.6	1.0	1.17	1.64	0.481
TR9	2.67 (1.211)	2.59-2.76	17.5	30.2	29.2	13.4	6.9	1.8	1.1	0.53	-0.17	0.224
TR20	2.48 (1.336)	2.39-2.58	25.6	33.6	19.6	9.6	7.7	3.0	0.8	0.85	0.00	0.281
CO7	3.61 (1.436)	3.51-3.72	8.3	15.2	24.7	19.7	20.5	10.2	1.5	-0.07	-0.88	0.103
CO16	2.53 (1.231)	2.44-2.62	21.8	32.6	25.3	11.7	5.5	2.2	0.8	0.71	0.07	0.347
SEC5	1.79 (0.931)	1.72-1.86	46.4	34.6	12.4	4.1	1.2	0.3	1.0	1.31	1.84	0.429
SEC14	2.00 (1.077)	1.92-2.07	39.9	32.2	18.6	5.0	2.2	1.1	1.0	1.20	1.50	0.376
PO2	3.70 (1.324)	3.61-3.80	5.4	13.5	26.6	21.2	24.8	7.6	1.0	-0.15	-0.75	0.292
PO17	3.06 (1.411)	2.96-3.17	15.4	22.6	24.2	16.0	16.4	3.7	1.7	0.22	-0.91	0.420
AC4	2.72 (1.324)	2.63-2.82	19.0	30.7	22.6	13.9	9.6	2.6	1.5	0.55	-0.47	0.547
AC13	2.97 (1.309)	2.88-3.07	13.4	25.8	26.7	18.7	9.9	3.7	1.8	0.36	-0.51	0.545
HE10	2.63 (1.188)	2.54-2.71	18.0	31.0	28.4	12.7	6.3	1.5	2.1	0.55	-0.11	0.436
HE21	2.49 (1.168)	2.40-2.57	22.2	31.4	26.6	13.2	4.5	1.1	1.0	0.58	-0.14	0.544
ST6	2.83 (1.400)	2.73-2.93	20.1	25.1	23.3	15.8	10.3	4.0	1.4	0.44	-0.65	0.488
ST15	4.11 (1.499)	4.00-4.22	5.8	12.1	15.3	18.3	25.9	20.9	1.7	-0.44	-0.84	0.252

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.091 and 0.181, respectively.

Table A250 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Hungary (first half-sample: n = 726)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.672	-0.119	0.614
SD11	0.384	0.236	0.707
UN3	0.021	0.403	0.829
UN8	0.145	0.414	0.748
UN19	0.049	0.679	0.504
BE12	0.163	0.529	0.608
BE18	0.013	0.640	0.583
CO16	-0.164	0.592	0.719
SEC5	-0.052	0.644	0.616
SEC14	-0.071	0.583	0.696
PO17	0.254	0.226	0.828
AC4	0.726	-0.018	0.486
AC13	0.768	-0.077	0.462
HE10	0.480	0.068	0.733
HE21	0.552	0.134	0.604
ST6	0.700	-0.080	0.559
	Correlations bet	tween factors	
Self-enhancement	_		
Self-transcendence	0.496	_	

Table A251 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Hungary (first half-sample: n = 726)

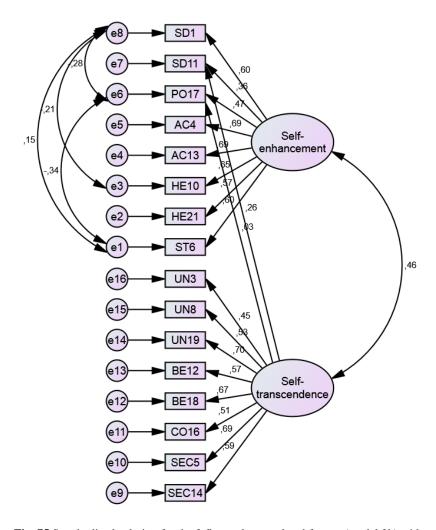

	Sub	scale
	Self-enhancement	Self-
		transcendence
Number of items	8	8
Mean (standard error)	2.67 (0.031)	2.16 (0.025)
95% Confidence interval	2.61-2.73	2.11-2.21
Standard deviation	0.837	0.669
Skewness (standard error)	0.463 (0.091)	0.748 (0.091)
Kurtosis (standard error)	0.222 (0.181)	1.204 (0.181)
Cronbach's alpha reliability coeff.	0.809	0.783
Split-half reliability coefficient	0.818	0.758
Average inter-item correlations	0.349	0.323
Minimum-maximum correlations	0.091-0.583	0.173-0.538
Range of correlations	0.492	0.365
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Self-transcendence	0.257	_

Table A252 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2008, Hungary (second half-sample: n = 726)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1 2a	1 first-order uncorrelated factor 2 first-order correlated factors-	4.06	.051	.912	.932	.886	.065 (.057073)
	without cross-loadings	3.96	.054	.882	.909	.889	.064 (.057071)
2b	2 first-order correlated factors- with cross-loadings	3.66	.047	.894	.920	.901	.061 (.054067)
3	5 first-order correlated factors of unified values	4.51	.060	.836	.866	.839	.070 (.064075)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

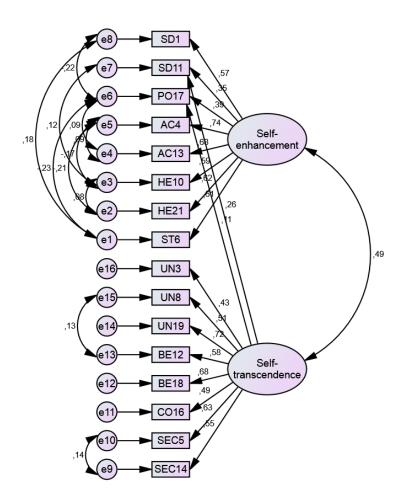


Fig. 75 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Hungary (second half-sample: n = 726)

a Higher values indicate better model fit

Table A253 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Hungary (N = 1,452)

	Subscale				
	Self-enhancement	Self- transcendence			
Number of items	8	8			
Mean (standard error)	2.68 (0.022)	2.14 (0.018)			
95% Confidence interval	2.63-2.72	2.11-2.18			
Standard deviation	0.836	0.687			
Skewness (standard error)	0.332 (0.064)	0.784 (0.064)			
Kurtosis (standard error)	-0.089 (0.128)	1.268 (0.128)			
Cronbach's alpha reliability coeff.	0.805	0.794			
Split-half reliability coefficient	0.800	0.782			
Average inter-item correlations	0.344	0.335			
Minimum-maximum correlations	0.094-0.552	0.178-0.523			
Range of correlations	0.458	0.345			
	Average inter-i	tem correlations			
	between	subscales			
Self-enhancement	_				
Self-transcendence	0.258	_			

Fig. 76 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Hungary (N = 1,452)

Table A254 Item analysis of Schwartz scale values of the European Social Survey, 2010: Hungary (first half-sample: n = 743)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.39 (1.266)	2.30-2.49	26.6	35.5	19.5	9.2	6.7	2.0	0.4	0.90	0.19	0.403
SD11	1.96 (0.982)	1.88-2.03	38.9	35.5	17.6	5.5	1.7	0.1	0.5	0.97	0.64	0.418
UN3	1.94 (1.081)	1.86-2.02	41.9	35.4	13.7	4.8	2.3	1.3	0.5	1.43	2.20	0.333
UN8	2.55 (1.125)	2.47-2.63	16.4	37.7	27.1	12.7	4.0	1.6	0.5	0.70	0.32	0.451
UN19	1.74 (0.883)	1.68-1.81	47.4	35.8	11.4	2.8	1.3	0.1	1.1	1.36	2.18	0.482
BE12	2.30 (1.062)	2.23-2.38	24.0	37.1	26.1	8.1	2.7	0.9	1.1	0.80	0.65	0.459
BE18	1.80 (0.932)	1.74-1.87	44.3	37.8	11.0	4.3	0.8	0.7	1.1	1.46	2.79	0.457
TR9	2.57 (1.229)	2.48-2.66	19.2	35.7	24.5	10.4	7.7	1.7	0.8	0.72	-0.02	0.303
TR20	2.51 (1.342)	2.42-2.61	26.0	30.7	20.9	11.4	6.9	3.2	0.9	0.78	-0.10	0.377
CO7	3.49 (1.386)	3.39-3.59	7.4	18.3	25.6	20.9	18.7	8.1	1.1	0.05	-0.84	0.168
CO16	2.34 (1.125)	2.25-2.42	24.6	36.3	23.4	10.5	2.4	1.6	1.1	0.85	0.62	0.451
SEC5	1.69 (0.845)	1.63-1.75	50.3	34.6	11.0	2.8	0.7	0.1	0.4	1.33	1.99	0.464
SEC14	1.89 (1.046)	1.81-1.96	44.7	31.9	14.7	4.8	1.6	1.1	1.2	1.39	2.10	0.364
PO2	3.57 (1.372)	3.47-3.67	7.0	17.2	24.5	19.7	24.9	6.2	0.5	-0.11	-0.92	0.334
PO17	3.01 (1.403)	2.91-3.11	14.9	26.4	23.0	15.6	14.9	3.9	1.2	0.32	-0.84	0.386
AC4	2.50 (1.245)	2.41-2.58	23.1	34.5	21.4	11.8	7.0	1.5	0.7	0.70	-0.16	0.569
AC13	2.82 (1.328)	2.72-2.91	17.4	28.5	23.8	17.1	9.4	3.0	0.8	0.44	-0.56	0.536
HE10	2.40 (1.166)	2.32-2.49	22.5	37.7	23.0	8.7	5.8	1.2	1.1	0.85	0.34	0.490
HE21	2.24 (1.039)	2.17-2.32	26.1	37.6	24.1	8.5	2.6	0.4	0.8	0.73	0.28	0.529
ST6	2.70 (1.353)	2.60-2.80	20.3	31.8	19.5	15.3	8.9	3.1	1.1	0.58	-0.49	0.444
ST15	3.96 (1.523)	3.85-4.07	7.0	13.5	17.6	17.8	25.3	18.0	0.8	-0.33	-0.96	0.263

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.179, respectively.

Table A255 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Hungary (first half-sample: n = 743)

	Principal a	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique					
Item	Self-	Openness to	Power	variance					
	transcendence	change							
SD1	0.004	0.662	-0.179	0.620					
SD11	0.119	0.370	0.089	0.778					
UN3	0.404	0.081	-0.039	0.815					
UN8	0.489	0.238	-0.155	0.663					
UN19	0.699	0.070	-0.123	0.506					
BE12	0.489	0.242	-0.120	0.653					
BE18	0.597	-0.036	0.133	0.603					
TR9	0.631	-0.138	-0.050	0.656					
TR20	0.579	-0.155	0.188	0.637					
CO16	0.590	-0.075	0.163	0.611					
SEC5	0.493	0.118	0.047	0.682					
SEC14	0.450	-0.041	0.127	0.767					
PO2	-0.178	0.336	0.385	0.687					
PO17	0.148	-0.026	0.628	0.550					
AC4	0.030	0.623	0.175	0.480					
AC13	-0.127	0.687	0.240	0.408					
HE10	0.033	0.405	0.300	0.636					
HE21	0.129	0.459	0.146	0.645					
ST6	-0.010	0.726	-0.179	0.545					
Factors	Correl	ations between fac	etors						
Self-transcendence									
Openness to change	0.370	_							
Power	0.263	0.386	_						

Table A256 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Hungary (first half-sample: n = 743)

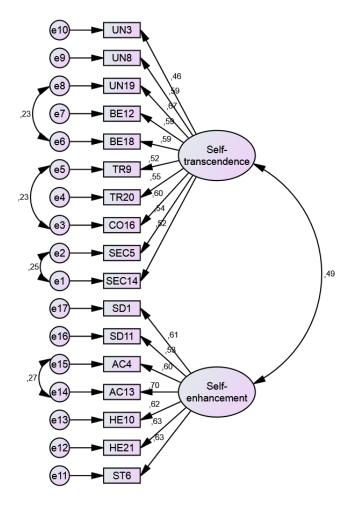
		Subscale	
	Self- transcendence	Openness to change	Power
Number of items	10	7	2
Mean (standard error)	2.13 (0.024)	2.43 (0.030)	3.29 (0.041)
95% Confidence interval	2.09-2.18	2.37-2.49	3.21-3.37
Standard deviation	0.656	0.815	1.115
Skewness (standard error)	0.670 (0.090)	0.553 (0.090)	0.086 (0.090)
Kurtosis (standard error)	0.789 (0.179)	-0.038 (0.179)	-0.583 (0.179)
Cronbach's alpha reliability coeff.	0.812	0.803	0.451
Split-half reliability coefficient	0.784	0.759	0.451
Average inter-item correlations	0.311	0.367	0.291
Minimum-maximum correlations	0.180-0.506	0.227-0.605	0.291-0.291
Range of correlations	0.326	0.378	0.000
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.243	_	
Power	0.251	0.317	_

Table A257 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Hungary (first half-sample: n = 743)

-	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	-0.029	0.536	0.724
SD11	0.124	0.408	0.775
UN3	0.402	0.041	0.823
UN8	0.460	0.131	0.721
UN19	0.688	-0.028	0.542
BE12	0.467	0.154	0.698
BE18	0.628	0.006	0.603
TR9	0.638	-0.193	0.659
TR20	0.612	-0.077	0.659
CO16	0.626	-0.016	0.616
SEC5	0.508	0.117	0.679
SEC14	0.480	0.005	0.768
PO2	-0.123	0.527	0.762
PO17	0.219	0.280	0.822
AC4	0.037	0.713	0.468
AC13	-0.118	0.823	0.390
HE10	0.068	0.556	0.655
HE21	0.140	0.528	0.639
ST6	-0.039	0.589	0.671
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.420	_	

Table A258 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-17 items): European Social Survey 2010, Hungary (first half-sample: n = 743)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	-0.053	0.584	0.683
SD11	0.115	0.410	0.778
UN3	0.402	0.053	0.817
UN8	0.454	0.160	0.705
UN19	0.681	0.012	0.529
BE12	0.448	0.201	0.682
BE18	0.612	0.012	0.619
TR9	0.633	-0.174	0.664
TR20	0.602	-0.087	0.676
CO16	0.621	-0.021	0.625
SEC5	0.516	0.115	0.669
SEC14	0.508	-0.027	0.753
AC4	0.013	0.713	0.483
AC13	-0.126	0.794	0.440
HE10	0.065	0.520	0.696
HE21	0.122	0.545	0.631
ST6	-0.069	0.650	0.611
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.432	_	


Table A259 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2010, Hungary (second half-sample: n = 743)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.75	.069	.855	.875	.804	.081 (.075087)
2a	2 first-order correlated factors						,
	(19 items)-without cross-						
	loadings	4.62	.067	.844	.872	.848	.071 (.066076)
2b	2 first-order correlated factors						
	(17 items)-without cross-		0.50	0.50	00.	0.5.5	0.55 (0.51 , 0.52)
2	loadings	4.52	.063	.869	.895	.875	.067 (.061073)
3a	3 first-order correlated factors-	<i>5</i> 20	0.60	020	0.67	0.43	072 (077 079)
21.	without cross-loadings	5.39	.068	.839	.867	.842	.072 (.067078)
3b	3 first-order correlated factors-						
4	with cross-loadings 5 first-order correlated factors		_	_	_		_
4	of unified values	5.00	.062	.834	.862	.832	.073 (.068079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 3b is probably unidentified, so the results are therefore incorrect.

a Higher values indicate better model fit

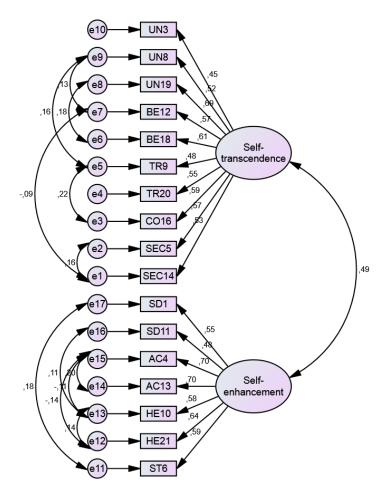

b Lower values indicate better model fit

Fig. 77 Standardized solution for the 2 first-order correlated factors (model 2b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Hungary (second half-sample: n = 743)

Table A260 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Hungary (N = 1,486)

	S	ubscale
	Self-	Self-enhancement
	transcendence	
Number of items	10	7
Mean (standard error)	2.11 (0.017)	2.46 (0.021)
95% Confidence interval	2.08-2.15	2.42-2.50
Standard deviation	0.667	0.828
Skewness (standard error)	0.614 (0.063)	0.462 (0.063)
Kurtosis (standard error)	0.425 (0.127)	-1.191 (0.127)
Cronbach's alpha reliability coeff.	0.819	0.809
Split-half reliability coefficient	0.787	0.792
Average inter-item correlations	0.321	0.376
Minimum-maximum correlations	0.210-0.522	0.261-0.589
Range of correlations	0.311	0.327
	Average inte	r-item correlations
	betwee	en subscales
Self-transcendence	_	
Self-enhancement	0.249	_

Fig. 78 Standardized solution for the 2 first-order correlated factors (model 2b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Hungary (N = 1,486)

Table A261 Item analysis of Schwartz scale values of the European Social Survey, 2012: Hungary (first half-sample: n = 987)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.55 (1.266)	2.47-2.63	22.9	31.4	23.5	13.5	6.8	1.8	0.1	0.62	-0.28	0.488
SD11	2.12 (1.021)	2.05-2.18	30.7	39.9	18.9	8.0	1.9	0.4	0.1	0.88	0.56	0.541
UN3	1.94 (1.007)	1.87-2.00	39.5	37.3	15.4	5.1	1.3	0.9	0.5	1.28	1.96	0.403
UN8	2.55 (1.192)	2.48-2.63	19.1	34.8	27.1	11.8	5.2	2.0	0.1	0.71	0.18	0.432
UN19	1.86 (0.915)	1.80-1.91	41.8	37.1	15.9	4.0	0.8	0.3	0.1	1.09	1.33	0.500
BE12	2.20 (1.010)	2.14-2.27	26.4	39.2	24.7	6.7	2.2	0.5	0.2	0.79	0.63	0.532
BE18	1.88 (0.938)	1.82-1.94	40.9	37.4	14.6	5.4	1.0	0.2	0.5	1.07	1.01	0.524
TR9	2.70 (1.267)	2.62-2.77	17.1	32.4	27.5	12.7	7.2	3.0	0.1	0.65	-0.07	0.288
TR20	2.42 (1.188)	2.35-2.50	24.6	32.9	25.2	11.1	4.5	1.5	0.1	0.72	0.12	0.372
CO7	3.23 (1.367)	3.14-3.31	10.1	22.1	29.2	16.7	16.3	5.3	0.3	0.22	-0.77	0.299
CO16	2.52 (1.203)	2.44-2.59	19.1	37.9	24.7	9.9	5.4	2.4	0.5	0.85	0.43	0.360
SEC5	1.74 (0.948)	1.68-1.80	50.7	32.8	10.1	4.2	1.4	0.4	0.4	1.53	2.54	0.460
SEC14	1.93 (1.001)	1.87-2.00	40.2	36.1	16.3	4.9	1.8	0.5	0.2	1.17	1.41	0.431
PO2	3.25 (1.374)	3.16-3.33	9.6	22.8	28.9	15.6	17.8	5.2	0.1	0.22	-0.83	0.325
PO17	2.81 (1.305)	2.73-2.89	15.8	30.2	26.8	13.6	10.5	2.7	0.3	0.51	-0.46	0.424
AC4	2.43 (1.169)	2.35-2.50	23.2	34.2	27.0	8.8	5.2	1.4	0.2	0.77	0.29	0.579
AC13	2.78 (1.207)	2.71-2.86	14.3	29.4	31.6	14.5	8.2	1.8	0.2	0.46	-0.26	0.551
HE10	2.58 (1.155)	2.51-2.66	17.4	34.8	27.6	13.1	6.0	1.0	0.2	0.57	-0.13	0.519
HE21	2.33 (1.078)	2.27-2.40	24.8	34.7	26.5	10.8	2.3	0.7	0.1	0.62	0.08	0.561
ST6	2.77 (1.306)	2.69-2.86	17.4	29.0	27.0	14.6	8.9	2.9	0.2	0.51	-0.40	0.511
ST15	3.69 (1.512)	3.60-3.79	7.2	19.1	20.2	17.7	22.0	13.6	0.2	-0.06	-1.10	0.267

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.078 and 0.156, respectively.

Table A262 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Hungary (first half-sample: n = 987)

	Pri	ncipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Security	Conservation	Self-	variance
	enhancement			transcendence	
SD1	0.561	-0.033	-0.140	0.386	0.477
SD11	0.445	0.335	-0.062	0.034	0.573
UN3	-0.005	0.571	-0.118	0.181	0.601
UN8	-0.023	-0.014	0.306	0.484	0.647
UN19	-0.037	0.547	0.214	0.088	0.508
BE12	0.074	0.115	0.351	0.381	0.557
BE18	-0.011	0.351	0.447	0.071	0.498
TR20	-0.109	0.161	0.541	0.062	0.613
CO16	-0.187	-0.069	0.710	0.260	0.481
SEC5	0.010	0.746	-0.045	-0.030	0.487
SEC14	0.107	0.639	0.048	-0.194	0.584
PO2	0.649	-0.044	-0.121	-0.104	0.640
PO17	0.366	-0.224	0.628	-0.130	0.509
AC4	0.676	0.069	-0.006	0.069	0.466
AC13	0.735	-0.075	0.078	0.008	0.468
HE10	0.611	0.130	0.036	-0.109	0.564
HE21	0.486	0.137	0.078	0.106	0.596
ST6	0.563	-0.101	-0.039	0.340	0.544
Factors		Correlations b	etween factors		
Self-enhancement	_				
Security	0.427	_			
Conservation	0.259	0.469	_		
Self-transcendence	0.272	0.480	0.148	_	

Table A263 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Hungary (first half-sample: n = 987)

	Subscale					
	Self- enhancement	Security	Conservation	Self- transcendence		
Number of items	8	4	4	2		
Mean (standard error)	2.60 (0.026)	1.87 (0.023)	2.41 (0.027)	2.38 (0.029)		
95% Confidence interval	2.55-2.65	1.82-1.91	2.36-2.46	2.32-2.44		
Standard deviation	0.829	0.728	0.840	0.927		
Skewness (standard error)	0.446 (0.078)	1.036 (0.078)	0.410 (0.078)	0.587 (0.078)		
Kurtosis (standard error)	-0.037 (0.156)	1.299 (0.156)	-0.285 (0.156)	0.262 (0.156)		
Cronbach's alpha reliability coeff.	0.843	0.743	0.690	0.579		
Split-half reliability coefficient	0.834	0.702	0.679	0.579		
Average inter-item correlations	0.407	0.421	0.367	0.413		
Minimum-maximum correlations	0.253-0.549	0.327-0.493	0.297-0.423	0.413-0.413		
Range of correlations	0.296	0.166	0.126	0.000		
	Averag	ge inter-item corre	elations between su	ibscales		
Self-enhancement	_					
Security	0.322	_				
Conservation	0.276	0.313	_			
Self-transcendence	0.337	0.343	0.339	_		

Table A264 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2012, Hungary (first half-sample: n = 987)

			(6)	
		xis factor analysis		
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	enhancement	transcendence		
SD1	0.580	0.232	-0.180	0.555
SD11	0.468	0.315	-0.058	0.582
UN3	0.035	0.683	-0.183	0.601
UN8	-0.006	0.387	0.177	0.756
UN19	-0.023	0.605	0.167	0.523
BE12	0.079	0.442	0.246	0.593
BE18	-0.020	0.421	0.409	0.502
TR20	-0.134	0.246	0.508	0.609
CO16	-0.214	0.211	0.606	0.527
SEC5	0.053	0.642	-0.045	0.582
SEC14	0.130	0.410	0.088	0.721
PO2	0.657	-0.181	-0.052	0.645
PO17	0.320	-0.312	0.687	0.506
AC4	0.693	0.075	0.016	0.461
AC13	0.739	-0.109	0.120	0.464
HE10	0.611	-0.001	0.091	0.591
HE21	0.497	0.196	0.071	0.593
ST6	0.570	0.147	-0.079	0.609
Factors	Corre	lations between fa	ctors	
Self-enhancement	_			
Self-transcendence	0.436	_		
Conservation	0.260	0.479	_	

Table A265 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Hungary (first half-sample: n = 987)

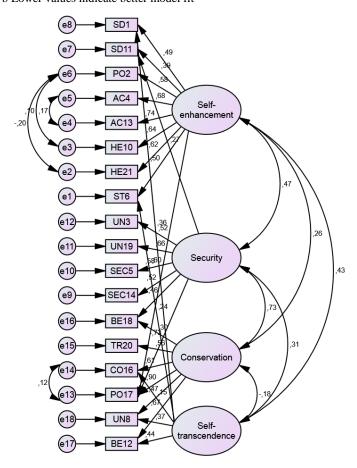

	Principal axis factor a		
Variables	Factor I	Factor II	Unique variance
	Self-enhancement	Conservation	variance
SD1	0.654	-0.018	0.584
SD11	0.538	0.166	0.602
UN3	0.173	0.360	0.784
UN8	0.029	0.474	0.762
UN19	0.049	0.638	0.563
BE12	0.115	0.579	0.591
BE18	-0.015	0.720	0.491
TR20	-0.170	0.670	0.626
CO16	-0.262	0.722	0.582
SEC5	0.166	0.457	0.695
SEC14	0.187	0.399	0.738
PO2	0.653	-0.240	0.659
PO17	0.182	0.310	0.819
AC4	0.726	0.022	0.458
AC13	0.717	-0.028	0.503
HE10	0.615	0.037	0.600
HE21	0.532	0.189	0.590
ST6	0.622	0.004	0.611
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.455	_	

Table A266 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2012, Hungary (second half-sample: n = 987)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.77	.056	.916	.928	.865	.070 (.064076)
2a	2 first-order correlated factors-						
	without cross-loadings	6.26	.064	.859	.878	.851	.073 (.068078)
2b	2 first-order correlated factors-						
	with cross-loadings	5.61	.057	.876	.895	.869	.068 (.063073)
3a	3 first-order correlated factors-						
	without cross-loadings	6.53	.066	.852	.871	.843	.075 (.070080)
3b	3 first-order correlated factors-						
	with cross-loadings	5.14	.050	.890	.909	.883	.065 (.060070)
4a	4 first-order correlated factors-						
	without cross-loadings	6.80	.067	.847	.866	.836	.077 (.072082)
4b	4 first-order correlated factors-		0.40	000			0.45 / 0.50 0.40
_	with cross-loadings	4.87	.048	.898	.917	.890	.063 (.058068)
5	5 first-order correlated factors		0.60	0.4.5	00.5	000	004 (000 005)
	of unified values	7.53	.068	.817	.836	.803	.081 (.077086)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 3b is probably unidentified, so the results are therefore incorrect.

b Lower values indicate better model fit

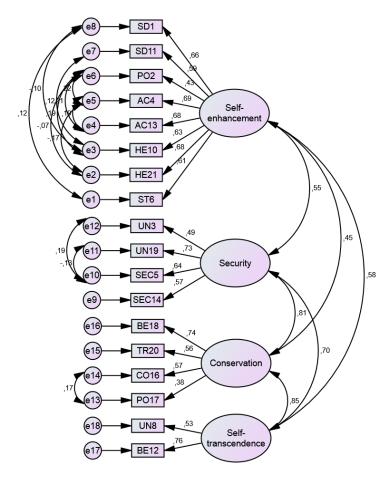


Fig. 79 Standardized solution for the 4 first-order correlated factors (model 4b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Hungary (second half-sample: n = 987)

a Higher values indicate better model fit

Table A267 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Hungary (N = 1,974)

	Subscale					
	Self- enhancement	Security	Conservation	Self- transcendence		
Number of items	8	4	4	2		
Mean (standard error)	2.59 (0.019)	1.87 (0.016)	2.39 (0.019)	2.33 (0.020)		
95% Confidence interval	2.55-2.62	1.83-1.90	2.35-2.42	2.29-2.37		
Standard deviation	0.822	0.714	0.825	0.902		
Skewness (standard error)	0.497 (0.055)	0.985 (0.055)	0.487 (0.055)	0.645 (0.055)		
Kurtosis (standard error)	0.152 (0.110)	1.027 (0.110)	-0.072 (0.110)	0.509 (0.110)		
Cronbach's alpha reliability coeff.	0.841	0.710	0.672	0.575		
Split-half reliability coefficient	0.836	0.681	0.655	0.575		
Average inter-item correlations	0.403	0.382	0.349	0.407		
Minimum-maximum correlations	0.245-0.568	0.329-0.444	0.278-0.393	0.407-0.407		
Range of correlations	0.323	0.115	0.116	0.000		
	Averag	ge inter-item corre	elations between su	ibscales		
Self-enhancement	_					
Security	0.305	_				
Conservation	0.280	0.300	_			
Self-transcendence	0.337	0.333	0.335			

Fig. 80 Standardized solution for the 4 first-order correlated factors (model 4b) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Hungary (N = 1,974)

Table A268 Item analysis of Schwartz scale values of the European Social Survey, 2014: Hungary (first half-sample: n = 764)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.59 (1.281)	2.50-2.68	20.3	35.1	22.0	12.3	7.2	2.6	0.5	0.73	-0.09	0.469
SD11	2.08 (1.008)	2.01-2.15	32.6	37.6	20.5	6.9	1.4	0.5	0.4	0.89	0.70	0.538
UN3	2.05 (1.073)	1.97-2.12	35.3	38.4	16.8	5.4	3.0	0.9	0.3	1.20	1.44	0.393
UN8	2.60 (1.158)	2.52-2.69	16.8	34.6	27.9	13.1	5.8	1.3	0.7	0.59	-0.04	0.482
UN19	1.88 (0.963)	1.81-1.94	41.5	37.8	13.6	4.7	1.3	0.5	0.5	1.28	1.90	0.476
BE12	2.29 (1.022)	2.21-2.36	23.7	38.4	25.5	9.2	2.5	0.3	0.5	0.63	0.10	0.516
BE18	1.86 (0.932)	1.79-1.92	41.8	38.6	12.6	5.1	1.6	-	0.4	1.13	1.06	0.444
TR9	2.59 (1.141)	2.51-2.67	17.3	33.8	28.8	12.4	6.4	0.7	0.7	0.52	-0.21	0.298
TR20	2.39 (1.163)	2.39-2.56	20.8	35.3	26.7	10.7	4.5	1.7	0.3	0.75	0.32	0.325
CO7	3.31 (1.353)	3.22-3.41	9.0	20.2	28.1	18.2	18.1	5.1	1.3	0.13	-0.80	0.278
CO16	2.45 (1.161)	2.36-2.53	22.9	33.8	24.9	12.0	5.1	0.8	0.5	0.63	-0.14	0.448
SEC5	1.77 (0.997)	1.70-1.84	50.7	30.6	10.7	5.0	2.1	0.3	0.7	1.44	1.85	0.409
SEC14	2.03 (1.063)	1.95-2.10	36.9	35.9	17.5	6.0	2.0	1.0	0.7	1.17	1.43	0.469
PO2	3.42 (1.412)	3.32-3.52	8.2	21.7	24.2	16.6	22.5	6.2	0.5	0.06	-1.02	0.346
PO17	2.76 (1.263)	2.67-2.85	16.8	29.3	27.7	14.0	9.6	1.8	0.8	0.47	-0.44	0.483
AC4	2.60 (1.271)	2.51-2.69	20.8	32.3	24.7	11.4	8.5	1.8	0.5	0.63	-0.26	0.597
AC13	2.88 (1.265)	2.79-2.97	12.6	30.2	28.7	14.9	9.9	2.9	0.8	0.49	-0.36	0.537
HE10	2.52 (1.158)	2.44-2.61	18.8	36.0	26.4	11.6	5.1	1.4	0.5	0.69	0.15	0.559
HE21	2.43 (1.114)	2.35-2.51	21.1	36.5	25.7	11.8	3.3	1.2	0.5	0.70	0.26	0.547
ST6	2.85 (1.334)	2.75-2.94	16.9	27.9	24.3	17.1	10.1	3.0	0.7	0.41	-0.60	0.478
ST15	3.79 (1.538)	3.68-3.90	7.6	16.2	20.3	17.5	21.3	16.5	0.5	-0.14	-1.08	0.257

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.088 and 0.177, respectively.

Table A269 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Hungary (first half-sample: n = 764)

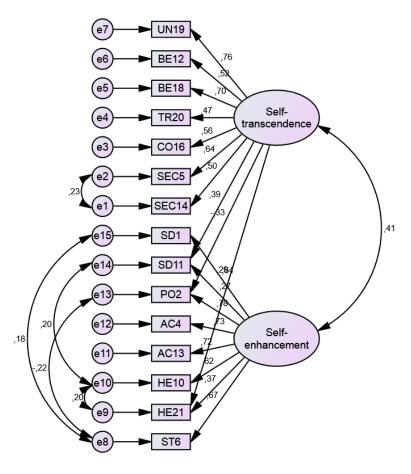
**	Principal axis factor	analysis (factors)	** .	
Variables	Factor I Self-transcendence	Factor II Self-enhancement	Unique variance	
SD1	-0.078	0.677	0.586	
SD11	0.347	0.350	0.641	
UN3	0.382	0.118	0.797	
UN8	0.356	0.212	0.756	
UN19	0.760	-0.095	0.483	
BE12	0.445	0.194	0.682	
BE18	0.717	-0.099	0.545	
TR20	0.524	-0.107	0.768	
CO16	0.623	-0.081	0.654	
SEC5	0.653	-0.068	0.612	
SEC14	0.633	-0.011	0.606	
PO2	-0.265	0.701	0.617	
PO17	0.347	0.231	0.750	
AC4	0.101	0.658	0.493	
AC13	-0.024	0.703	0.521	
HE10	0.111	0.586	0.582	
HE21	0.318	0.374	0.645	
ST6	-0.047	0.631	0.628	
	Correlations bet	tween factors		
Self-transcendence	_			
Self-enhancement	0.479	_		

Table A270 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Hungary (first half-sample: n = 764)

	Subscale				
	Self- transcendence	Self-enhancement			
Number of items	10	8			
Mean (standard error)	2.22 (0.024)	2.67 (0.030)			
95% Confidence interval	2.17-2.26	2.61-2.73			
Standard deviation	0.661	0.831			
Skewness (standard error)	0.629 (0.088)	0.545 (0.088)			
Kurtosis (standard error)	0.811 (0.177)	0.396 (0.177)			
Cronbach's alpha reliability coeff.	0.812	0.827			
Split-half reliability coefficient	0.774	0.780			
Average inter-item correlations	0.311	0.376			
Minimum-maximum correlations	0.180-0.580	0.198-0.515			
Range of correlations	0.400	0.317			
	Average inter	r-item correlations			
	betwee	en subscales			
Self-transcendence	_				
Self-enhancement	0.265	_			

Table A271 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-15 items): European Social Survey 2014, Hungary (first half-sample: n = 764)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	-0.062	0.681	0.570
SD11	0.359	0.365	0.621
UN19	0.786	-0.069	0.426
BE12	0.404	0.215	0.713
BE18	0.705	-0.071	0.542
TR20	0.484	-0.082	0.794
CO16	0.570	-0.051	0.699
SEC5	0.661	-0.041	0.585
SEC14	0.630	0.016	0.595
PO2	-0.271	0.688	0.620
AC4	0.071	0.657	0.521
AC13	-0.017	0.701	0.519
HE10	0.109	0.587	0.586
HE21	0.338	0.385	0.621
ST6	-0.040	0.632	0.622
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.479	_	


Table A272 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2014, Hungary (second half-sample: n = 765)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.13	.048	.928	.944	.894	.064 (.057071)
2a	2 first-order correlated factors- without cross-loadings	5.86	.078	.848	.870	.835	.080 (.074085)
2b	2 first-order correlated factors- with cross-loadings	4.63	.062	.884	.906	.877	.069 (.063075)
2c	2 first-order correlated factors (15 items)-with cross-loadings	3.14	.045	.931	.952	.937	.053 (.046060)
3	5 first-order correlated factors of unified values	6.66	.076	.803	.826	.788	.086 (.081091)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

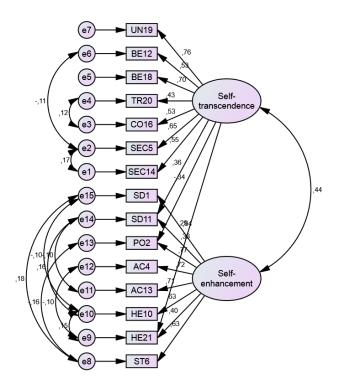

b Lower values indicate better model fit

Fig. 81 Standardized solution for the 2 first-order correlated factors (model 2c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Hungary (second half-sample: n = 765)

Table A273 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Hungary (N = 1,529)

	S	ubscale
	Self-	Self-enhancement
	transcendence	
Number of items	7	8
Mean (standard error)	2.09 (0.018)	2.67 (0.022)
95% Confidence interval	2.05-2.12	2.63-2.71
Standard deviation	0.691	0.848
Skewness (standard error)	0.695 (0.063)	0.501 (0.063)
Kurtosis (standard error)	0.713 (0.125)	0.151 (0.125)
Cronbach's alpha reliability coeff.	0.790	0.831
Split-half reliability coefficient	0.768	0.831
Average inter-item correlations	0.359	0.382
Minimum-maximum correlations	0.241-0.561	0.171-0.535
Range of correlations	0.320	0.364
	C	r-item correlations en subscales
Self-transcendence	_	
Self-enhancement	0.268	_

Fig. 82 Standardized solution for the 2 first-order correlated factors (model 2c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Hungary (N = 1,529)

Table A274 Item analysis of Schwartz scale values of the European Social Survey, 2002: Ireland (first half-sample: n = 961)

				Frequ	ency per	cent of re	esponse o	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.50 (1.309)	2.41-2.58	25.2	32.9	20.4	10.4	8.7	1.9	0.5	0.75	-0.24	0.448
SD11	2.14 (1.045)	2.08-2.21	28.3	43.0	15.2	8.5	2.8	0.5	1.7	1.02	0.87	0.471
UN3	2.02 (0.999)	1.95-2.08	32.4	45.1	13.6	5.4	2.1	0.8	0.6	1.30	2.11	0.403
UN8	2.38 (1.082)	2.31-2.45	19.8	42.8	22.3	9.8	4.5	0.6	0.3	0.81	0.38	0.458
UN19	2.23 (1.077)	2.16-2.30	27.0	39.5	19.7	9.2	2.9	0.7	1.0	0.89	0.57	0.409
BE12	2.25 (1.070)	2.19-2.32	24.2	43.5	17.7	9.8	3.1	0.7	0.0	0.93	0.66	0.466
BE18	2.05 (0.952)	1.99-2.11	29.1	46.4	14.4	6.3	1.9	0.3	1.6	1.09	1.38	0.521
TR9	2.71 (1.251)	2.63-2.79	16.6	32.8	24.5	13.5	9.9	1.4	1.4	0.51	-0.47	0.323
TR20	2.44 (1.217)	2.36-2.51	22.9	38.1	18.4	12.0	6.2	1.4	1.0	0.80	0.02	0.286
CO7	2.95 (1.354)	2.87-3.04	13.4	30.4	23.8	13.7	15.3	2.7	0.6	0.39	-0.79	0.281
CO16	2.69 (1.230)	2.61-2.76	15.1	37.3	22.2	12.6	9.9	1.2	1.8	0.61	-0.36	0.401
SEC5	2.11 (1.098)	2.04-2.18	31.7	41.8	12.8	7.5	4.7	0.3	1.1	1.11	0.79	0.424
SEC14	2.24 (1.178)	2.16-2.31	29.3	38.8	17.8	7.5	4.9	1.5	0.2	1.06	0.77	0.424
PO2	4.06 (1.325)	3.98-4.14	5.0	9.3	17.8	19.5	38.8	9.3	0.4	-0.63	-0.43	0.293
PO17	3.28 (1.409)	3.19-3.37	9.8	25.7	20.5	15.3	23.7	3.4	1.6	0.09	-1.13	0.457
AC4	3.00 (1.360)	2.92-3.09	12.4	30.3	22.9	14.0	16.6	2.7	1.0	0.35	-0.87	0.457
AC13	3.31 (1.422)	3.22-3.40	10.1	23.7	22.4	16.1	22.6	4.6	0.5	0.08	-1.08	0.528
HE10	3.50 (1.438)	3.41-3.59	9.4	19.8	18.5	20.1	25.7	5.7	0.8	-0.13	-1.07	0.391
HE21	3.06 (1.393)	2.97-3.15	13.3	26.8	22.7	17.7	14.0	4.5	0.9	0.31	-0.81	0.428
ST6	2.97 (1.427)	2.88-3.06	16.1	28.7	20.3	14.3	17.0	3.1	0.5	0.34	-0.97	0.503
ST15	3.83 (1.438)	3.74-3.92	7.3	13.8	18.7	18.2	31.7	9.6	0.6	-0.37	-0.89	0.329

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.158, respectively.

Table A275 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Ireland (first half-sample: n = 961)

	Pri	ncipal axis facto	r analysis (factors	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Hedonism	Self-	Openness to	variance
	Transcendence		enhancement	change	
SD1	0.227	0.061	0.017	0.461	0.650
SD11	0.359	0.319	0.009	0.053	0.710
UN3	0.496	-0.057	-0.107	0.328	0.641
UN8	0.509	0.009	-0.073	0.317	0.605
UN19	0.571	0.061	-0.083	0.067	0.669
BE12	0.601	0.068	-0.077	0.149	0.591
BE18	0.586	0.172	0.092	-0.084	0.581
TR9	0.513	-0.045	-0.043	0.045	0.743
CO16	0.527	-0.156	0.287	-0.123	0.596
SEC5	0.459	-0.224	0.249	0.129	0.647
SEC14	0.565	-0.035	0.068	0.001	0.658
PO17	0.212	0.058	0.593	-0.216	0.558
AC4	-0.135	0.047	0.614	0.268	0.451
AC13	-0.080	0.238	0.608	0.118	0.387
HE10	-0.025	0.679	0.085	-0.049	0.518
HE21	0.076	0.795	-0.072	-0.026	0.417
ST6	0.118	0.312	0.032	0.433	0.516
ST15	-0.194	0.537	0.133	0.181	0.501
Factors		Correlations be	etween factors		
Self-transcendence	_				
Hedonism	0.115	_			
Self-enhancement	0.308	0.445	_		
Openness to change	0.203	0.501	0.328	_	

Table A276 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Ireland (first half-sample: n = 961)

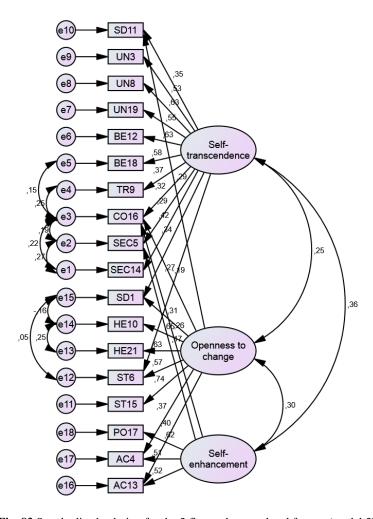
		Sub	scale	
	Self- transcendence	Hedonism	Self- enhancement	Openness to change
Number of items	10	3	3	2
Mean (standard error)	2.28 (0.022)	3.46 (0.037)	3.20 (0.036)	2.73 (0.037)
95% Confidence interval	2.24-2.32	3.39-3.53	3.13-3.27	2.66-2.80
Standard deviation	0.672	1.155	1.107	1.145
Skewness (standard error)	0.658 (0.079)	-0.021 (0.079)	0.145 (0.079)	0.474 (0.079)
Kurtosis (standard error)	1.163 (0.158)	-0.619 (0.158)	-0.721 (0.158)	-0.429 (0.158)
Cronbach's alpha reliability coeff.	0.812	0.740	0.703	0.570
Split-half reliability coefficient	0.797	0.675	0.531	0.570
Average inter-item correlations	0.306	0.488	0.442	0.400
Minimum-maximum correlations	0.133-0.420	0.452-0.531	0.342-0.579	0.400-0.400
Range of correlations	0.287	0.078	0.237	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Hedonism	0.225	_		
Self-enhancement	0.257	0.372	_	
Openness to change	0.280	0.377	0.331	_

Table A277 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, Ireland (first half-sample: n = 961)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Self-	variance
	transcendence	change	enhancement	
SD1	0.350	0.352	-0.046	0.720
SD11	0.356	0.305	0.019	0.721
UN3	0.595	0.089	-0.117	0.660
UN8	0.600	0.150	-0.085	0.616
UN19	0.581	0.012	-0.037	0.674
BE12	0.637	0.074	-0.045	0.589
BE18	0.524	0.046	0.157	0.621
TR9	0.519	-0.094	0.004	0.743
CO16	0.449	-0.258	0.358	0.604
SEC5	0.470	-0.143	0.266	0.654
SEC14	0.542	-0.100	0.126	0.664
PO17	0.086	0.002	0.603	0.589
AC4	-0.084	0.385	0.467	0.539
AC13	-0.105	0.456	0.536	0.380
HE10	-0.059	0.639	0.061	0.576
HE21	0.047	0.703	-0.062	0.518
ST6	0.235	0.598	-0.053	0.553
ST15	-0.160	0.723	0.040	0.486
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Openness to change	0.226	_		
Self-enhancement	0.370	0.363	_	

Table A278 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Ireland (first half-sample: n = 961)

	Principal axis factor	analysis (factors)	
Variables	Factor I Self-transcendence	Factor II Openness to change	Unique variance
SD1	0.286	0.323	0.751
SD11	0.325	0.306	0.732
UN3	0.532	0.017	0.711
UN8	0.542	0.093	0.663
UN19	0.562	-0.027	0.694
BE12	0.606	0.030	0.619
BE18	0.579	0.097	0.617
TR9	0.530	-0.114	0.747
CO16	0.602	-0.114	0.672
SEC5	0.588	-0.046	0.671
SEC14	0.604	-0.069	0.659
PO17	0.295	0.258	0.795
AC4	0.054	0.586	0.632
AC13	0.055	0.673	0.519
HE10	-0.115	0.684	0.573
HE21	-0.059	0.678	0.564
ST6	0.140	0.569	0.602
ST15	-0.235	0.765	0.484
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.344	_	


Table A279 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Ireland (second half-sample: n = 962)

Models							
tested	Factor structure	χ^2/df	$SRMR^{b}$	NFI^a	CFI ^a	TLI^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.40	.059	.912	.929	.885	.059 (.054065)
2a	2 first-order correlated factors- without cross-loadings	6.48	.073	.831	.852	.815	.075 (.071081)
2b	2 first-order correlated factors- with cross-loadings	5.01	.055	.874	.895	.864	.065 (.059070)
3a	3 first-order correlated factors- without cross-loadings	6.04	.072	.840	.862	.830	.072 (.067077)
3b	3 first-order correlated factors- with cross-loadings	4.24	.051	.890	.912	.884	.060 (.054065)
4a	4 first-order correlated factors- without cross-loadings	6.03	.068	.840	.862	.830	.072 (.067077)
4b	4 first-order correlated factors- with cross-loadings	5.40	.056	.868	.889	.851	.068 (.063073)
5	4 first-order correlated factors of unified values	6.16	.070	.848	.869	.841	.073 (.068079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

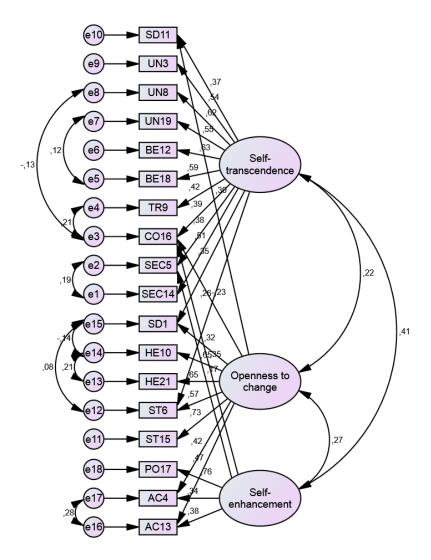

b Lower values indicate better model fit

Fig. 83 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Ireland (second half-sample: n = 962)

Table A280 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Ireland (N = 1,923)

		Subscale	
	Self-	Openness to	Self-
	transcendence	change	enhancement
Number of items	10	5	3
Mean (standard error)	2.27 (0.015)	3.19 (0.023)	3.18 (0.025)
95% Confidence interval	2.24-2.30	3.14-3.24	3.13-3.23
Standard deviation	0.648	1.014	1.109
Skewness (standard error)	0.546 (0.056)	0.091 (0.056)	0.152 (0.056)
Kurtosis (standard error)	0.877 (0.112)	-0.490 (0.112)	-0.658 (0.112)
Cronbach's alpha reliability coeff.	0.792	0.762	0.701
Split-half reliability coefficient	0.732	0.777	0.525
Average inter-item correlations	0.280	0.386	0.439
Minimum-maximum correlations	0.115-0.410	0.164-0.545	0.347-0.576
Range of correlations	0.295	0.382	0.228
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.222	_	
Self-enhancement	0.240	0.337	_

Fig. 84 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Ireland (N = 1,923)

Table A281 Item analysis of Schwartz scale values of the European Social Survey, 2004: Ireland (first half-sample: n = 595)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.55 (1.271)	2.45-2.66	23.5	30.9	22.0	14.5	7.7	1.2	0.2	0.55	-0.51	0.392
SD11	2.25 (1.103)	2.16-2.33	28.2	35.8	19.7	10.6	3.5	0.3	1.8	0.77	0.03	0.379
UN3	1.85 (0.962)	1.78-1.93	43.0	37.1	12.4	5.0	1.5	0.3	0.5	1.27	1.69	0.324
UN8	2.39 (1.112)	2.31-2.48	22.9	35.3	24.7	12.8	2.7	1.0	0.7	0.65	0.10	0.407
UN19	2.03 (1.042)	1.95-2.12	35.3	38.3	16.0	6.2	2.7	0.5	1.0	1.11	1.12	0.413
BE12	2.05 (0.956)	1.97-2.13	32.1	39.5	19.3	7.1	1.0	0.2	0.8	0.78	0.31	0.444
BE18	1.91 (0.910)	1.84-1.99	36.3	43.7	12.8	5.7	0.7	0.3	0.5	1.12	1.51	0.467
TR9	2.63 (1.277)	2.52-2.73	20.5	32.8	19.3	16.5	7.2	1.8	1.8	0.55	-0.44	0.340
TR20	2.32 (1.281)	2.21-2.42	32.1	31.8	17.0	11.3	5.9	1.7	0.3	0.87	0.01	0.362
CO7	2.93 (1.401)	2.82-3.05	17.0	27.1	21.0	17.5	13.4	3.4	0.7	0.33	-0.86	0.422
CO16	2.38 (1.232)	2.28-2.48	25.9	36.1	19.8	8.9	6.7	1.5	1.0	0.89	0.21	0.421
SEC5	2.11 (1.156)	2.02-2.21	36.3	34.5	14.8	9.2	3.7	0.8	0.7	1.04	0.55	0.438
SEC14	2.29 (1.239)	2.19-2.39	31.4	32.6	18.8	9.2	5.5	1.5	0.8	0.92	0.25	0.460
PO2	4.13 (1.353)	4.02-4.24	4.9	9.1	15.6	22.4	34.1	13.6	0.3	-0.60	-0.40	0.389
PO17	3.26 (1.475)	3.14-3.38	12.6	22.9	21.5	16.6	19.2	6.4	0.8	0.15	-1.03	0.536
AC4	3.02 (1.397)	2.91-3.13	13.6	28.1	23.7	15.1	14.5	4.4	0.7	0.37	-0.79	0.552
AC13	3.39 (1.479)	3.27-3.51	12.6	18.3	21.2	19.0	22.0	6.4	0.5	-0.03	-1.05	0.572
HE10	3.56 (1.449)	3.45-3.68	10.6	14.6	20.7	22.5	21.8	8.1	1.7	-0.18	-0.89	0.458
HE21	3.10 (1.421)	2.99-3.22	14.3	23.9	22.4	20.7	12.8	5.5	0.5	0.25	-0.82	0.427
ST6	2.93 (1.404)	2.82-3.04	18.3	22.9	26.1	16.3	12.1	4.0	0.3	0.34	-0.74	0.506
ST15	3.89 (1.515)	3.77-4.01	9.2	11.9	15.6	20.2	28.6	13.8	0.7	-0.42	-0.86	0.428

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.100 and 0.200, respectively.

Table A282 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Ireland (first half-sample: n = 595)

	Principal a	xis factor analysi	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Conservation	Self-	variance
	enhancement		transcendence	
SD1	0.260	-0.034	0.376	0.753
SD11	0.219	0.095	0.239	0.830
UN3	-0.043	0.069	0.512	0.716
UN8	0.039	0.058	0.570	0.631
UN19	-0.046	0.308	0.394	0.667
BE12	-0.027	0.265	0.472	0.617
BE18	0.076	0.242	0.408	0.665
TR9	-0.113	0.402	0.253	0.716
TR20	-0.150	0.518	0.227	0.617
CO7	0.012	0.617	0.023	0.604
CO16	-0.064	0.726	0.011	0.485
SEC5	0.078	0.519	0.053	0.680
SEC14	0.013	0.549	0.138	0.614
PO2	0.594	0.243	-0.304	0.585
PO17	0.369	0.501	-0.093	0.576
AC4	0.615	0.161	0.015	0.543
AC13	0.781	0.144	-0.101	0.362
HE10	0.730	-0.052	-0.034	0.493
HE21	0.594	-0.122	0.140	0.615
ST6	0.598	-0.169	0.331	0.490
ST15	0.749	-0.252	0.151	0.409
Factors	Correl	lations between fa	actors	
Self-enhancement	_			
Conservation	0.229	_		
Self-transcendence	0.267	0.400	_	

Table A283 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Ireland (first half-sample: n = 595)

		Subscale	
	Self-	Conservation	Self-
	enhancement		transcendence
Number of items	7	7	7
Mean (standard error)	3.43 (0.043)	2.56 (0.035)	2.15 (0.026)
95% Confidence interval	3.35-3.52	2.49-2.63	2.10-2.20
Standard deviation	1.038	0.858	0.644
Skewness (standard error)	0.008 (0.100)	0.262 (0.100)	0.347 (0.100)
Kurtosis (standard error)	-0.415 (0.200)	-0.388 (0.200)	-0.162 (0.200)
Cronbach's alpha reliability coeff.	0.849	0.785	0.718
Split-half reliability coefficient	0.789	0.749	0.650
Average inter-item correlations	0.444	0.347	0.274
Minimum-maximum correlations	0.282-0.605	0.179-0.460	0.191-0.466
Range of correlations	0.323	0.281	0.275
	Average inter-it	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.247	_	
Self-transcendence	0.248	0.265	_

Table A284 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Ireland (first half-sample: n = 595)

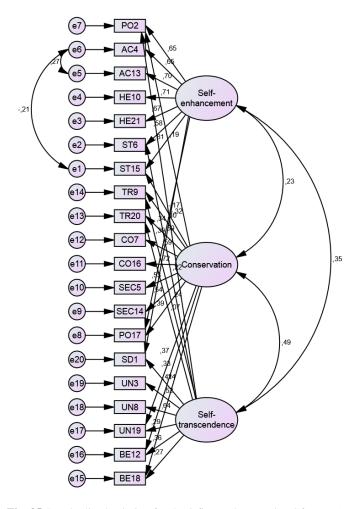
Variables	Principal axis factor	analysis (factors)	Unique
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.182	0.319	0.829
SD11	0.228	0.254	0.847
UN3	0.372	0.035	0.852
UN8	0.387	0.127	0.804
UN19	0.538	0.000	0.710
BE12	0.540	0.034	0.696
BE18	0.478	0.129	0.717
TR9	0.551	-0.097	0.720
TR20	0.652	-0.146	0.612
CO7	0.608	-0.017	0.636
CO16	0.706	-0.099	0.535
SEC5	0.534	0.058	0.692
SEC14	0.620	0.005	0.614
PO2	0.031	0.523	0.716
PO17	0.406	0.328	0.646
AC4	0.140	0.617	0.546
AC13	0.048	0.759	0.400
HE10	-0.102	0.738	0.492
HE21	-0.057	0.630	0.622
ST6	0.016	0.653	0.567
ST15	-0.183	0.792	0.430
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.309	_	

Table A285 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2004, Ireland (first half-sample: n = 595)

X7 : 11	Principal axis factor a	** .	
Variables	Factor I	Factor II	Unique variance
	Openness to change	Conservation	variance
TR9	-0.071	0.510	0.754
TR20	-0.106	0.601	0.661
CO7	-0.004	0.645	0.586
CO16	-0.076	0.734	0.485
SEC5	0.082	0.540	0.678
SEC14	0.032	0.608	0.619
PO2	0.517	0.110	0.691
PO17	0.337	0.445	0.609
AC4	0.616	0.150	0.549
AC13	0.759	0.083	0.384
HE10	0.738	-0.080	0.480
HE21	0.638	-0.073	0.613
ST6	0.645	-0.030	0.593
ST15	0.784	-0.200	0.428
	Correlations betw	veen factors	
Openness to change			
Conservation	0.265	_	

Table A286 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-20 items): European Social Survey 2004, Ireland (first half-sample: n = 595)

-	Principal a	xis factor analysi	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Conservation	Self-	variance
	enhancement		transcendence	
SD1	0.266	-0.029	0.374	0.752
UN3	-0.034	0.076	0.504	0.718
UN8	0.050	0.065	0.563	0.632
UN19	-0.040	0.313	0.389	0.668
BE12	-0.020	0.274	0.456	0.627
BE18	0.083	0.248	0.405	0.663
TR9	-0.109	0.407	0.249	0.715
TR20	-0.148	0.519	0.236	0.610
CO7	0.008	0.618	0.023	0.604
CO16	-0.068	0.727	0.009	0.485
SEC5	0.076	0.522	0.048	0.680
SEC14	0.013	0.555	0.125	0.618
PO2	0.586	0.247	-0.309	0.581
PO17	0.362	0.499	-0.086	0.578
AC4	0.614	0.162	0.023	0.541
AC13	0.777	0.145	-0.093	0.364
HE10	0.729	-0.045	-0.042	0.494
HE21	0.597	-0.115	0.136	0.616
ST6	0.605	-0.165	0.336	0.483
ST15	0.751	-0.244	0.145	0.413
Factors	Correl	ations between fa	actors	
Self-enhancement	_			
Conservation	0.230	_		
Self-transcendence	0.245	0.388	_	


Table A287 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2004, Ireland (second half-sample: n = 595)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.09	.082	.850	.881	.829	.072 (.066078)
2a	2 first-order correlated factors (21 items)-without cross-						
	loadings	3.73	.074	.829	.868	.849	.068 (.062073)
2b	2 first-order correlated factors			0=0			0.15 / 0.55
2c	(21 items)-with cross-loadings 2 first-order correlated factors	3.30	.062	.850	.890	.872	.062 (.057068)
	(14 items)-without cross-						
	loadings	4.52	.080	.877	.900	.876	.077 (.069085)
2d	2 first-order correlated factors	2.62	0.60	002	007	007	066 (050 , 075)
3a	(14 items)-with cross-loadings 3 first-order correlated factors-	3.62	.060	.902	.927	.907	.066 (.058075)
3a	without cross-loadings	4.24	.085	.806	.843	.820	.074 (.069079)
3b	3 first-order correlated factors-	7.27	.003	.000	.0-13	.020	.074 (.007077)
	with cross-loadings	2.99	.055	.871	.909	.889	.058 (.052064)
3c	3 first-order correlated						,
	factors(20 items)-with						
	cross-loadings	2.87	.049	.884	.921	.902	.056 (.050062)
4	4 first-order correlated factors					0.05	0.45 / 0.50 0.50
	of unified values	3.55	.064	.877	.908	.888	.065 (.059073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

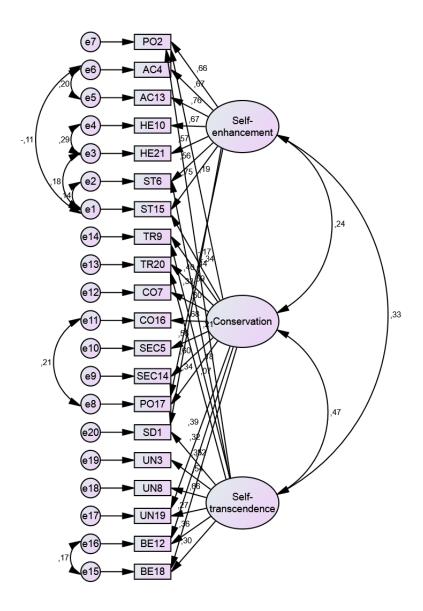

b Lower values indicate better model fit

Fig. 85 Standardized solution for the 3 first-order correlated factors (model 3c-20 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Ireland (second half-sample: n = 595)

Table A288 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Ireland (N = 1,190)

		Subscale	
	Self-	Conservation	Self-
	enhancement		transcendence
Number of items	7	7	6
Mean (standard error)	3.40 (0.030)	2.54 (0.024)	2.13 (0.019)
95% Confidence interval	3.34-3.46	2.50-2.59	2.09-2.16
Standard deviation	1.045	0.841	0.657
Skewness (standard error)	-0.004 (0.071)	0.287 (0.071)	0.419 (0.071)
Kurtosis (standard error)	-0.414 (0.142)	-0.382 (0.142)	-0.085 (0.142)
Cronbach's alpha reliability coeff.	0.852	0.777	0.696
Split-half reliability coefficient	0.788	0.724	0.618
Average inter-item correlations	0.449	0.336	0.285
Minimum-maximum correlations	0.291-0.608	0.178-0.462	0.180-0.435
Range of correlations	0.316	0.284	0.255
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.249	_	
Self-transcendence	0.259	0.273	_

Fig. 86 Standardized solution for the 3 first-order correlated factors (model 3c-20 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Ireland (N = 1,190)

Table A289 Item analysis of Schwartz scale values of the European Social Survey, 2006: Ireland (first half-sample: n = 826)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.52 (1.272)	2.43-2.61	24.2	31.5	22.8	12.5	6.9	1.8	0.4	0.66	-0.23	0.398
SD11	2.15 (1.136)	2.08-2.23	32.9	36.9	16.0	9.4	3.0	1.1	0.6	1.03	0.70	0.419
UN3	1.97 (1.074)	1.90-2.04	40.3	35.1	15.5	5.4	1.8	1.3	0.2	1.33	1.93	0.326
UN8	2.41 (1.147)	2.24-2.37	20.9	41.0	18.4	12.7	5.0	0.8	1.1	0.78	0.08	0.423
UN19	2.12 (1.102)	2.04-2.20	33.3	36.7	16.2	9.0	2.4	1.0	1.5	1.04	0.83	0.376
BE12	2.19 (1.042)	2.32-2.45	28.0	39.7	20.6	9.2	1.5	0.8	0.2	0.87	0.70	0.469
BE18	2.07 (1.012)	2.00-2.13	31.4	42.7	15.3	7.6	1.3	0.8	0.8	1.11	1.42	0.518
TR9	2.65 (1.244)	2.56-2.73	18.4	33.4	23.2	14.4	7.6	1.7	1.2	0.57	-0.32	0.355
TR20	2.54 (1.376)	2.44-2.63	26.6	31.1	18.2	11.1	9.2	2.8	1.0	0.73	-0.35	0.336
CO7	3.22 (1.488)	3.12-3.32	13.6	23.6	21.1	16.9	17.8	6.7	0.4	0.19	-1.03	0.393
CO16	2.66 (1.320)	2.57-2.75	20.5	32.6	19.1	15.9	8.4	2.4	1.2	0.57	-0.48	0.483
SEC5	2.21 (1.224)	2.13-2.30	33.7	33.4	18.2	8.1	4.1	2.1	0.5	1.07	0.73	0.436
SEC14	2.28 (1.202)	2.20-2.37	29.7	34.5	17.8	11.3	3.6	1.7	1.5	0.92	0.39	0.471
PO2	4.13 (1.334)	4.04-4.22	4.4	9.8	16.0	18.8	38.6	11.6	0.8	-0.64	-0.43	0.287
PO17	3.26 (1.439)	3.16-3.36	11.3	23.5	21.8	17.6	17.7	6.3	1.9	0.18	-0.95	0.530
AC4	3.10 (1.414)	3.01-3.20	13.0	25.9	24.0	16.2	15.3	5.1	0.6	0.30	-0.84	0.478
AC13	3.31 (1.431)	3.21-3.41	11.5	21.3	21.9	18.6	21.2	4.8	0.6	0.04	-1.04	0.534
HE10	3.57 (1.421)	3.47-3.66	8.5	18.6	18.8	21.1	25.3	6.4	1.3	-0.17	-1.00	0.399
HE21	3.07 (1.420)	2.97-3.16	15.1	24.9	20.6	19.4	15.0	4.1	0.8	0.23	-0.93	0.456
ST6	3.03 (1.408)	2.93-3.12	15.0	26.0	22.4	15.3	16.6	3.4	1.3	0.28	-0.93	0.477
ST15	3.77 (1.488)	3.67-3.87	9.1	14.3	17.8	16.6	31.1	9.7	1.5	-0.35	-0.97	0.416

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A290 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Ireland (first half-sample: n = 826)

Principal axis factor analysis (factors)							
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Conservation	Openness to	Self-	Achievement	variance		
		change	transcendence				
SD1	-0.084	0.062	0.399	0.222	0.745		
SD11	0.016	0.058	0.448	0.100	0.729		
UN3	0.022	-0.077	0.500	0.039	0.749		
UN8	0.048	0.083	0.561	-0.066	0.640		
UN19	0.346	-0.073	0.378	-0.103	0.640		
BE12	0.210	-0.110	0.573	0.022	0.531		
BE18	0.416	0.159	0.300	-0.110	0.576		
TR9	0.332	0.091	0.237	-0.140	0.755		
TR20	0.615	-0.007	0.042	-0.145	0.618		
CO7	0.566	-0.041	-0.038	0.095	0.678		
CO16	0.695	0.026	-0.038	0.037	0.523		
SEC5	0.402	-0.173	0.191	0.212	0.672		
SEC14	0.530	-0.025	0.141	0.042	0.612		
PO17	0.561	0.110	-0.229	0.384	0.500		
AC4	-0.037	0.008	0.090	0.727	0.435		
AC13	0.071	0.166	-0.007	0.627	0.427		
HE10	0.001	0.665	-0.099	0.098	0.508		
HE21	0.160	0.825	-0.074	-0.164	0.438		
ST6	-0.155	0.391	0.344	0.183	0.552		
ST15	-0.168	0.670	0.088	0.124	0.418		
Factors		Correlations b	etween factors				
Conservation	_						
Openness to change	0.164	_					
Self-transcendence	0.526	0.327	_				
Achievement	0.239	0.601	0.274	_			

Table A291 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Ireland (first half-sample: n = 829)

		Sub	scale	
	Conservation	Openness to change	Self- transcendence	Achievement
Number of items	8	4	6	2
Mean (standard error)	2.61 (0.029)	3.36 (0.039)	2.23 (0.025)	3.21 (0.044)
95% Confidence interval	2.55-2.67	3.28-3.43	2.18-2.28	3.12-3.29
Standard deviation	0.824	1.112	0.716	1.258
Skewness (standard error)	0.408 (0.085)	-0.011 (0.085)	0.553 (0.085)	0.100 (0.085)
Kurtosis (standard error)	0.044 (0.170)	-0.723 (0.170)	0.462 (0.170)	-0.835 (0.170)
Cronbach's alpha reliability coeff.	0.790	0.778	0.701	0.722
Split-half reliability coefficient	0.786	0.803	0.696	0.722
Average inter-item correlations	0.324	0.466	0.286	0.565
Minimum-maximum correlations	0.159-0.439	0.376-0.532	0.174-0.381	0.565-0.565
Range of correlations	0.279	0.156	0.207	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Openness to change	0.235	_		
Self-transcendence	0.270	0.235	_	
Achievement	0.276	0.425	0.247	_

Table A292 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, Ireland (first half-sample: n = 829)

	s (factors)			
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		transcendence	
SD1	0.298	-0.033	0.319	0.775
SD11	0.189	0.018	0.416	0.741
UN3	0.016	0.018	0.470	0.766
UN8	0.086	-0.016	0.580	0.640
UN19	-0.143	0.278	0.441	0.637
BE12	-0.037	0.187	0.570	0.546
BE18	0.057	0.316	0.399	0.590
TR9	-0.032	0.238	0.327	0.766
TR20	-0.174	0.516	0.170	0.647
CO7	-0.013	0.562	0.017	0.678
CO16	-0.009	0.650	0.062	0.536
SEC5	0.000	0.445	0.178	0.690
SEC14	-0.019	0.500	0.204	0.612
PO17	0.353	0.648	-0.238	0.481
AC4	0.592	0.161	-0.065	0.601
AC13	0.660	0.224	-0.118	0.492
HE10	0.691	-0.051	-0.044	0.550
HE21	0.584	0.005	0.081	0.626
ST6	0.581	-0.159	0.309	0.545
ST15	0.765	-0.209	0.099	0.425
Factors	Correl	lations between fa	actors	
Openness to change	_			
Conservation	0.258			
Self-transcendence	0.260	0.505	_	

Table A293 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Ireland (first half-sample: n = 829)

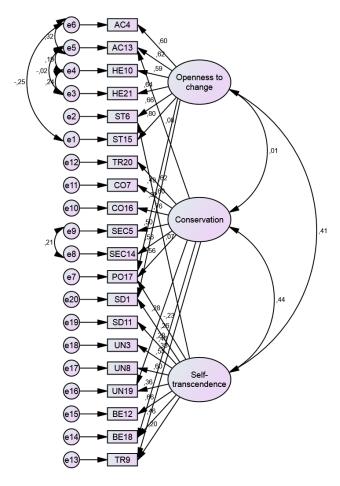

X7 : 11	Principal axis factor	TT '	
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.183	0.333	0.814
SD11	0.310	0.231	0.802
UN3	0.361	0.061	0.851
UN8	0.399	0.143	0.781
UN19	0.599	-0.108	0.674
BE12	0.595	0.015	0.640
BE18	0.591	0.090	0.606
TR9	0.470	-0.005	0.780
TR20	0.630	-0.173	0.648
CO7	0.537	-0.019	0.719
CO16	0.653	-0.012	0.578
SEC5	0.557	0.008	0.687
SEC14	0.629	-0.010	0.609
PO17	0.386	0.315	0.668
AC4	0.060	0.593	0.620
AC13	0.076	0.650	0.538
HE10	-0.135	0.707	0.547
HE21	0.020	0.609	0.621
ST6	0.040	0.615	0.603
ST15	-0.181	0.796	0.433
	Correlations be	tween factors	
Conservation			
Openness to change	0.342	_	

Table A294 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2006, Ireland (second half-sample: n = 827)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.89	.063	.894	.912	.847	.069 (.063074)
2a	2 first-order correlated factors- without cross-loadings	5.61	.080	.835	.859	.819	.075 (.070080)
2b	2 first-order correlated factors- with cross-loadings	4.94	.069	.856	.881	.845	.069 (.064074)
3a	3 first-order correlated factors- without cross-loadings	6.09	.085	.805	.830	.800	.079 (.074083)
3b	3 first-order correlated factors- with cross-loadings	3.95	.052	.880	.907	.884	.060 (.055065)
4a	4 first-order correlated factors- without cross-loadings	6.31	.080	.797	.823	.791	.080 (.076085)
4b	4 first-order correlated factors- with cross-loadings	4.19	.050	.871	.898	.874	.062 (.057067)
5	4 first-order correlated factors of unified values	5.61	.065	.852	.875	.849	.075 (.069080)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

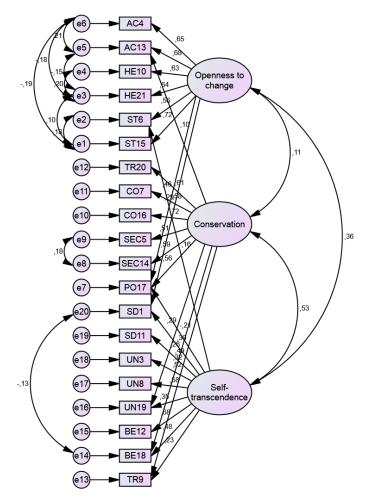


Fig. 87 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Ireland (second half-sample: n = 827)

a Higher values indicate better model fit

Table A295 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Ireland (N = 1,653)

		Subscale	
	Openness to change	Conservation	Self- transcendence
Number of items	6	6	8
Mean (standard error)	3.31 (0.026)	2.69 (0.022)	2.26 (0.017)
95% Confidence interval	3.26-3.36	2.65-2.74	2.22-2.29
Standard deviation	1.044	0.911	0.682
Skewness (standard error)	0.021 (0.060)	0.376 (0.060)	0.489 (0.060)
Kurtosis (standard error)	-0.667 (0.120)	-0.250 (0.120)	0.298 (0.120)
Cronbach's alpha reliability coeff.	0.824	0.760	0.746
Split-half reliability coefficient	0.777	0.745	0.709
Average inter-item correlations	0.438	0.349	0.276
Minimum-maximum correlations	0.308-0.576	0.251-0.467	0.115-0.462
Range of correlations	0.268	0.216	0.346
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.240	_	
Self-transcendence	0.238	0.254	_

Fig. 88 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Ireland (N = 1,653)

Table A296 Item analysis of Schwartz scale values of the European Social Survey, 2008: Ireland (first half-sample: n = 882)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.31 (1.255)	2.23-2.39	31.4	32.3	19.4	8.6	7.3	1.0	-	0.86	-0.02	0.318
SD11	2.04 (1.052)	1.97-2.11	33.4	44.2	11.8	6.5	3.4	0.6	0.1	1.25	1.48	0.362
UN3	1.85 (0.975)	1.79-1.92	41.6	41.6	10.3	3.4	2.5	0.6	-	1.54	2.85	0.289
UN8	2.13 (0.991)	2.06-2.19	26.5	47.2	16.0	7.0	2.8	0.2	0.2	1.01	0.98	0.360
UN19	2.12 (1.092)	2.05-2.19	32.8	39.0	15.8	9.3	2.0	1.0	0.1	1.04	0.89	0.345
BE12	1.93 (0.887)	1.87-1.99	33.7	46.6	13.8	4.4	1.1	0.2	0.1	1.10	1.66	0.414
BE18	1.92 (0.921)	1.86-1.98	36.5	43.9	12.2	5.9	1.2	0.1	0.1	1.09	1.16	0.488
TR9	2.49 (1.264)	2.41-2.58	22.1	37.9	18.3	11.8	7.5	1.8	0.7	0.80	-0.07	0.313
TR20	2.46 (1.366)	2.37-2.56	28.3	32.3	17.1	11.2	7.8	2.9	0.2	0.82	-0.17	0.391
CO7	3.14 (1.462)	3.05-3.24	13.5	27.0	18.8	16.4	18.6	4.9	0.8	0.22	-1.06	0.390
CO16	2.56 (1.273)	2.48-2.65	19.7	39.5	17.3	13.2	8.5	1.7	0.1	0.73	-0.26	0.450
SEC5	2.16 (1.176)	2.08-2.24	31.6	42.0	12.9	6.9	5.0	1.5	0.1	1.23	1.14	0.424
SEC14	2.31 (1.221)	2.23-2.39	26.4	41.3	16.0	7.4	6.8	1.6	0.6	1.06	0.58	0.443
PO2	4.24 (1.312)	4.15-4.33	4.6	7.7	13.5	19.5	42.2	12.4	0.1	-0.82	-0.05	0.294
PO17	3.11 (1.439)	3.02-3.21	12.4	29.7	19.6	14.4	19.7	4.0	0.2	0.27	-1.07	0.486
AC4	2.88 (1.339)	2.79-2.97	14.3	32.8	21.1	16.3	12.5	2.7	0.3	0.45	-0.71	0.461
AC13	3.21 (1.424)	3.11-3.30	11.1	27.0	20.9	15.9	21.2	3.9	0.1	0.16	-1.10	0.466
HE10	3.48 (1.429)	3.39-3.58	9.1	20.5	19.5	20.1	25.1	5.6	0.2	-0.10	-1.07	0.377
HE21	3.00 (1.332)	2.91-3.09	10.9	32.3	22.3	17.2	13.4	3.4	0.5	0.41	-0.73	0.416
ST6	2.71 (1.394)	2.62-2.80	21.5	31.2	19.4	12.2	13.4	2.2	0.1	0.53	-0.76	0.443
ST15	3.70 (1.450)	3.60-3.79	8.3	16.4	18.3	18.7	30.4	7.6	0.3	-0.29	-1.00	0.273

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.164, respectively.

Table A297 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Ireland (first half-sample: n = 882)

	Pr	rincipal axis facto	r analysis (factors	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Achievement	Self-	Hedonism	variance
			transcendence		
SD1	-0.106	0.191	0.421	0.018	0.784
SD11	0.003	0.018	0.376	0.191	0.768
UN8	0.163	0.037	0.526	-0.137	0.662
UN19	0.347	-0.136	0.300	0.032	0.720
BE12	0.231	-0.009	0.475	-0.033	0.651
BE18	0.391	-0.032	0.194	0.212	0.669
TR9	0.485	-0.212	0.187	0.025	0.674
TR20	0.590	-0.119	0.078	0.061	0.621
CO7	0.708	0.103	-0.123	-0.080	0.524
CO16	0.791	0.012	-0.117	0.005	0.426
SEC5	0.457	0.188	0.176	-0.154	0.660
SEC14	0.527	0.054	0.155	-0.057	0.632
PO17	0.490	0.331	-0.213	0.159	0.554
AC4	-0.036	0.668	0.189	-0.027	0.514
AC13	0.008	0.767	0.019	0.026	0.380
HE10	-0.046	0.176	-0.047	0.582	0.546
HE21	0.024	-0.100	-0.001	0.843	0.366
ST6	-0.138	0.219	0.359	0.322	0.588
Factors		Correlations be	etween factors		
Conservation	_				
Achievement	0.225	_			
Self-transcendence	0.382	0.161	_		
Hedonism	0.143	0.538	0.331	_	

Table A298 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Ireland (first half-sample: n = 882)

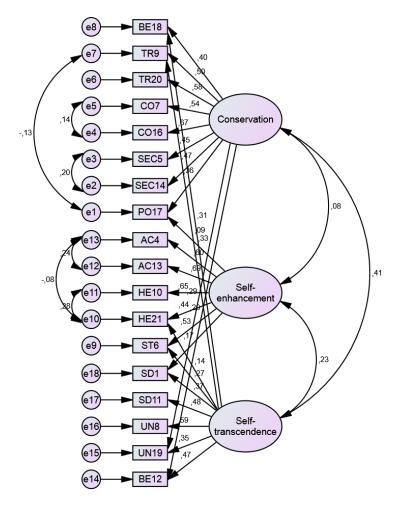
		Sub	scale	
	Conservation	Achievement	Self- transcendence	Hedonism
Number of items	9	2	5	2
Mean (standard error)	2.48 (0.027)	3.04 (0.041)	2.22 (0.024)	3.24 (0.040)
95% Confidence interval	2.42-2.53	2.96-3.12	2.18-2.27	3.16-3.32
Standard deviation	0.788	1.211	0.704	1.199
Skewness (standard error)	0.369 (0.082)	0.278 (0.082)	0.399 (0.082)	0.149 (0.082)
Kurtosis (standard error)	-0.376 (0.164)	-0.726 (0.164)	-0.216 (0.164)	-0.744 (0.164)
Cronbach's alpha reliability coeff.	0.807	0.698	0.604	0.673
Split-half reliability coefficient	0.813	0.698	0.566	0.673
Average inter-item correlations	0.320	0.537	0.242	0.509
Minimum-maximum correlations	0.124-0.535	0.537-0.537	0.169-0.331	0.509-0.509
Range of correlations	0.411	0.000	0.163	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Achievement	0.265	_		
Self-transcendence	0.235	0.233	_	
Hedonism	0.247	0.387	0.226	_

Table A299 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, Ireland (first half-sample: n = 882)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Conservation	Self-	Self-	variance			
		enhancement	transcendence				
SD1	-0.065	0.238	0.318	0.826			
SD11	-0.036	0.208	0.411	0.763			
UN8	0.186	-0.029	0.444	0.723			
UN19	0.295	-0.088	0.378	0.716			
BE12	0.220	0.002	0.463	0.672			
BE18	0.323	0.148	0.313	0.673			
TR9	0.415	-0.182	0.307	0.673			
TR20	0.528	-0.077	0.201	0.630			
CO7	0.714	-0.004	-0.077	0.521			
CO16	0.752	-0.023	-0.003	0.442			
SEC5	0.498	0.054	0.121	0.683			
SEC14	0.523	0.001	0.181	0.634			
PO17	0.503	0.406	-0.174	0.555			
AC4	0.098	0.605	-0.012	0.605			
AC13	0.142	0.717	-0.156	0.462			
HE10	-0.114	0.618	0.093	0.608			
HE21	-0.113	0.538	0.251	0.620			
ST6	-0.161	0.512	0.371	0.566			
Factors	Correl	lations between fa	actors				
Conservation	_						
Self-enhancement	0.202	_					
Self-transcendence	0.319	0.210	_				

Table A300 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Ireland (first half-sample: n = 882)

Variables	Principal axis factor	analysis (factors)	Unique
v arrables	Factor I Conservation	Factor II Self-enhancement	Unique variance
SD1	0.054	0.322	0.882
SD11	0.123	0.316	0.860
UN8	0.375	0.072	0.837
UN19	0.461	-0.010	0.791
BE12	0.417	0.106	0.787
BE18	0.445	0.210	0.698
TR9	0.557	-0.128	0.719
TR20	0.624	-0.062	0.631
CO7	0.664	-0.067	0.583
CO16	0.749	-0.073	0.469
SEC5	0.549	0.051	0.678
SEC14	0.606	0.010	0.629
PO17	0.377	0.319	0.678
AC4	0.040	0.599	0.624
AC13	0.021	0.641	0.580
HE10	-0.134	0.670	0.590
HE21	-0.054	0.622	0.632
ST6	-0.039	0.607	0.645
	Correlations bet	ween factors	
Conservation	_		
Self-enhancement	0.320		


Table A301 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Ireland (second half-sample: n = 882)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.35	.053	.880	.904	.858	.062 (.056068)
2a	2 first-order correlated factors- without cross-loadings	5.47	.076	.821	.848	.810	.071 (.066077)
2b	2 first-order correlated factors- with cross-loadings	4.91	.070	.841	.868	.834	.067 (.061072)
3a	3 first-order correlated factors- without cross-loadings	5.55	.071	.814	.841	.807	.072 (.067077)
3b	3 first-order correlated factors- with cross-loadings	4.08	.057	.872	.899	.869	.059 (.054065)
4a	4 first-order correlated factors- without cross-loadings	6.70	.081	.777	.803	.758	.080 (.075086)
4b	4 first-order correlated factors- with cross-loadings	4.31	.057	.862	.889	.860	.061 (.056067)
5	4 first-order correlated factors of unified values	5.45	.069	.845	.869	.841	.071 (.066077)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

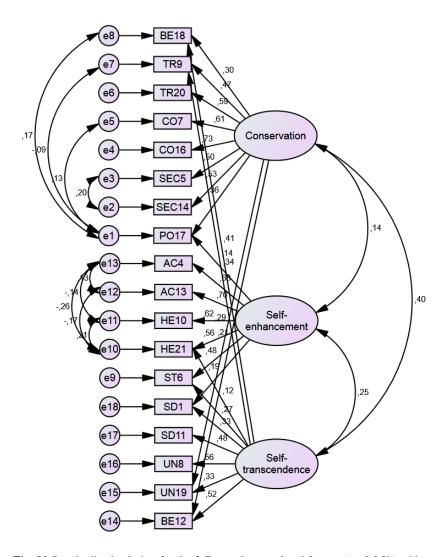

b Lower values indicate better model fit

Fig. 89 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Ireland (second half-sample: n = 882)

Table A302 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Ireland (N = 1,764)

		Subscale	
	Conservation	Self-	Self-
		enhancement	transcendence
Number of items	8	5	5
Mean (standard error)	2.50 (0.019)	3.04 (0.023)	2.12 (0.016)
95% Confidence interval	2.46-2.54	2.99-3.08	2.09-2.15
Standard deviation	0.778	0.979	0.658
Skewness (standard error)	0.395 (0.058)	0.252 (0.058)	0.502 (0.058)
Kurtosis (standard error)	-0.240 (0.116)	-0.466 (0.116)	0.109 (0.116)
Cronbach's alpha reliability coeff.	0.776	0.758	0.612
Split-half reliability coefficient	0.782	0.782	0.579
Average inter-item correlations	0.307	0.385	0.248
Minimum-maximum correlations	0.100-0.494	0.253-0.545	0.175-0.355
Range of correlations	0.394	0.292	0.180
	Average inter-it	tem correlations be	etween subscales
Conservation	_		
Self-enhancement	0.214	_	
Self-transcendence	0.241	0.216	_

Fig. 90 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Ireland (N = 1,764)

Table A303 Item analysis of Schwartz scale values of the European Social Survey, 2010: Ireland (first half-sample: n = 1,210)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.56 (1.271)	2.49-2.64	25.0	26.4	25.0	14.6	7.3	1.2	0.6	0.48	-0.56	0.420
SD11	2.23 (1.122)	2.16-2.29	31.4	32.7	19.7	12.6	2.4	0.5	0.7	0.70	-0.18	0.572
UN3	2.08 (1.122)	2.02-2.15	38.4	31.0	17.4	9.8	2.5	0.6	0.3	0.92	0.25	0.454
UN8	2.44 (1.155)	2.37-2.50	22.1	36.0	23.5	12.4	4.6	1.0	0.4	0.68	-0.01	0.533
UN19	2.40 (1.191)	2.33-2.46	26.7	31.1	21.8	13.6	4.9	0.7	1.2	0.61	-0.36	0.502
BE12	2.16 (1.040)	2.10-2.22	29.8	38.2	19.3	9.7	1.8	0.4	0.8	0.80	0.27	0.621
BE18	2.05 (1.059)	1.99-2.11	36.4	34.8	16.4	9.1	2.0	0.3	0.9	0.92	0.33	0.611
TR9	2.68 (1.303)	2.60-2.75	20.7	29.9	22.1	16.9	7.4	2.3	0.6	0.51	-0.49	0.388
TR20	2.71 (1.403)	2.63-2.79	23.9	26.0	19.9	16.4	9.5	3.2	1.0	0.49	-0.69	0.401
CO7	3.02 (1.384)	2.94-3.10	14.8	26.1	22.1	18.8	14.2	3.4	0.6	0.26	-0.87	0.387
CO16	2.64 (1.284)	2.57-2.71	20.9	30.5	22.3	14.7	7.9	1.9	1.7	0.54	-0.43	0.520
SEC5	2.22 (1.231)	2.15-2.29	35.6	29.9	16.3	12.1	4.3	1.1	0.7	0.86	-0.02	0.526
SEC14	2.42 (1.205)	2.35-2.49	24.7	34.5	19.5	13.6	5.5	0.9	1.2	0.69	-0.23	0.540
PO2	3.85 (1.352)	3.77-3.92	6.0	12.1	18.5	25.9	26.9	9.3	1.3	-0.38	-0.62	0.234
PO17	3.01 (1.375)	2.93-3.09	14.0	27.9	21.4	18.1	14.9	3.1	0.7	0.28	-0.89	0.508
AC4	2.93 (1.321)	2.85-3.00	14.6	28.0	23.6	18.8	12.0	2.4	0.5	0.31	-0.75	0.502
AC13	3.15 (1.350)	3.08-3.23	11.2	24.3	24.0	19.8	15.9	3.6	1.2	0.18	-0.85	0.515
HE10	3.29 (1.271)	3.22-3.37	9.0	15.8	21.4	21.3	14.4	4.4	13.7	0.11	-0.48	0.414
HE21	3.02 (1.368)	2.94-3.10	14.8	25.2	21.4	21.9	12.0	3.6	1.1	0.24	-0.81	0.496
ST6	2.90 (1.370)	2.83-2.98	17.4	26.9	20.5	19.6	12.4	2.6	0.7	0.29	-0.87	0.471
ST15	3.53 (1.462)	3.45-3.61	11.2	15.6	19.5	22.8	22.1	7.6	1.1	-0.17	-0.95	0.362

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.070 and 0.141, respectively.

Table A304 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Ireland (first half-sample: n = 1.210)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Conservation	variance
	transcendence	change		
SD1	0.394	0.364	-0.210	0.678
SD11	0.603	0.228	-0.080	0.537
UN3	0.765	-0.073	-0.117	0.527
UN8	0.585	0.056	0.072	0.581
UN19	0.649	-0.055	0.072	0.548
BE12	0.701	0.049	0.077	0.418
BE18	0.578	0.064	0.185	0.485
TR9	0.289	-0.154	0.444	0.614
TR20	0.278	-0.103	0.412	0.656
CO7	-0.073	0.001	0.713	0.540
CO16	0.150	-0.061	0.718	0.366
SEC5	0.442	-0.065	0.354	0.539
SEC14	0.438	0.028	0.282	0.587
PO17	-0.171	0.361	0.628	0.531
AC4	-0.031	0.540	0.239	0.628
AC13	-0.113	0.703	0.203	0.487
HE10	-0.087	0.659	0.065	0.587
HE21	0.121	0.635	-0.025	0.535
ST6	0.220	0.615	-0.163	0.521
ST15	-0.039	0.778	-0.156	0.422
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Openness to change	0.355	_		
Conservation	0.526	0.159		

Table A305 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Ireland (first half-sample: n = 1,210)

		Subscale	
	Self-	Openness to	Conservation
	transcendence	change	
Number of items	9	6	5
Mean (standard error)	2.29 (0.023)	3.14 (0.028)	2.81 (0.028)
95% Confidence interval	2.24-2.33	3.08-3.19	2.76-2.87
Standard deviation	0.788	0.989	0.972
Skewness (standard error)	0.643 (0.070)	0.067 (0.070)	0.241 (0.070)
Kurtosis (standard error)	0.014 (0.141)	-0.408 (0.141)	-0.387 (0.141)
Cronbach's alpha reliability coeff.	0.855	0.823	0.768
Split-half reliability coefficient	0.817	0.781	0.700
Average inter-item correlations	0.404	0.436	0.401
Minimum-maximum correlations	0.172-0.595	0.312-0.547	0.252-0.529
Range of correlations	0.424	0.235	0.277
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.304	_	
Conservation	0.344	0.252	_

Table A306 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Ireland (first half-sample: n = 1,210)

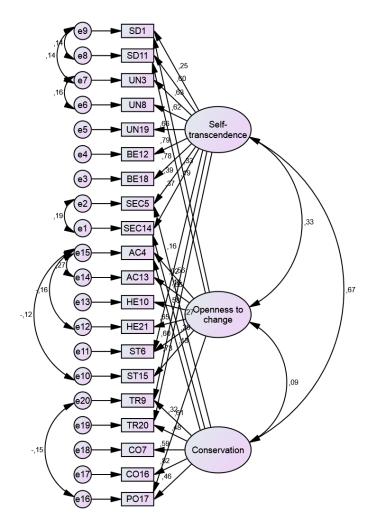

Maniahla.	Principal axis factor	II.	
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.094	0.466	0.742
SD11	0.394	0.343	0.626
UN3	0.508	0.074	0.708
UN8	0.536	0.144	0.634
UN19	0.595	0.043	0.625
BE12	0.635	0.156	0.498
BE18	0.638	0.133	0.511
TR9	0.667	-0.182	0.613
TR20	0.623	-0.125	0.655
CO7	0.577	-0.110	0.703
CO16	0.781	-0.144	0.453
SEC5	0.701	-0.051	0.533
SEC14	0.621	0.057	0.585
PO17	0.396	0.233	0.720
AC4	0.147	0.506	0.667
AC13	0.034	0.658	0.549
HE10	-0.072	0.649	0.608
HE21	0.015	0.680	0.530
ST6	-0.030	0.693	0.534
ST15	-0.255	0.824	0.414
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.374	_	

Table A307 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2010, Ireland (second half-sample: n = 1,210)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.90	.048	.935	.947	.917	.057 (.052061)
2a	2 first-order correlated factors- without cross-loadings	7.34	.071	.884	.897	.865	.072 (.068077)
2b	2 first-order correlated factors- with cross-loadings	5.85	.055	.909	.923	.896	.063 (.059068)
3a	3 first-order correlated factors- without cross-loadings	7.91	.076	.861	.876	.852	.076 (.072079)
3b	3 first-order correlated factors- with cross-loadings	5.82	.054	.904	.919	.897	.063 (.059067)
4	4 first-order correlated factors of unified values	8.48	.080	.873	.886	.860	.079 (.074083)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

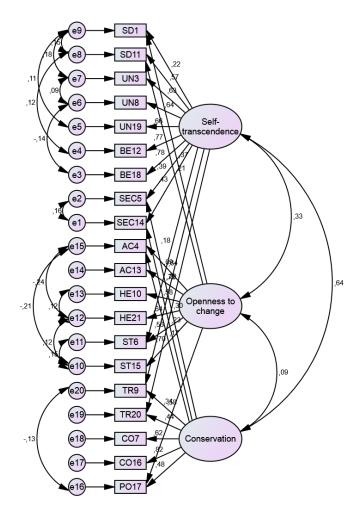


Fig. 91 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Ireland (second half-sample: n = 1,210)

a Higher values indicate better model fit

Table A308 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Ireland (N = 2,420)

		Subscale	
	Self- transcendence	Openness to change	Conservation
Number of items	9	6	5
Mean (standard error)	2.29 (0.016)	3.13 (0.020)	2.80 (0.020)
95% Confidence interval	2.26-2.32	3.09-3.17	2.76-2.84
Standard deviation	0.795	0.971	0.959
Skewness (standard error)	0.640 (0.050)	0.035 (0.050)	0.210 (0.050)
Kurtosis (standard error)	0.036 (0.099)	-0.431 (0.099)	-0.490 (0.099)
Cronbach's alpha reliability coeff.	0.856	0.815	0.760
Split-half reliability coefficient	0.817	0.764	0.731
Average inter-item correlations	0.404	0.422	0.390
Minimum-maximum correlations	0.174-0.615	0.296-0.531	0.223-0.514
Range of correlations	0.441	0.235	0.291
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.300	_	
Conservation	0.343	0.249	_

Fig. 92 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Ireland (N = 2,420)

Table A309 Item analysis of Schwartz scale values of the European Social Survey, 2012: Ireland (first half-sample: n = 1,314)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.41 (1.158)	2.35-2.47	21.6	39.7	22.5	8.8	6.0	1.1	0.3	0.85	0.32	0.392
SD11	2.07 (1.010)	2.01-2.12	32.0	42.0	16.0	7.2	2.6	0.2	0.2	0.98	0.68	0.422
UN3	1.92 (0.949)	1.86-1.97	38.1	41.5	12.9	5.9	1.4	0.2	-	1.13	1.25	0.391
UN8	2.29 (1.037)	2.24-2.35	22.0	43.4	21.2	9.9	2.9	0.5	0.2	0.79	0.41	0.494
UN19	2.14 (1.056)	2.08-2.19	30.6	39.5	18.7	7.5	2.8	0.5	0.3	0.95	0.71	0.443
BE12	2.03 (0.920)	1.98-2.08	30.1	45.4	17.9	4.7	1.3	0.4	0.2	1.01	1.45	0.478
BE18	1.91 (0.912)	1.86-1.96	36.6	43.7	12.6	5.7	0.9	0.2	0.2	1.10	1.33	0.497
TR9	2.64 (1.210)	2.58-2.71	15.1	39.8	21.3	13.5	8.1	1.4	0.7	0.67	-0.21	0.269
TR20	2.62 (1.370)	2.55-2.70	22.9	32.8	18.5	12.3	10.4	2.6	0.5	0.65	-0.50	0.353
CO7	3.06 (1.395)	2.98-3.13	12.7	28.4	22.4	14.9	16.3	4.0	1.4	0.33	-0.87	0.341
CO16	2.63 (1.214)	2.56-2.69	15.7	40.0	21.1	13.4	8.2	1.4	0.3	0.68	-0.22	0.424
SEC5	2.05 (1.066)	1.99-2.11	33.9	42.2	13.3	6.4	3.3	0.7	0.2	1.22	1.38	0.422
SEC14	2.10 (1.071)	2.04-2.15	32.5	40.3	16.1	6.3	3.8	0.5	0.5	1.09	0.95	0.455
PO2	3.89 (1.348)	3.82-3.97	4.7	13.8	19.6	18.0	36.0	7.4	0.6	-0.43	-0.81	0.245
PO17	2.83 (1.264)	2.76-2.90	12.0	36.6	22.8	13.5	13.2	1.3	0.6	0.51	-0.65	0.472
AC4	2.73 (1.206)	2.67-2.80	11.7	39.8	24.9	12.3	9.3	1.8	0.2	0.69	-0.14	0.512
AC13	3.21 (1.339)	3.14-3.28	9.3	25.0	26.1	17.3	19.0	3.1	0.2	0.17	-0.92	0.497
HE10	3.37 (1.351)	3.29-3.44	8.3	21.8	23.2	22.5	19.6	4.4	0.2	0.02	-0.92	0.450
HE21	3.12 (1.318)	3.05-3.20	10.0	26.9	24.7	21.1	13.6	3.7	0.2	0.25	-0.75	0.416
ST6	2.85 (1.320)	2.78-2.92	15.1	31.4	23.8	14.7	12.9	2.1	0.2	0.43	-0.70	0.514
ST15	3.66 (1.450)	3.58-3.73	7.5	18.5	18.9	19.2	27.1	8.5	0.2	-0.18	-1.04	0.295

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.067 and 0.135, respectively.

Table A310 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Ireland (first half-sample: n = 1,314)

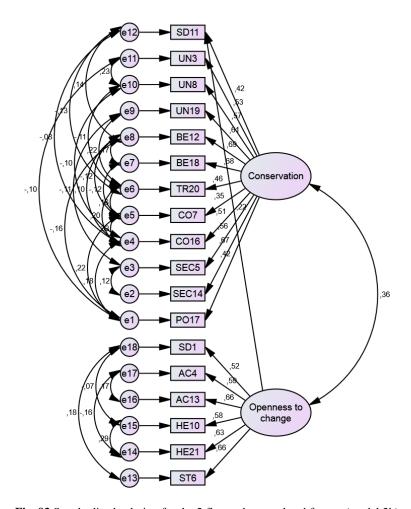
	Principal a	Principal axis factor analysis (factors)				
	Factor I	Factor II	Factor III	Unique		
Item	Self-	Self-	Conservation	variance		
	transcendence	enhancement				
SD1	0.326	0.408	-0.193	0.698		
SD11	0.503	0.170	-0.073	0.700		
UN3	0.596	0.014	-0.073	0.679		
UN8	0.578	0.074	0.045	0.603		
UN19	0.613	-0.063	0.084	0.586		
BE12	0.715	0.003	-0.032	0.511		
BE18	0.586	-0.005	0.147	0.548		
TR20	0.260	-0.145	0.450	0.635		
CO7	-0.133	0.053	0.664	0.622		
CO16	0.014	-0.057	0.751	0.438		
SEC5	0.269	-0.013	0.409	0.650		
SEC14	0.325	-0.086	0.476	0.532		
PO17	-0.121	0.281	0.595	0.589		
AC4	0.011	0.548	0.198	0.614		
AC13	-0.100	0.698	0.132	0.510		
HE10	-0.089	0.739	0.015	0.486		
HE21	0.020	0.611	-0.046	0.627		
ST6	0.220	0.618	-0.106	0.518		
Factors	Correl	ations between fa	ctors			
Self-transcendence	_					
Self-enhancement	0.323	_				
Conservation	0.520	0.181	_			

Table A311 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Ireland (first half-sample: n = 1,314)

		Subscale	
	Self-	Self-	Conservation
	transcendence	enhancement	
Number of items	6	6	6
Mean (standard error)	2.06 (0.019)	2.95 (0.025)	2.55 (0.023)
95% Confidence interval	2.02-2.10	2.90-3.00	2.50-2.59
Standard deviation	0.680	0.901	0.850
Skewness (standard error)	0.845 (0.067)	0.244 (0.067)	0.519 (0.067)
Kurtosis (standard error)	1.032 (0.135)	-0.266 (0.135)	-0.004 (0.135)
Cronbach's alpha reliability coeff.	0.783	0.794	0.777
Split-half reliability coefficient	0.763	0.740	0.745
Average inter-item correlations	0.378	0.388	0.374
Minimum-maximum correlations	0.271-0.526	0.238-0.559	0.277-0.487
Range of correlations	0.254	0.321	0.210
	Average inter-it	em correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.271	_	
Conservation	0.308	0.233	_

Table A312 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Ireland (first half-sample: n = 1,314)

**	Principal axis factor	** .	
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.031	0.487	0.751
SD11	0.299	0.260	0.788
UN3	0.377	0.120	0.812
UN8	0.471	0.163	0.697
UN19	0.545	0.027	0.692
BE12	0.502	0.123	0.689
BE18	0.586	0.072	0.622
TR20	0.650	-0.164	0.625
CO7	0.503	-0.036	0.759
CO16	0.715	-0.136	0.539
SEC5	0.606	-0.022	0.642
SEC14	0.722	-0.097	0.519
PO17	0.444	0.191	0.706
AC4	0.156	0.536	0.629
AC13	-0.002	0.671	0.551
HE10	-0.112	0.736	0.504
HE21	-0.080	0.638	0.623
ST6	0.016	0.680	0.529
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.352	_	


Table A313 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2012, Ireland (second half-sample: n = 1,314)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.35	.039	.948	.959	.927	.051 (.045056)
2a	2 first-order correlated factors- without cross-loadings	5.97	.057	.909	.923	.891	.062 (.057066)
2b	2 first-order correlated factors- with cross-loadings	5.57	.052	.916	.929	.900	.059 (.054064)
3a	3 first-order correlated factors- without cross-loadings	6.91	.059	.883	.898	.871	.067 (.063071)
3b	3 first-order correlated factors- with cross-loadings	6.38	.052	.897	.912	.882	.064 (.060068)
4	4 first-order correlated factors of unified values	9.47	.078	.849	.862	.827	.080 (.076085)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

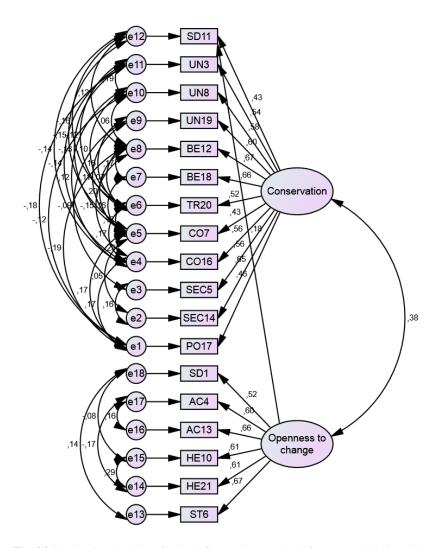

b Lower values indicate better model fit

Fig. 93 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Ireland (second half-sample: n = 1,314)

Table A314 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Ireland (N = 2,628)

	Sul	bscale
	Conservation	Openness to change
Number of items	12	6
Mean (standard error)	2.33 (0.013)	2.98 (0.017)
95% Confidence interval	2.30-2.35	2.95-3.02
Standard deviation	0.671	0.896
Skewness (standard error)	0.531 (0.048)	0.201 (0.048)
Kurtosis (standard error)	0.325 (0.095)	-0.286 (0.095)
Cronbach's alpha reliability coeff.	0.834	0.792
Split-half reliability coefficient	0.681	0.736
Average inter-item correlations	0.307	0.387
Minimum-maximum correlations	0.074-0.543	0.252-0.556
Range of correlations	0.469	0.304
	Average inter-	item correlations
	between	n subscales
Conservation	_	
Openness to change	0.234	

Fig. 94 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Ireland (N = 2,628)

Table A315 Item analysis of Schwartz scale values of the European Social Survey, 2014: Ireland (first half-sample: n = 1,195)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.60 (1.309)	2.52-2.67	20.4	36.4	19.4	11.8	9.3	2.3	0.4	0.71	-0.29	0.412
SD11	2.22 (1.081)	2.16-2.28	27.3	40.6	18.2	9.9	3.3	0.4	0.3	0.85	0.31	0.399
UN3	2.06 (0.970)	2.00-2.11	31.2	42.4	16.8	7.4	1.4	0.3	0.5	0.91	0.69	0.390
UN8	2.39 (1.065)	2.33-2.45	20.6	38.2	25.2	10.9	3.6	0.4	1.2	0.65	0.07	0.508
UN19	2.18 (1.076)	2.12-2.24	29.0	39.7	18.7	8.3	3.3	0.5	0.4	0.92	0.54	0.463
BE12	2.13 (0.987)	2.07-2.18	27.6	43.9	18.3	7.2	2.3	0.3	0.4	0.91	0.73	0.468
BE18	2.02 (0.998)	1.97-2.08	33.6	42.1	14.6	6.9	2.0	0.3	0.3	1.06	1.03	0.495
TR9	2.65 (1.220)	2.58-2.72	16.1	36.8	23.3	13.1	7.9	1.7	1.2	0.64	-0.18	0.329
TR20	2.59 (1.338)	2.51-2.66	23.6	32.1	19.3	13.1	9.4	2.1	0.5	0.63	-0.47	0.357
CO7	3.13 (1.356)	3.06-3.21	11.5	24.4	25.6	17.1	16.9	3.3	1.1	0.21	-0.86	0.354
CO16	2.66 (1.232)	2.59-2.73	16.8	36.1	22.3	14.6	8.2	1.4	0.7	0.58	-0.36	0.426
SEC5	2.12 (1.091)	2.06-2.18	33.1	38.2	16.2	8.1	3.8	0.3	0.3	0.97	0.44	0.415
SEC14	2.24 (1.125)	2.17-2.30	27.9	38.9	19.1	7.9	4.4	0.8	0.8	0.96	0.60	0.415
PO2	3.95 (1.345)	3.87-4.03	4.0	13.3	19.6	18.7	34.2	9.5	0.8	-0.40	-0.79	0.193
PO17	2.92 (1.299)	2.85-3.00	11.6	33.1	24.4	13.5	14.9	1.8	0.7	0.43	-0.74	0.454
AC4	2.91 (1.263)	2.84-2.99	10.5	34.0	25.3	15.0	12.7	2.0	0.5	0.47	-0.60	0.500
AC13	3.23 (1.317)	3.15-3.30	8.4	25.0	25.7	19.2	17.5	3.4	0.8	0.18	-0.85	0.491
HE10	3.29 (1.347)	3.21-3.37	9.0	23.1	23.0	22.5	17.1	4.4	0.9	0.10	-0.86	0.431
HE21	3.01 (1.291)	2.93-3.08	12.6	26.1	25.0	22.3	10.4	2.9	0.7	0.25	-0.65	0.463
ST6	2.91 (1.336)	2.83-2.98	15.2	27.6	26.4	15.0	12.6	2.8	0.3	0.39	-0.66	0.486
ST15	3.66 (1.487)	3.58-3.75	7.9	18.5	19.2	18.5	24.6	10.8	0.4	-0.13	-1.06	0.287

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.071 and 0.141, respectively.

Table A316 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Ireland (first half-sample: n = 1,195)

	Pı	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Openness to	Achievement	variance
	transcendence		change		
SD1	0.296	-0.211	0.140	0.333	0.691
SD11	0.554	-0.112	0.050	0.054	0.698
UN3	0.661	-0.089	-0.026	-0.009	0.628
UN8	0.587	0.037	0.100	-0.007	0.588
UN19	0.560	0.160	-0.080	0.026	0.585
BE12	0.651	0.033	0.053	-0.061	0.562
BE18	0.632	0.038	0.040	-0.003	0.559
TR9	0.277	0.394	0.034	-0.185	0.712
TR20	0.091	0.544	-0.065	0.025	0.648
CO7	-0.161	0.716	0.051	0.017	0.561
CO16	0.069	0.674	-0.001	-0.034	0.510
SEC5	0.344	0.324	-0.157	0.116	0.644
SEC14	0.360	0.286	-0.022	-0.007	0.696
PO17	-0.113	0.491	0.148	0.202	0.641
AC4	0.007	0.042	-0.054	0.758	0.447
AC13	-0.110	0.112	0.247	0.491	0.549
HE10	-0.054	0.066	0.776	-0.079	0.477
HE21	0.025	0.024	0.716	-0.044	0.508
ST6	0.189	-0.097	0.507	0.109	0.578
Factors		Correlations be	etween factors		
Self-transcendence					
Conservation	0.496	_			
Openness to change	0.322	0.146	_		
Achievement	0.400	0.333	0.628	_	

Table A317 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Ireland (first half-sample: n = 1,195)

		Sub	scale	
	Self- transcendence	Conservation	Openness to change	Achievement
Number of items	8	5	3	3
Mean (standard error)	2.17 (0.020)	2.79 (0.026)	3.07 (0.031)	2.91 (0.029)
95% Confidence interval	2.13-2.21	2.74-2.84	3.01-3.13	2.86-2.97
Standard deviation	0.690	0.885	1.059	0.987
Skewness (standard error)	0.586 (0.071)	0.241 (0.071)	0.236 (0.071)	0.421 (0.071)
Kurtosis (standard error)	0.149 (0.141)	-0.392 (0.141)	0.335 (0.141)	-0.201 (0.141)
Cronbach's alpha reliability coeff.	0.812	0.719	0.717	0.637
Split-half reliability coefficient	0.784	0.654	0.643	0.603
Average inter-item correlations	0.353	0.339	0.458	0.370
Minimum-maximum correlations	0.252-0.474	0.127-0.459	0.419-0.517	0.300-0.484
Range of correlations	0.222	0.333	0.097	0.184
	Averag	ge inter-item corre	lations between si	ubscales
Self-transcendence	_			
Conservation	0.286	_		
Openness to change	0.272	0.224	_	
Achievement	0.280	0.240	0.358	_

Table A318 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2014, Ireland (first half-sample: n = 1,195)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	transcendence	enhancement		
SD1	0.278	0.414	-0.152	0.716
SD11	0.547	0.105	-0.106	0.698
UN3	0.658	-0.021	-0.088	0.626
UN8	0.582	0.103	0.026	0.588
UN19	0.560	-0.055	0.174	0.585
BE12	0.645	0.015	0.017	0.565
BE18	0.628	0.047	0.034	0.558
TR9	0.278	-0.117	0.352	0.733
TR20	0.094	-0.059	0.557	0.646
CO7	-0.158	0.044	0.715	0.563
CO16	0.075	-0.045	0.667	0.516
SEC5	0.348	-0.070	0.361	0.650
SEC14	0.362	-0.030	0.287	0.695
PO17	-0.116	0.294	0.520	0.637
AC4	0.028	0.498	0.179	0.658
AC13	-0.111	0.621	0.181	0.584
HE10	-0.052	0.670	-0.020	0.581
HE21	0.014	0.660	-0.047	0.572
ST6	0.171	0.604	-0.123	0.572
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.378	_		
Conservation	0.497	0.257	_	

Table A319 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Ireland (first half-sample: n = 1,195)

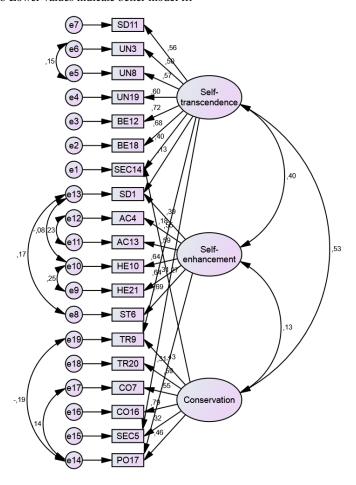

	Principal axis factor	analysis (factors)	
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.020	0.497	0.744
SD11	0.288	0.223	0.811
UN3	0.391	0.118	0.793
UN8	0.438	0.213	0.681
UN19	0.582	0.027	0.647
BE12	0.482	0.136	0.691
BE18	0.485	0.162	0.669
TR9	0.562	-0.119	0.728
TR20	0.613	-0.121	0.675
CO7	0.532	-0.066	0.744
CO16	0.696	-0.122	0.576
SEC5	0.621	-0.061	0.644
SEC14	0.553	-0.006	0.697
PO17	0.382	0.201	0.747
AC4	0.151	0.487	0.675
AC13	0.043	0.575	0.646
HE10	-0.121	0.681	0.594
HE21	-0.100	0.693	0.571
ST6	-0.053	0.677	0.570
	Correlations be	tween factors	
Conservation			
Openness to change	0.438	_	

Table A320 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2014, Ireland (second half-sample: n = 1,195)

Models							
tested	Factor structure	χ^2/df	$SRMR^b$	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.87	.047	.919	.934	.895	.057 (.052062)
2a	2 first-order correlated factors- without cross-loadings	5.84	.059	.886	.903	.869	.064 (.059068)
2b	2 first-order correlated factors- with cross-loadings	5.77	.057	.889	.905	.871	.063 (.059068)
3a	3 first-order correlated factors- without cross-loadings	6.23	.063	.864	.882	.858	.066 (.062070)
3b	3 first-order correlated factors-						,
4a	with cross-loadings 4 first-order correlated factors-	4.66	.048	.901	.920	.901	.055 (.051060)
4b	without cross-loadings 4 first-order correlated factors-	6.18	.062	.867	.885	.860	.066 (.062070)
	with cross-loadings 4 first-order correlated factors	5.28	.056	.890	.908	.884	.060 (.056064)
5	of unified values	8.18	.076	.846	.862	.832	.078 (.073082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

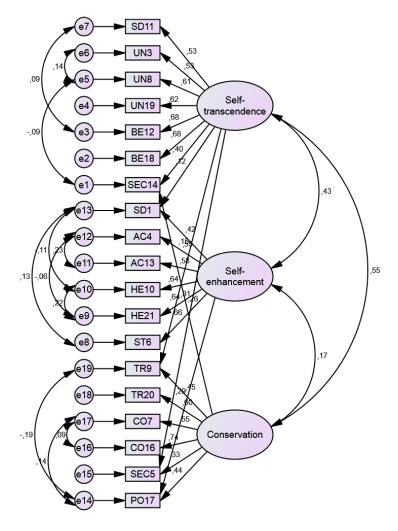


Fig. 95 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Ireland (second half-sample: n = 1,195)

a Higher values indicate better model fit

Table A321 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Ireland (N = 2,390)

		Subscale	
	Self- transcendence	Self- enhancement	Conservation
Number of items	7	6	6
Mean (standard error)	2.17 (0.014)	2.98 (0.018)	2.65 (0.017)
95% Confidence interval	2.14-2.19	2.95-3.02	2.62-2.69
Standard deviation	0.693	0.899	0.832
Skewness (standard error)	0.634 (0.050)	0.351 (0.050)	0.319 (0.050)
Kurtosis (standard error)	0.327 (0.100)	-0.084 (0.100)	-0.338 (0.100)
Cronbach's alpha reliability coeff.	0.796	0.775	0.745
Split-half reliability coefficient	0.772	0.703	0.744
Average inter-item correlations	0.361	0.363	0.328
Minimum-maximum correlations	0.253-0.480	0.217-0.538	0.131-0.458
Range of correlations	0.227	0.321	0.327
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.258	_	
Conservation	0.286	0.219	_

Fig. 96 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Ireland (N = 2,390)

Table A322 Item analysis of Schwartz scale values of the European Social Survey, 2002: Netherlands (first half-sample: n = 1,182)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.49 (1.109)	2.43-2.56	18.8	34.7	29.1	10.9	4.2	1.1	1.2	0.65	0.23	0.339
SD11	2.11 (0.934)	2.05-2.16	26.5	44.2	21.9	4.1	1.7	0.5	1.0	0.96	1.51	0.352
UN3	2.18 (0.960)	2.12-2.23	22.0	48.3	21.1	4.5	1.7	1.2	1.3	1.21	2.47	0.327
UN8	2.44 (0.918)	2.39-2.50	10.3	48.6	29.1	7.5	2.6	0.7	1.2	0.93	1.43	0.347
UN19	2.27 (0.934)	2.21-2.32	18.9	44.8	26.4	5.3	2.0	0.6	2.0	0.88	1.39	0.348
BE12	2.31 (0.914)	2.26-2.37	17.7	42.6	31.0	5.7	1.7	0.4	1.0	0.65	0.91	0.392
BE18	2.14 (0.816)	2.09-2.18	19.4	51.4	22.5	3.0	1.2	0.3	2.4	0.88	1.90	0.442
TR9	3.31 (1.263)	3.24-3.39	6.5	20.6	29.4	23.5	12.9	5.2	1.7	0.21	-0.51	0.084
TR20	2.85 (1.224)	2.78-2.92	11.6	32.0	28.0	15.4	8.5	2.7	1.9	0.53	-0.21	0.264
CO7	3.00 (1.211)	2.93-3.07	8.9	28.5	29.9	18.4	10.3	2.5	1.4	0.39	-0.39	0.273
CO16	2.70 (1.086)	2.63-2.76	10.4	38.2	29.1	13.0	6.3	1.0	1.9	0.62	0.11	0.340
SEC5	2.66 (1.140)	2.60-2.73	14.6	34.0	29.9	13.0	6.2	1.3	1.1	0.56	-0.02	0.323
SEC14	2.65 (1.047)	2.59-2.71	11.5	36.9	31.1	13.4	4.1	1.0	1.9	0.57	0.26	0.404
PO2	4.23 (1.154)	4.17-4.30	1.5	5.6	17.7	31.0	28.8	14.0	1.4	-0.37	-0.21	0.265
PO17	3.42 (1.145)	3.35-3.48	2.5	19.1	32.6	25.5	13.2	4.6	2.5	0.30	-0.37	0.295
AC4	3.36 (1.256)	3.29-3.43	5.7	20.2	30.1	22.7	15.1	5.0	1.3	0.18	-0.58	0.373
AC13	3.35 (1.191)	3.28-3.42	4.1	20.8	30.5	25.5	12.5	4.6	1.9	0.24	-0.42	0.419
HE10	3.05 (1.126)	2.98-3.11	5.8	28.3	32.7	19.5	10.2	1.7	1.9	0.37	-0.33	0.337
HE21	2.59 (1.073)	2.53-2.65	14.2	36.3	30.0	12.2	4.7	0.8	1.8	0.56	0.14	0.304
ST6	2.97 (1.231)	2.90-3.04	10.5	28.6	28.3	18.7	10.2	2.4	1.4	0.36	-0.47	0.393
ST15	3.88 (1.255)	3.80-3.95	3.4	11.6	21.1	29.4	23.1	9.5	2.0	-0.24	-0.50	0.187

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.071 and 0.142, respectively.

Table A323 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Netherlands (first half-sample: n = 1,182)

	Pr	rincipal axis facto	r analysis (factors	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Achievement	Hedonism	variance
	transcendence				
SD1	0.490	-0.207	0.172	0.010	0.692
SD11	0.370	0.004	0.088	0.085	0.795
UN3	0.560	0.061	0.038	-0.164	0.703
UN8	0.601	-0.011	-0.045	-0.058	0.679
UN19	0.524	0.174	-0.151	-0.013	0.660
BE12	0.505	0.204	-0.125	0.032	0.644
BE18	0.414	0.237	0.003	0.057	0.685
CO16	0.114	0.568	0.034	-0.112	0.636
SEC5	0.028	0.590	0.059	0.026	0.636
SEC14	-0.043	0.627	0.097	0.161	0.569
AC4	-0.019	0.079	0.806	-0.069	0.415
AC13	-0.028	0.082	0.760	0.019	0.424
HE10	-0.028	0.054	0.142	0.461	0.708
HE21	-0.074	0.045	-0.113	0.788	0.486
ST6	0.422	-0.250	0.151	0.238	0.597
Factors		Correlations be	etween factors		
Self-transcendence	_				
Conservation	0.314	_			
Achievement	0.289	-0.079	_		
Hedonism	0.403	0.096	0.507	_	

Table A324 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Netherlands (first half-sample: n = 1,182)

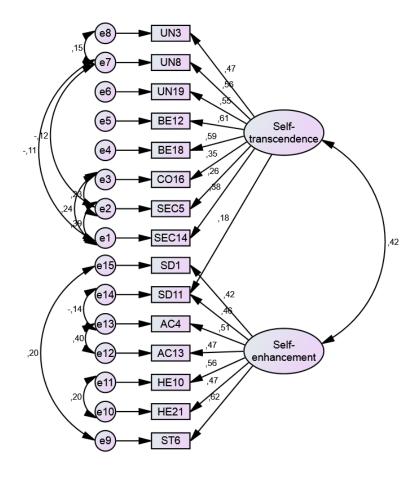
		Sub	scale	
	Self- transcendence	Conservation	Achievement	Hedonism
Number of items	8	3	2	2
Mean (standard error)	2.36 (0.017)	2.67 (0.024)	3.36 (0.032)	2.82 (0.027)
95% Confidence interval	2.33-2.40	2.62-2.72	3.29-3.42	2.77-2.87
Standard deviation	0.573	0.833	1.088	0.912
Skewness (standard error)	0.497 (0.071)	0.428 (0.071)	0.196 (0.071)	0.325 (0.071)
Kurtosis (standard error)	1.638 (0.142)	0.153 (0.142)	-0.362 (0.142)	-0.023 (0.142)
Cronbach's alpha reliability coeff.	0.722	0.642	0.734	0.545
Split-half reliability coefficient	0.674	0.538	0.734	0.545
Average inter-item correlations	0.252	0.375	0.581	0.375
Minimum-maximum correlations	0.152-0.396	0.352-0.417	0.581-0.581	0.375-0.375
Range of correlations	0.244	0.065	0.000	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.209	_		
Achievement	0.215	0.210	_	
Hedonism	0.212	0.205	0.316	_

Table A325 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, Netherlands (first half-sample: n = 1,182)

	Principal a			
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	transcendence	enhancement		
SD1	0.450	0.220	-0.209	0.698
SD11	0.366	0.170	0.005	0.794
UN3	0.497	-0.030	0.048	0.745
UN8	0.579	-0.047	-0.021	0.688
UN19	0.534	-0.137	0.166	0.659
BE12	0.528	-0.088	0.197	0.639
BE18	0.424	0.057	0.233	0.683
CO16	0.100	-0.047	0.548	0.654
SEC5	0.042	0.059	0.588	0.632
SEC14	-0.005	0.184	0.630	0.574
AC4	-0.102	0.721	0.059	0.521
AC13	-0.124	0.794	0.082	0.421
HE10	0.062	0.416	0.072	0.799
HE21	0.116	0.326	0.073	0.844
ST6	0.436	0.341	-0.239	0.601
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.335	_		
Conservation	0.321	-0.011	_	

Table A326 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Netherlands (first half-sample: n = 1,182)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	0.105	0.406	0.797
SD11	0.245	0.288	0.813
UN3	0.406	0.107	0.796
UN8	0.400	0.134	0.789
UN19	0.559	-0.023	0.695
BE12	0.577	0.017	0.660
BE18	0.518	0.125	0.676
CO16	0.557	-0.159	0.720
SEC5	0.510	-0.069	0.757
SEC14	0.490	0.030	0.750
AC4	-0.122	0.674	0.582
AC13	-0.123	0.724	0.516
HE10	0.043	0.436	0.796
HE21	0.097	0.360	0.839
ST6	0.053	0.524	0.708
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.313	_	


Table A327 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Netherlands (second half-sample: n = 1,182)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.11	.060	.874	.892	.844	.066 (.060072)
2a	2 first-order correlated factors- without cross-loadings	4.84	.052	.892	.912	.883	.057 (.051063)
2b	2 first-order correlated factors- with cross-loadings	4.66	.049	.898	.917	.889	.056 (.050062)
3a	3 first-order correlated factors- without cross-loadings	7.50	.070	.825	.844	.802	.074 (.069080)
3b	3 first-order correlated factors- with cross-loadings	5.88	.057	.869	.888	.851	.064 (.059070)
4a	4 first-order correlated factors- without cross-loadings	7.22	.068	.835	.854	.811	.073 (.067078)
4b	4 first-order correlated factors- with cross-loadings	6.00	.058	.868	.887	.848	.065 (.059071)
5	2 first-order correlated factors of unified values	4.79	.051	.948	.958	.938	.057 (.045069)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

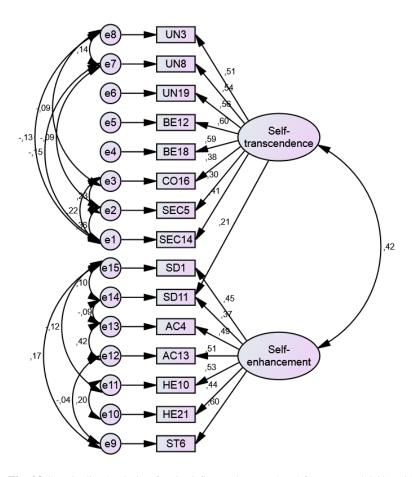

b Lower values indicate better model fit

Fig. 97 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Netherlands (second half-sample: n = 1,182)

Table A328 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Netherlands (N = 2,364)

	S	ubscale
	Self-	Self-enhancement
	transcendence	
Number of items	8	7
Mean (standard error)	2.41 (0.012)	2.85 (0.015)
95% Confidence interval	2.39-2.43	2.83-2.88
Standard deviation	0.575	0.705
Skewness (standard error)	0.587 (0.050)	0.336 (0.050)
Kurtosis (standard error)	2.271 (0.101)	0.346 (0.101)
Cronbach's alpha reliability coeff.	0.724	0.848
Split-half reliability coefficient	0.711	0.734
Average inter-item correlations	0.253	0.268
Minimum-maximum correlations	0.083-0.433	0.130-0.565
Range of correlations	0.350	0.435
	Average inte	r-item correlations
	betwee	en subscales
Self-transcendence	_	
Self-enhancement	0.178	_

Fig. 98 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Netherlands (N = 2,364)

Table A329 Item analysis of Schwartz scale values of the European Social Survey, 2004: Netherlands (first half-sample: n = 940)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.53 (1.170)	2.45-2.60	17.4	36.8	27.2	8.2	6.5	1.8	2.0	0.84	0.44	0.320
SD11	2.11 (0.985)	2.05-2.17	27.8	42.9	20.4	3.9	2.7	0.6	1.7	1.10	1.67	0.349
UN3	2.07 (0.931)	2.01-2.13	25.7	49.0	17.7	3.0	2.0	0.9	1.7	1.31	2.87	0.311
UN8	2.40 (0.984)	2.34-2.47	14.0	46.1	27.2	6.4	3.6	0.9	1.8	0.98	1.37	0.328
UN19	2.16 (0.927)	2.10-2.22	23.7	43.3	24.6	3.8	1.8	0.5	2.2	0.91	1.52	0.350
BE12	2.30 (0.917)	2.24-2.35	17.2	44.7	28.9	4.8	1.9	0.6	1.8	0.85	1.53	0.455
BE18	2.13 (0.893)	2.08-2.19	20.4	52.4	19.5	2.8	1.5	1.1	2.3	1.37	3.60	0.404
TR9	3.20 (1.292)	3.12-3.28	7.8	23.9	29.9	17.4	14.0	4.7	2.2	0.32	-0.57	0.170
TR20	2.78 (1.258)	2.70-2.86	14.0	33.7	24.7	13.3	9.9	2.2	2.1	0.57	-0.34	0.292
CO7	2.92 (1.218)	2.84-2.99	10.2	30.5	29.5	16.4	8.8	2.9	1.7	0.50	-0.23	0.304
CO16	2.74 (1.124)	2.67-2.81	10.6	36.3	29.1	14.0	6.0	1.8	2.1	0.64	0.18	0.404
SEC5	2.70 (1.194)	2.62-2.77	14.6	33.3	29.4	11.9	6.3	2.6	2.0	0.67	0.18	0.337
SEC14	2.66 (1.102)	2.59-2.73	12.3	36.3	30.0	11.6	5.7	1.4	2.7	0.65	0.28	0.454
PO2	4.38 (1.163)	4.31-4.46	1.0	5.2	15.4	28.4	29.3	18.9	1.8	-0.40	-0.34	0.202
PO17	3.50 (1.209)	3.42-3.58	3.2	17.9	29.5	25.5	15.9	5.7	2.3	0.18	-0.54	0.346
AC4	3.37 (1.262)	3.29-3.45	5.0	21.4	29.7	21.1	15.9	5.2	1.8	0.23	-0.63	0.371
AC13	3.34 (1.214)	3.26-3.42	3.6	23.5	29.4	22.8	13.7	4.8	2.2	0.31	-0.54	0.477
HE10	3.04 (1.176)	2.97-3.12	6.1	30.0	32.0	16.7	10.9	2.7	1.7	0.49	0.08	0.371
HE21	2.59 (1.112)	2.52-2.66	13.7	38.6	29.0	10.4	3.6	2.4	2.1	0.85	0.86	0.335
ST6	2.92 (1.254)	2.84-3.00	10.9	32.2	25.5	16.0	11.3	2.3	1.8	0.46	-0.50	0.431
ST15	3.91 (1.308)	3.83-3.99	3.6	12.7	19.4	26.7	24.0	11.3	2.3	-0.26	-0.63	0.228

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.159, respectively.

Table A330 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Netherlands (first half-sample: n = 940)

	Pı				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Self-	Hedonism	variance
	transcendence		enhancement		
SD1	0.586	-0.304	0.150	-0.024	0.588
SD11	0.376	-0.046	0.052	0.146	0.767
UN3	0.516	0.107	-0.055	-0.091	0.745
UN8	0.512	0.112	-0.039	-0.095	0.743
UN19	0.491	0.221	-0.136	-0.034	0.700
BE12	0.583	0.175	-0.113	0.034	0.599
BE18	0.453	0.164	-0.004	0.001	0.731
CO7	0.077	0.515	0.094	-0.078	0.697
CO16	0.096	0.621	0.075	-0.020	0.562
SEC5	0.010	0.615	0.055	0.063	0.603
SEC14	0.088	0.562	0.063	0.170	0.584
PO17	-0.029	0.169	0.554	-0.115	0.715
AC4	-0.040	0.020	0.665	0.027	0.558
AC13	-0.072	0.096	0.823	-0.001	0.350
HE10	-0.051	0.061	0.104	0.551	0.654
HE21	-0.065	0.051	-0.139	0.818	0.462
ST6	0.373	-0.215	0.219	0.229	0.569
Factors		Correlations b	etween factors		
Self-transcendence	_				
Conservation	0.258	_			
Self-enhancement	0.380	0.052	_		
Hedonism	0.477	0.008	0.491	_	

Table A331 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Netherlands (first half-sample: n = 940)

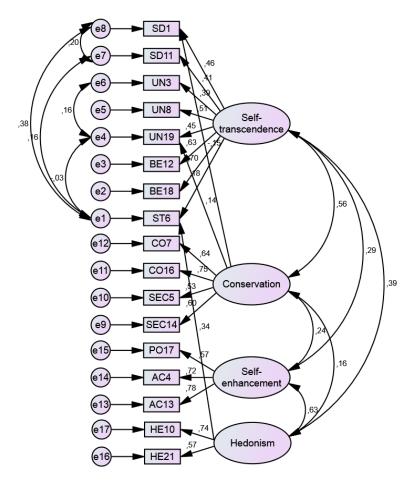
		Sub	scale	
	Self-	Conservation	Self-	Hedonism
	transcendence		enhancement	
Number of items	8	4	3	2
Mean (standard error)	2.33 (0.019)	2.75 (0.028)	3.40 (0.032)	2.82 (0.031)
95% Confidence interval	2.29-2.37	2.70-2.81	3.34-3.47	2.75-2.88
Standard deviation	0.591	0.849	0.966	0.960
Skewness (standard error)	0.641 (0.080)	0.480 (0.080)	0.438 (0.080)	0.606(0.080)
Kurtosis (standard error)	1.372 (0.159)	0.573 (0.159)	-0.052 (0.159)	0.510 (0.159)
Cronbach's alpha reliability coeff.	0.721	0.711	0.692	0.580
Split-half reliability coefficient	0.670	0.728	0.533	0.580
Average inter-item correlations	0.250	0.382	0.428	0.409
Minimum-maximum correlations	0.108-0.421	0.321-0.436	0.321-0.534	0.409-0.409
Range of correlations	0.314	0.115	0.213	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.210	_		
Self-enhancement	0.205	0.248	_	
Hedonism	0.219	0.226	0.276	

Table A332 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Netherlands (first half-sample: n = 940)

	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
SD1	0.587	-0.213	0.089	0.653
SD11	0.473	-0.023	0.067	0.759
UN3	0.398	0.193	-0.112	0.771
UN8	0.389	0.201	-0.097	0.773
UN19	0.379	0.299	-0.164	0.708
BE12	0.527	0.251	-0.129	0.601
BE18	0.394	0.233	-0.029	0.737
CO7	-0.070	0.566	0.078	0.695
CO16	-0.038	0.671	0.083	0.557
SEC5	-0.060	0.628	0.097	0.617
SEC14	0.093	0.564	0.134	0.608
PO17	-0.063	0.208	0.483	0.739
AC4	0.054	0.033	0.644	0.557
AC13	0.018	0.117	0.773	0.372
HE10	0.297	-0.026	0.277	0.789
HE21	0.372	-0.066	0.156	0.814
ST6	0.579	-0.212	0.253	0.550
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.326	_		
Self-enhancement	0.308	0.037	_	

Table A333 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Netherlands (first half-sample: n = 940)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	-0.072	0.519	0.752
SD11	0.089	0.397	0.810
UN3	0.314	0.135	0.853
UN8	0.317	0.140	0.848
UN19	0.422	0.053	0.803
BE12	0.401	0.196	0.745
BE18	0.347	0.197	0.792
CO7	0.573	-0.118	0.706
CO16	0.692	-0.116	0.565
SEC5	0.637	-0.107	0.632
SEC14	0.610	0.048	0.605
PO17	0.148	0.315	0.846
AC4	-0.007	0.552	0.698
AC13	0.060	0.588	0.624
HE10	0.014	0.470	0.774
HE21	0.006	0.423	0.819
ST6	-0.098	0.672	0.586
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.355	_	


Table A334 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2004, Netherlands (second half-sample: n = 941)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.69	.066	.860	.881	.827	.071 (.065077)
2	2 first-order correlated factors- without cross-loadings	5.40	.065	.851	.874	.838	.068 (.063074)
3a	3 first-order correlated factors- without cross-loadings	5.96	.076	.837	.859	.817	.073 (.067078)
3b	3 first-order correlated factors- with cross-loadings	4.92	.063	.872	.894	.856	.065 (.059070)
4a	4 first-order correlated factors- without cross-loadings	5.45	.073	.846	.870	.836	.069 (.063074)
4b	4 first-order correlated factors- with cross-loadings	4.80	.061	.869	.892	.860	.064 (.058069)
5	2 first-order correlated factors of unified values	6.35	.061	.938	.949	.925	.068 (.056082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

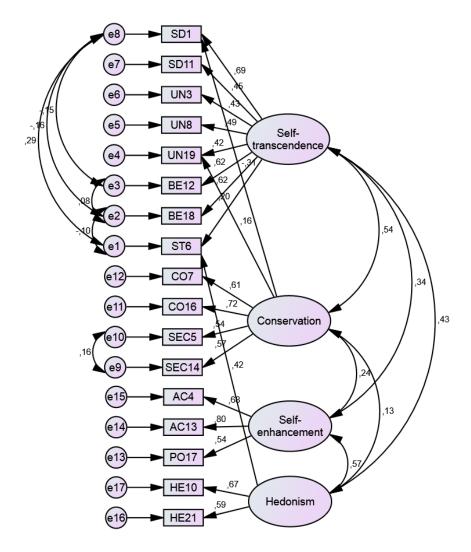

b Lower values indicate better model fit

Fig. 99 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Netherlands (second half-sample: n = 941)

Table A335 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Netherlands (first half-sample: n = 1,881)

		Sub	scale	
	Self- transcendence	Conservation	Self- enhancement	Hedonism
Number of items	8	4	3	2
Mean (standard error)	2.32 (0.014)	2.72 (0.019)	3.40 (0.023)	2.83 (0.022)
95% Confidence interval	2.29-2.34	2.69-2.76	3.36-3.44	2.79-2.87
Standard deviation	0.591	0.842	0.977	0.958
Skewness (standard error)	0.730 (0.056)	0.435 (0.056)	0.363 (0.056)	0.493 (0.056)
Kurtosis (standard error)	1.851 (0.113)	0.292 (0.113)	-0.115 (0.113)	0.199 (0.113)
Cronbach's alpha reliability coeff.	0.725	0.717	0.708	0.588
Split-half reliability coefficient	0.673	0.733	0.546	0.588
Average inter-item correlations	0.254	0.389	0.446	0.417
Minimum-maximum correlations	0.105-0.450	0.331-0.459	0.350-0.554	0.417-0.417
Range of correlations	0.345	0.128	0.204	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.214	_		
Self-enhancement	0.209	0.254	_	
Hedonism	0.223	0.231	0.312	_

Fig. 100 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Netherlands (N = 1,881)

Table A336 Item analysis of Schwartz scale values of the European Social Survey, 2006: Netherlands (first half-sample: n = 944)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.50 (1.100)	2.43-2.57	16.6	37.5	30.0	7.8	4.9	1.5	1.7	0.83	0.72	0.301
SD11	2.03 (0.852)	1.98-2.08	25.8	50.4	17.8	3.3	0.6	0.6	1.4	1.13	2.75	0.361
UN3	2.10 (0.908)	2.04-2.16	22.9	51.7	18.4	2.4	1.7	1.1	1.8	1.40	3.57	0.281
UN8	2.39 (0.926)	2.33-2.45	13.5	45.4	30.5	6.0	2.5	0.6	1.4	0.85	1.38	0.394
UN19	2.15 (0.852)	2.09-2.20	21.3	47.9	23.9	3.9	1.0	0.3	1.7	0.78	1.38	0.320
BE12	2.27 (0.882)	2.22-2.33	17.6	44.2	31.0	4.0	1.0	0.7	1.5	0.78	1.76	0.438
BE18	2.11 (0.791)	2.06-2.16	19.5	53.4	21.7	2.6	1.0	0.2	1.6	0.84	1.92	0.440
TR9	3.22 (1.229)	3.14-3.29	5.9	24.5	31.0	20.2	12.9	3.9	1.5	0.32	-0.48	0.161
TR20	2.86 (1.211)	2.78-2.93	12.2	29.3	30.6	15.6	8.3	2.4	1.6	0.47	-0.20	0.293
CO7	2.94 (1.197)	2.86-3.01	7.8	33.6	29.6	15.3	9.6	2.8	1.4	0.57	-0.19	0.297
CO16	2.86 (1.112)	2.79-2.93	8.9	31.1	33.2	15.7	7.2	1.6	2.3	0.48	-0.01	0.403
SEC5	2.82 (1.161)	2.75-2.90	10.2	33.1	31.6	14.0	7.5	2.2	1.5	0.59	0.08	0.340
SEC14	2.71 (1.053)	2.64-2.77	11.0	33.3	35.2	13.0	4.7	1.2	1.7	0.52	0.30	0.353
PO2	4.26 (1.120)	4.19-4.33	1.1	4.9	18.1	31.5	29.0	14.0	1.5	-0.31	-0.26	0.251
PO17	3.38 (1.121)	3.31-3.46	2.3	20.0	33.3	25.7	13.5	3.5	1.7	0.27	-0.40	0.364
AC4	3.29 (1.191)	3.21-3.36	4.9	22.0	31.6	23.1	13.5	3.5	1.5	0.24	-0.48	0.412
AC13	3.26 (1.122)	3.19-3.33	4.3	21.4	33.1	25.7	11.2	2.5	1.7	0.21	-0.33	0.471
HE10	2.99 (1.080)	2.92-3.06	6.3	27.6	35.6	20.1	7.1	1.7	1.6	0.38	-0.04	0.381
HE21	2.50 (1.066)	2.43-2.57	15.3	38.9	29.3	9.6	3.9	1.3	1.7	0.78	0.68	0.291
ST6	2.79 (1.184)	2.72-2.87	12.7	31.6	28.9	16.1	7.6	1.7	1.4	0.46	-0.25	0.408
ST15	3.67 (1.240)	3.59-3.75	4.2	13.5	25.2	31.0	16.7	7.6	1.7	-0.08	-0.44	0.199

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.159, respectively.

Table A337 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Netherlands (first half-sample: n = 944)

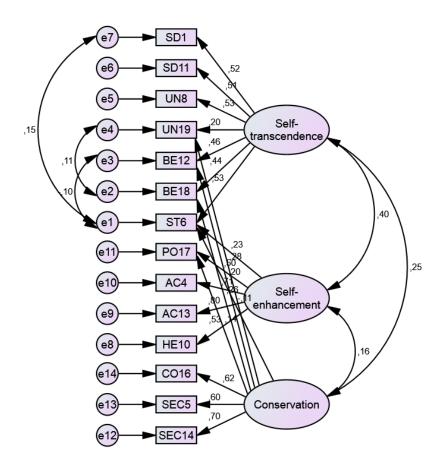
	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	transcendence	enhancement		
SD1	0.504	0.136	-0.204	0.677
SD11	0.429	0.084	0.052	0.771
UN8	0.567	-0.120	0.142	0.662
UN19	0.365	-0.108	0.301	0.751
BE12	0.564	-0.108	0.232	0.610
BE18	0.426	-0.026	0.306	0.682
CO16	-0.002	0.064	0.710	0.492
SEC5	0.002	0.134	0.546	0.682
SEC14	0.083	0.064	0.553	0.661
PO17	-0.126	0.517	0.281	0.697
AC4	-0.028	0.752	0.022	0.449
AC13	0.017	0.752	0.082	0.417
HE10	0.192	0.371	-0.012	0.775
ST6	0.580	0.263	-0.267	0.474
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.361	_		
Conservation	0.195	0.008	_	

Table A338 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Netherlands (first half-sample: n = 944)

		Subscale	
	Self-	Self-	Conservation
	transcendence	enhancement	
Number of items	7	4	3
Mean (standard error)	2.32 (0.019)	3.23 (0.026)	2.80 (0.028)
95% Confidence interval	2.28-2.36	3.18-3.28	2.74-2.85
Standard deviation	0.571	0.814	0.857
Skewness (standard error)	0.344 (0.080)	0.294 (0.080)	0.280 (0.080)
Kurtosis (standard error)	1.440 (0.159)	0.022 (0.159)	-0.002 (0.159)
Cronbach's alpha reliability coeff.	0.705	0.692	0.663
Split-half reliability coefficient	0.734	0.678	0.578
Average inter-item correlations	0.261	0.357	0.397
Minimum-maximum correlations	0.111-0.428	0.147-0.564	0.379-0.413
Range of correlations	0.317	0.417	0.034
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.211	_	
Conservation	0.209	0.226	_

Table A339 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Netherlands (first half-sample: n = 944)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.493	-0.073	0.774
SD11	0.338	0.164	0.826
UN8	0.201	0.289	0.841
UN19	0.040	0.411	0.820
BE12	0.185	0.379	0.780
BE18	0.155	0.428	0.753
CO16	-0.164	0.738	0.501
SEC5	-0.044	0.565	0.694
SEC14	-0.063	0.607	0.651
PO17	0.305	0.222	0.817
AC4	0.628	-0.006	0.607
AC13	0.656	0.059	0.543
HE10	0.482	0.022	0.761
ST6	0.658	-0.112	0.599
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.301	_	


Table A340 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2006, Nethelands (second half-sample: n = 945)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.65	.063	.875	.894	.842	.070 (.063078)
2a	2 first-order correlated factors- without cross-loadings	7.36	.075	.819	.838	.784	.082 (.075089)
2b	2 first-order correlated factors- with cross-loadings	7.28	.076	.824	.843	.786	.082 (.075088)
3a	3 first-order correlated factors- without cross-loadings	6.42	.068	.835	.856	.816	.076 (.069082)
3b	3 first-order correlated factors- with cross-loadings	4.81	.050	.887	.907	.870	.064 (.057071)
4	2 first-order correlated factors of unified values	4.77	.056	.938	.950	.926	.063 (.050077)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

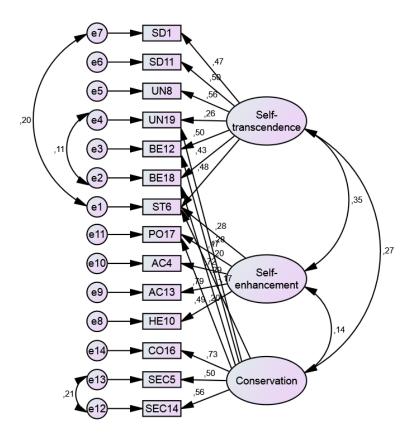

b Lower values indicate better model fit

Fig. 101 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Netherlands (second half-sample: n = 945)

Table A341 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Netherlands (N = 1,889)

		Subscale	
	Self- transcendence	Self- enhancement	Conservation
Number of items	7	4	3
Mean (standard error)	2.33 (0.013)	3.23 (0.019)	2.80 (0.020)
95% Confidence interval	2.30-2.36	3.19-3.27	2.76-2.84
Standard deviation	0.576	0.847	0.855
Skewness (standard error)	0.589 (0.056)	0.367 (0.056)	0.370 (0.056)
Kurtosis (standard error)	2.063 (0.113)	0.080 (0.113)	0.237 (0.113)
Cronbach's alpha reliability coeff.	0.701	0.712	0.667
Split-half reliability coefficient	0.561	0.715	0.574
Average inter-item correlations	0.256	0.379	0.403
Minimum-maximum correlations	0.099-0.432	0.203-0.566	0.370-0.431
Range of correlations	0.332	0.363	0.062
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.213	_	
Conservation	0.208	0.230	_

Fig. 102 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Netherlands (N = 1,889)

Table A342 Item analysis of Schwartz scale values of the European Social Survey, 2008: Netherlands (first half-sample: n = 889)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.39 (1.094)	2.32-2.46	20.2	36.8	25.3	8.8	3.8	1.2	3.8	0.85	0.69	0.351
SD11	2.02 (0.919)	1.96-2.08	28.7	46.1	16.1	3.1	1.8	0.7	3.5	1.29	2.74	0.363
UN3	2.12 (0.963)	2.06-2.19	23.7	47.8	17.8	3.6	2.2	1.1	3.7	1.36	2.86	0.314
UN8	2.36 (0.922)	2.29-2.42	12.9	48.5	26.0	6.0	2.5	0.8	3.4	1.06	1.90	0.433
UN19	2.19 (0.925)	2.13-2.26	20.9	44.5	23.6	4.2	1.9	0.7	4.2	1.02	1.91	0.342
BE12	2.19 (0.886)	2.13-2.24	20.1	46.2	24.1	4.7	0.7	0.8	3.4	0.95	2.08	0.443
BE18	2.11 (0.850)	2.05-2.16	21.1	49.7	20.8	2.4	1.2	0.7	4.0	1.17	3.10	0.460
TR9	3.22 (1.229)	3.14-3.19	6.0	22.8	31.9	19.3	11.6	4.8	3.5	0.38	-0.33	0.225
TR20	2.77 (1.200)	2.69-2.85	12.5	33.0	27.3	13.9	6.0	3.1	4.2	0.65	0.17	0.324
CO7	2.84 (1.181)	2.76-2.92	9.9	33.7	28.1	14.3	7.8	2.6	3.6	0.61	0.01	0.378
CO16	2.78 (1.104)	2.71-2.85	10.1	32.8	31.2	12.8	7.1	1.3	4.6	0.55	0.11	0.379
SEC5	2.84 (1.214)	2.76-2.92	12.7	29.2	28.9	14.7	8.7	2.2	3.5	0.47	-0.23	0.384
SEC14	2.77 (1.079)	2.70-2.84	10.1	32.6	30.8	15.0	6.1	1.0	4.4	0.46	-0.00	0.449
PO2	4.27 (1.185)	4.20-4.35	2.0	5.3	16.2	28.6	28.2	16.0	3.7	-0.45	-0.11	0.300
PO17	3.36 (1.167)	3.28-3.44	4.0	19.6	29.1	26.4	12.6	4.0	4.2	0.21	-0.37	0.425
AC4	3.33 (1.210)	3.25-3.40	4.2	21.0	32.5	20.9	12.4	5.4	3.6	0.37	-0.35	0.457
AC13	3.24 (1.170)	3.16-3.32	5.6	20.9	31.7	22.2	12.4	3.0	4.2	0.24	-0.35	0.485
HE10	3.03 (1.143)	2.95-3.10	7.5	25.9	32.5	18.0	10.3	1.7	4.0	0.33	-0.29	0.408
HE21	2.56 (1.107)	2.48-2.63	15.7	36.1	28.5	10.1	3.4	2.1	4.0	0.77	0.77	0.412
ST6	2.85 (1.195)	2.77-2.93	12.0	30.3	27.1	17.0	8.3	1.8	3.5	0.42	-0.33	0.436
ST15	3.75 (1.251)	3.67-3.83	4.3	11.5	25.2	26.9	19.6	8.3	4.3	-0.15	-0.45	0.297

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.164, respectively.

Table A343 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Netherlands (first half-sample: n = 889)

	Pr	rincipal axis facto	r analysis (factors	3)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Self-	Hedonism	variance
	transcendence		enhancement		
SD1	0.566	-0.192	0.126	0.009	0.671
SD11	0.326	-0.048	0.212	0.061	0.791
UN3	0.603	0.030	-0.005	-0.182	0.691
UN8	0.598	0.048	0.003	-0.035	0.636
UN19	0.492	0.241	-0.117	-0.107	0.673
BE12	0.520	0.166	-0.190	0.202	0.554
BE18	0.472	0.152	-0.011	0.086	0.658
TR20	0.070	0.492	-0.079	0.068	0.722
CO7	-0.012	0.613	0.061	-0.007	0.616
CO16	0.070	0.613	-0.035	-0.016	0.599
SEC5	-0.031	0.591	0.217	-0.098	0.606
SEC14	-0.045	0.690	0.070	0.071	0.502
PO2	-0.203	0.090	0.620	0.028	0.616
PO17	0.006	0.188	0.467	0.021	0.704
AC4	0.146	-0.041	0.712	-0.064	0.476
AC13	0.115	-0.005	0.731	-0.043	0.442
HE10	-0.107	0.039	0.337	0.451	0.582
HE21	0.016	0.006	-0.032	0.765	0.424
ST6	0.454	-0.192	0.200	0.181	0.615
Factors		Correlations be	etween factors		
Self-transcendence	_				
Conservation	0.366	_			
Self-enhancement	0.266	0.163	_		
Hedonism	0.454	0.166	0.473		

Table A344 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Netherlands (first half-sample: n = 889)

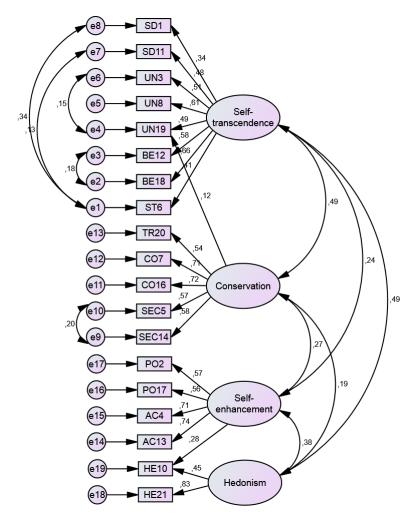
		Sub	scale	
	Self- transcendence	Conservation	Self- enhancement	Hedonism
Number of items	8	5	4	2
Mean (standard error)	2.28 (0.020)	2.80 (0.027)	3.55 (0.030)	2.79 (0.032)
95% Confidence interval	2.24-2.32	2.75-2.86	3.49-3.61	2.73-2.86
Standard deviation	0.589	0.815	0.882	0.952
Skewness (standard error)	1.038 (0.082)	0.348 (0.082)	0.132 (0.082)	0.509 (0.082)
Kurtosis (standard error)	4.429 (0.164)	0.443 (0.164)	-0.106 (0.164)	0.478 (0.164)
Cronbach's alpha reliability coeff.	0.752	0.747	0.734	0.545
Split-half reliability coefficient	0.720	0.687	0.735	0.545
Average inter-item correlations	0.280	0.374	0.408	0.375
Minimum-maximum correlations	0.147-0.473	0.291-0.492	0.275-0.552	0.375-0.375
Range of correlations	0.326	0.200	0.277	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Conservation	0.223	_		
Self-enhancement	0.218	0.245	_	
Hedonism	0.247	0.247	0.338	_

Table A345 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, Netherlands (first half-sample: n = 889)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	enhancement	transcendence		
SD1	0.121	0.549	-0.178	0.682
SD11	0.238	0.337	-0.045	0.789
UN3	-0.100	0.501	0.064	0.748
UN8	-0.026	0.577	0.062	0.649
UN19	-0.180	0.450	0.256	0.690
BE12	-0.107	0.627	0.147	0.560
BE18	0.019	0.514	0.148	0.654
TR20	-0.049	0.116	0.479	0.728
CO7	0.058	-0.006	0.610	0.616
CO16	-0.045	0.079	0.610	0.598
SEC5	0.173	-0.079	0.600	0.612
SEC14	0.106	-0.001	0.675	0.510
PO2	0.651	-0.238	0.097	0.609
PO17	0.484	-0.016	0.195	0.704
AC4	0.675	0.061	-0.011	0.517
AC13	0.710	0.040	0.019	0.470
HE10	0.539	0.079	-0.001	0.675
HE21	0.311	0.316	-0.047	0.751
ST6	0.281	0.520	-0.202	0.603
Factors	Corre	lations between fa	ctors	
Self-enhancement	_			
Self-transcendence	0.333	_		
Conservation	0.164	0.343	_	

Table A346 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Netherlands (first half-sample: n = 889)

**	Principal axis factor a	nalysis (factors)	** .
Variables	Factor I Self-enhancement	Factor II Conservation	Unique variance
SD1	0.360	0.065	0.849
SD11	0.389	0.079	0.819
UN3	0.100	0.300	0.878
UN8	0.202	0.324	0.805
UN19	-0.032	0.482	0.778
BE12	0.132	0.437	0.748
BE18	0.208	0.382	0.751
TR20	-0.085	0.554	0.722
CO7	-0.044	0.601	0.657
CO16	-0.118	0.667	0.601
SEC5	0.047	0.528	0.701
SEC14	-0.003	0.660	0.566
PO2	0.507	-0.079	0.767
PO17	0.446	0.128	0.742
AC4	0.709	-0.071	0.530
AC13	0.725	-0.051	0.500
HE10	0.583	-0.037	0.675
HE21	0.453	0.060	0.770
ST6	0.507	0.010	0.739
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.376	_	


Table A347 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2008, Netherlands (second half-sample: n = 889)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFIª	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.11	.067	.868	.889	.840	.068 (.062073)
2	2 first-order correlated factors- without cross-loadings	6.49	.078	.802	.826	.784	.079 (.074084)
3a	3 first-order correlated factors- without cross-loadings	6.65	.082	.788	.813	.778	.080 (.075085)
3b	3 first-order correlated factors- with cross-loadings	5.61	.067	.827	.852	.819	.072 (.067077)
4a	4 first-order correlated factors- without cross-loadings	5. 14	.072	.831	.857	.826	.070 (.066075)
4b	4 first-order correlated factors- with cross-loadings	5.26	.070	.838	.864	.832	.069 (.064074)
5	2 first-order correlated factors of unified values	4.60	.053	.942	.954	.932	.064 (.051078)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

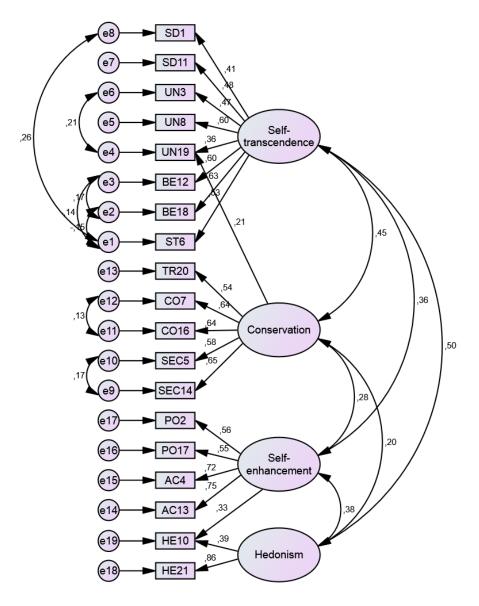

b Lower values indicate better model fit

Fig. 103 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Netherlands (second half-sample: n = 889)

Table A348 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Netherlands (N = 1,778)

		Sub	scale	
	Self-	Conservation	Self-	Hedonism
	transcendence		enhancement	
Number of items	8	5	4	2
Mean (standard error)	2.29 (0.014)	2.80 (0.020)	3.52 (0.021)	2.79 (0.022)
95% Confidence interval	2.26-2.31	2.76-2.84	3.48-3.56	2.74-2.83
Standard deviation	0.591	0.828	0.866	0.934
Skewness (standard error)	0.948 (0.058)	0.340 (0.058)	0.148 (0.058)	0.515 (0.058)
Kurtosis (standard error)	3.483 (0.116)	0.254 (0.116)	-0.120 (0.116)	0.518 (0.116)
Cronbach's alpha reliability coeff.	0.752	0.757	0.734	0.616
Split-half reliability coefficient	0.710	0.702	0.741	0.616
Average inter-item correlations	0.283	0.387	0.408	0.445
Minimum-maximum correlations	0.165-0.483	0.298-0.483	0.291-0.545	0.445-0.445
Range of correlations	0.318	0.184	0.254	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.226	_		
Self-enhancement	0.211	0.247	_	
Hedonism	0.253	0.256	0.332	

Fig. 104 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Netherlands (N = 1,778)

Table A349 Item analysis of Schwartz scale values of the European Social Survey, 2010: Netherlands (first half-sample: n = 914)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.40 (1.121)	2.33-2.48	21.0	36.5	27.1	8.4	3.2	2.0	1.8	0.90	0.91	0.355
SD11	2.02 (0.910)	1.96-2.08	27.9	49.2	15.4	3.1	1.9	0.7	1.9	1.32	2.91	0.427
UN3	1.99 (0.863)	1.94-2.05	27.2	51.5	15.0	2.4	1.5	0.5	1.8	1.32	3.30	0.337
UN8	2.43 (0.947)	2.37-2.49	12.9	43.4	31.3	6.8	2.7	0.8	2.1	0.84	1.29	0.325
UN19	2.26 (0.951)	2.20-2.32	20.8	40.9	27.0	5.9	1.9	0.5	3.0	0.78	1.03	0.322
BE12	2.19 (0.864)	2.13-2.24	20.6	45.2	27.2	3.5	1.4	0.2	1.9	0.69	1.07	0.408
BE18	2.05 (0.808)	2.00-2.10	22.5	52.3	18.6	1.8	1.5	0.2	3.1	1.06	2.60	0.405
TR9	3.24 (1.233)	3.16-3.32	6.3	22.6	31.6	19.9	13.8	3.8	1.9	0.27	-0.51	0.193
TR20	2.79 (1.236)	2.71-2.87	13.9	32.3	23.6	17.7	6.9	2.6	3.0	0.51	-0.26	0.291
CO7	2.90 (1.104)	2.83-2.97	7.1	32.4	33.5	15.6	7.9	1.6	1.9	0.53	-0.01	0.288
CO16	2.79 (1.072)	2.72-2.86	8.3	35.3	31.0	14.9	6.2	1.2	3.1	0.56	0.10	0.398
SEC5	2.81 (1.199)	2.73-2.88	12.3	33.0	26.8	15.6	8.8	1.6	1.9	0.49	-0.33	0.300
SEC14	2.66 (1.035)	2.60-2.73	11.8	33.9	33.4	12.8	4.4	0.8	3.0	0.47	0.18	0.395
PO2	4.24 (1.133)	4.17-4.32	0.8	5.7	18.1	32.7	25.7	15.2	1.9	-0.22	-0.41	0.303
PO17	3.33 (1.151)	3.25-3.40	4.2	19.6	32.1	24.8	12.9	3.4	3.1	0.21	-0.36	0.425
AC4	3.31 (1.194)	3.23-3.39	3.6	23.3	31.7	21.8	13.6	4.3	1.8	0.34	-0.48	0.422
AC13	3.29 (1.158)	3.21-3.36	4.5	20.5	32.9	23.9	11.4	3.8	3.1	0.29	-0.26	0.466
HE10	3.08 (1.169)	3.00-3.15	6.6	27.7	30.1	21.2	10.1	2.4	2.0	0.34	-0.38	0.433
HE21	2.43 (1.036)	2.36-2.50	16.5	40.6	25.3	10.4	3.7	0.5	3.0	0.74	0.38	0.390
ST6	2.88 (1.218)	2.80-2.96	12.5	27.6	31.7	14.9	9.2	2.3	1.9	0.43	-0.26	0.401
ST15	3.73 (1.193)	3.65-3.80	3.7	11.2	26.0	30.7	18.5	6.8	3.1	-0.14	-0.32	0.316

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table A350 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Netherlands (first half-sample: n = 914)

	Principal axis factor analysis (factors)				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Self-	Conservation	Hedonism	variance
	enhancement	transcendence			
SD1	0.263	0.443	-0.215	-0.031	0.636
SD11	0.100	0.451	0.018	0.116	0.673
UN3	-0.092	0.584	0.130	-0.069	0.686
UN8	-0.064	0.594	-0.057	-0.048	0.695
UN19	-0.156	0.655	0.201	-0.129	0.594
BE12	-0.121	0.493	0.197	0.117	0.676
BE18	0.002	0.461	0.213	0.033	0.715
CO16	0.138	0.148	0.569	-0.027	0.629
SEC5	0.015	0.035	0.651	0.117	0.578
SEC14	0.122	0.128	0.587	0.078	0.605
PO2	0.630	-0.207	0.078	0.052	0.625
PO17	0.668	-0.027	0.303	-0.126	0.581
AC4	0.745	-0.032	0.069	-0.042	0.497
AC13	0.833	-0.016	0.071	-0.072	0.383
HE10	0.208	-0.088	0.156	0.541	0.597
HE21	-0.124	-0.003	0.080	0.801	0.474
ST6	0.242	0.403	-0.277	0.166	0.476
ST15	0.495	0.077	-0.259	0.135	0.515
Factors	Correlations between factors				
Self-enhancement	_				
Self-transcendence	0.335	_			
Conservation	-0.097	0.061	_		
Hedonism	0.583	0.529	-0.160	_	

Table A351 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Netherlands (first half-sample: n = 914)

	Subscale			
	Self- enhancement	Self- transcendence	Conservation	Hedonism
Number of items	5	8	3	2
Mean (standard error)	3.58 (0.028)	2.28 (0.019)	2.75 (0.028)	2.75 (0.031)
95% Confidence interval	3.52-3.63	2.24-2.32	2.70-2.81	2.69-2.81
Standard deviation	0.849	0.580	0.857	0.932
Skewness (standard error)	0.213 (0.081)	0.752 (0.081)	0.319 (0.081)	0.368 (0.081)
Kurtosis (standard error)	-0.012 (0.162)	2.336 (0.162)	-0.061 (0.162)	0.012 (0.162)
Cronbach's alpha reliability coeff.	0.778	0.743	0.670	0.597
Split-half reliability coefficient	0.719	0.691	0. 556	0.597
Average inter-item correlations	0.412	0.273	0.405	0.428
Minimum-maximum correlations	0.272-0.599	0.136-0.472	0.376-0.449	0.428-0.428
Range of correlations	0.326	0.336	0.073	0.000
Average inter-item correlations between subscales				
Self-enhancement	_			
Self-transcendence	0.209	_		
Conservation	0.238	0.212	_	
Hedonism	0.339	0.248	0.225	_

Table A352 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, Netherlands (first half-sample: n = 914)

	Principal axis factor analysis (factors)				
	Factor I	Factor II	Factor III	Unique	
Item	Self-	Self-	Conservation	variance	
	enhancement	transcendence			
SD1	0.249	0.415	-0.177	0.656	
SD11	0.146	0.504	0.025	0.669	
UN3	-0.139	0.544	0.162	0.703	
UN8	-0.097	0.566	-0.025	0.712	
UN19	-0.230	0.578	0.240	0.631	
BE12	-0.082	0.549	0.200	0.672	
BE18	0.004	0.470	0.229	0.715	
CO16	0.111	0.119	0.584	0.629	
SEC5	0.055	0.082	0.629	0.593	
SEC14	0.144	0.152	0.586	0.605	
PO2	0.666	-0.203	0.085	0.621	
PO17	0.603	-0.111	0.338	0.602	
AC4	0.730	-0.076	0.100	0.508	
AC13	0.801	-0.076	0.110	0.404	
HE10	0.449	0.166	0.081	0.715	
HE21	0.252	0.350	-0.023	0.748	
ST6	0.322	0.484	-0.277	0.465	
ST15	0.571	0.132	-0.257	0.510	
Factors	Correlations between factors				
Self-enhancement	_				
Self-transcendence	0.370	_			
Conservation	-0.097	0.046			

Table A353 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Netherlands (first half-sample: n = 914)

	Principal axis factor a				
Variables			Unique		
	Factor I	Factor II	variance		
	Self-enhancement	Conservation			
SD1	0.476	0.045	0.760		
SD11	0.347	0.279	0.749		
UN3	0.030	0.447	0.792		
UN8	0.148	0.283	0.876		
UN19	-0.073	0.538	0.726		
BE12	0.076	0.482	0.743		
BE18	0.117	0.464	0.742		
CO16	-0.045	0.556	0.702		
SEC5	-0.125	0.559	0.709		
SEC14	0.001	0.576	0.667		
PO2	0.540	-0.097	0.727		
PO17	0.424	0.168	0.754		
AC4	0.655	-0.024	0.580		
AC13	0.719	-0.022	0.492		
HE10	0.498	0.117	0.707		
HE21	0.410	0.145	0.779		
ST6	0.590	-0.005	0.653		
ST15	0.730	-0.219	0.505		
Correlations between factors					
Self-enhancement	_				
Conservation	0.270	_			

Table A354 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (4 factors-16 items): European Social Survey 2010, Netherlands (first half-sample: n = 914)

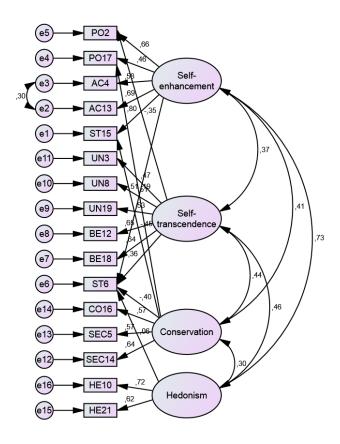

	Principal axis factor analysis (factors)				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Self-	Conservation	Hedonism	variance
	enhancement	transcendence			
UN3	-0.045	0.579	0.063	-0.050	0.674
UN8	-0.011	0.574	-0.118	-0.012	0.694
UN19	-0.105	0.645	0.130	-0.112	0.586
BE12	-0.087	0.484	0.151	0.136	0.665
BE18	0.041	0.464	0.152	0.033	0.708
CO16	0.133	0.169	0.523	-0.056	0.637
SEC5	-0.034	-0.017	0.698	0.143	0.530
SEC14	0.100	0.102	0.576	0.081	0.607
PO2	0.587	-0.220	0.088	0.075	0.624
PO17	0.655	0.009	0.249	-0.151	0.578
AC4	0.728	-0.020	0.033	-0.031	0.498
AC13	0.823	0.009	0.019	-0.069	0.376
HE10	0.207	-0.084	0.160	0.517	0.611
HE21	-0.115	-0.012	0.105	0.794	0.476
ST6	0.259	0.324	-0.273	0.250	0.532
ST15	0.505	0.082	-0.289	0.168	0.504
Factors	Correlations between factors				
Self-enhancement	_				
Self-transcendence	0.217	_			
Conservation	0.016	0.208	_		
Hedonism	0.554	0.446	-0.130	_	

Table A355 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2010, Netherlands (second half-sample: n = 915)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.62	.066	.853	.874	.819	.071 (.066077)
2a	2 first-order correlated factors-						
	without cross-loadings	6.28	.071	.817	.840	.793	.076 (.071081)
2b	2 first-order correlated factors-	6.11	0.60	000	0.47	700	075 (070 , 000)
3a	with cross-loadings 3 first-order correlated factors-	6.11	.069	.823	.847	.799	.075 (.070080)
3a	without cross-loadings	8.36	.089	.736	.858	.711	.090 (.085095)
3b	3 first-order correlated factors-	0.50	.007	.750	.050	.,11	.070 (.003 .073)
	with cross-loadings	6.38	.067	.812	.836	.789	.077 (.072082)
4a	4 first-order correlated factors-						
	without cross-loadings	7.46	.082	.766	.789	.746	.084 (.079089)
4b	4 first-order correlated factors-	5.04	0.66	004	0.40	010	072 (060 , 070)
4c	with cross-loadings 4 first-order correlated factors	5.84	.066	.824	.848	.810	.073 (.068078)
40	(16 items)-with cross-loadings	4.21	.048	.891	.914	.887	.059 (.053065)
5	2 first-order correlated factors	1.21	.040	.071	.714	.007	.057 (.055 .005)
-	of unified values	6.41	.066	.912	.925	.889	.077 (.064090)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

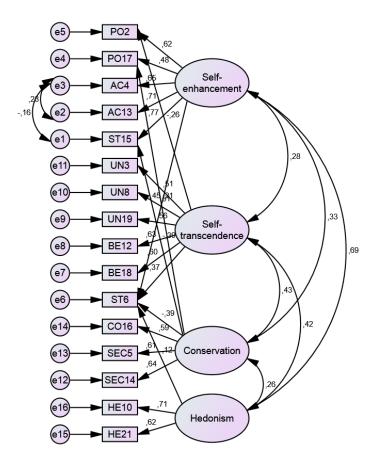


Fig. 105 Standardized solution for the 4 first-order correlated factors (model 4c-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Netherlands (second half-sample: n = 915)

a Higher values indicate better model fit

Table A356 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Netherlands (N = 1,829)

		Sub	scale	
	Self- enhancement	Self- transcendence	Conservation	Hedonism
Number of items	5	6	3	2
Mean (standard error)	3.56 (0.020)	2.29 (0.014)	2.77 (0.020)	2.76 (0.022)
95% Confidence interval	3.52-3.60	2.26-2.32	2.73-2.81	2.71-2.80
Standard deviation	0.846	0.599	0.853	0.938
Skewness (standard error)	0.230 (0.057)	0.715 (0.057)	0.392 (0.057)	0.398 (0.057)
Kurtosis (standard error)	0.069 (0.114)	2.351 (0.114)	0.037 (0.114)	0.112 (0.114)
Cronbach's alpha reliability coeff.	0.778	0.686	0.646	0.604
Split-half reliability coefficient	0.699	0.642	0. 538	0.504
Average inter-item correlations	0.393	0.281	0.381	0.436
Minimum-maximum correlations	0.267-0.587	0.152-0.421	0.343-0.421	0.436-0.436
Range of correlations	0.320	0.268	0.078	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-enhancement	_			
Self-transcendence	0.199	_		
Conservation	0.228	0.218	_	
Hedonism	0.333	0.246	0.227	_

Fig. 106 Standardized solution for the 4 first-order correlated factors (model 4c-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Netherlands (N = 1,829)

Table A357 Item analysis of Schwartz scale values of the European Social Survey, 2012: Netherlands (first half-sample: n = 922)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.39 (1.134)	2.31-2.46	21.4	39.0	25.2	7.6	3.9	2.0	1.0	0.97	0.96	0.383
SD11	1.99 (0.914)	1.93-2.05	30.4	47.4	15.7	3.6	1.4	0.7	0.9	1.25	2.56	0.346
UN3	1.99 (0.870)	1.94-2.05	27.4	51.7	15.6	2.2	1.3	0.8	1.0	1.38	3.67	0.223
UN8	2.36 (0.939)	2.30-2.42	14.4	47.9	27.1	6.4	2.6	0.7	0.9	0.92	1.42	0.299
UN19	2.19 (0.979)	2.12-2.25	23.2	45.3	22.5	5.0	1.4	1.3	1.3	1.14	2.19	0.377
BE12	2.16 (0.903)	2.10-2.22	21.9	47.8	23.3	4.2	1.1	0.8	0.9	1.00	2.07	0.428
BE18	2.05 (0.840)	2.00-2.11	23.6	52.6	18.3	2.3	1.4	0.4	1.3	1.15	2.83	0.426
TR9	3.08 (1.187)	3.00-3.15	7.0	27.2	31.5	20.2	10.3	2.7	1.1	0.36	-0.36	0.138
TR20	2.88 (1.299)	2.80-2.97	13.7	29.5	27.0	15.6	9.0	3.8	1.4	0.51	-0.34	0.268
CO7	2.89 (1.211)	2.81-2.97	9.3	33.3	30.3	13.9	9.2	2.9	1.1	0.60	-0.12	0.289
CO16	2.82 (1.134)	2.75-2.90	10.0	32.5	30.6	16.4	6.5	1.8	2.2	0.51	-0.02	0.373
SEC5	2.75 (1.150)	2.67-2.82	11.4	35.9	28.4	14.6	7.2	1.5	1.0	0.57	-0.08	0.245
SEC14	2.55 (1.009)	2.48-2.61	12.3	41.2	29.2	11.6	3.4	0.8	1.6	0.65	0.45	0.402
PO2	4.30 (1.144)	4.23-4.37	1.2	4.7	17.4	32.0	27.5	16.4	0.9	-0.33	-0.27	0.237
PO17	3.27 (1.098)	3.20-3.35	3.4	21.1	35.0	25.5	10.8	2.7	1.4	0.27	-0.24	0.446
AC4	3.21 (1.215)	3.13-3.29	6.2	22.9	33.6	20.1	12.3	3.9	1.1	0.32	-0.39	0.476
AC13	3.16 (1.202)	3.08-3.23	6.2	26.0	29.7	23.0	10.2	3.6	1.3	0.33	-0.38	0.540
HE10	3.08 (1.153)	3.01-3.16	6.7	24.8	35.2	20.3	8.8	2.9	1.2	0.38	-0.13	0.411
HE21	2.48 (1.071)	2.41-2.55	15.6	39.8	30.2	7.7	3.9	1.6	1.2	0.89	1.03	0.402
ST6	2.85 (1.207)	2.78-2.93	11.9	29.9	31.0	15.6	8.2	2.4	0.9	0.48	-0.20	0.433
ST15	3.60 (1.271)	3.52-3.69	5.5	13.7	26.9	28.7	16.6	7.3	1.3	-0.06	-0.49	0.368

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.161, respectively.

Table A358 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Netherlands (first half-sample: n = 922)

-	Principal axis factor analysis (factors)								
	Factor I	Factor II	Factor III	Unique					
Item	Self-	Self-	Conservation	variance					
	enhancement	transcendence							
SD1	0.429	0.293	-0.153	0.640					
SD11	0.214	0.320	0.049	0.797					
UN19	-0.053	0.550	0.179	0.685					
BE12	0.019	0.584	0.170	0.620					
BE18	0.022	0.506	0.251	0.670					
CO16	-0.099	0.242	0.567	0.644					
SEC14	-0.038	0.260	0.530	0.662					
PO17	0.419	-0.067	0.428	0.599					
AC4	0.711	-0.145	0.151	0.488					
AC13	0.756	-0.120	0.263	0.346					
HE10	0.462	0.067	0.040	0.753					
HE21	0.399	0.178	0.018	0.756					
ST6	0.580	0.284	-0.252	0.451					
ST15	0.740	-0.008	-0.208	0.462					
Factors	Corre	lations between fa	ctors						
Self-enhancement									
Self-transcendence	0.350	_							
Conservation	0.159	0.005	_						

Table A359 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Netherlands (first half-sample: n = 922)

		Subscale	
	Self-	Self-	Conservation
	enhancement	transcendence	
Number of items	7	4	3
Mean (standard error)	2.97 (0.026)	2.10 (0.021)	2.88 (0.026)
95% Confidence interval	2.92-3.02	2.06-2.14	2.83-2.93
Standard deviation	0.798	0.628	0.796
Skewness (standard error)	0.528 (0.081)	1.176 (0.081)	0.385 (0.081)
Kurtosis (standard error)	0.709 (0.161)	3.815 (0.161)	0.495 (0.161)
Cronbach's alpha reliability coeff.	0.802	0.634	0.578
Split-half reliability coefficient	0.824	0.656	0.443
Average inter-item correlations	0.363	0.305	0.314
Minimum-maximum correlations	0.190-0.600	0.215-0.434	0.224-0.409
Range of correlations	0.409	0.219	0.185
	Average inter-i	tem correlations be	tween subscales
Self-enhancement	_		
Self-transcendence	0.264	_	
Conservation	0.253	0.228	_

Table A360 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Netherlands (first half-sample: n = 922)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.543	-0.020	0.713
SD11	0.302	0.174	0.839
UN19	0.086	0.360	0.840
BE12	0.167	0.368	0.791
BE18	0.126	0.424	0.765
CO16	-0.169	0.655	0.625
SEC14	-0.092	0.625	0.644
PO17	0.297	0.347	0.715
AC4	0.612	0.076	0.586
AC13	0.632	0.182	0.483
HE10	0.479	0.059	0.746
HE21	0.453	0.088	0.758
ST6	0.696	-0.100	0.558
ST15	0.800	-0.213	0.441
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.372	_	

Table A361 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-13 items): European Social Survey 2012, Netherlands (first half-sample: n = 922)

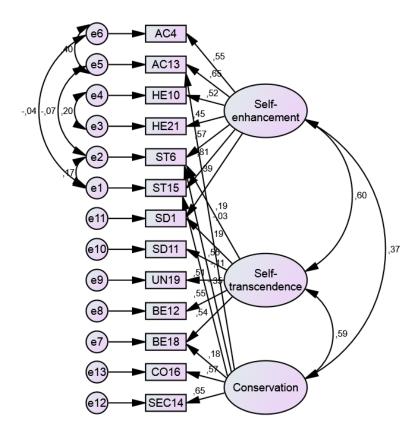

	Principal a	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique			
Item	Self-	Self-	Conservation	variance			
	enhancement	transcendence					
SD1	0.267	0.389	-0.164	0.624			
SD11	0.153	0.350	0.068	0.799			
UN19	-0.118	0.578	0.213	0.684			
BE12	-0.049	0.610	0.215	0.622			
BE18	-0.008	0.523	0.279	0.669			
CO16	0.028	0.204	0.503	0.714			
SEC14	0.126	0.189	0.580	0.618			
AC4	0.771	-0.143	0.117	0.507			
AC13	0.870	-0.144	0.239	0.345			
HE10	0.491	0.046	0.075	0.738			
HE21	0.403	0.160	0.073	0.748			
ST6	0.392	0.389	-0.257	0.434			
ST15	0.632	0.060	-0.234	0.463			
Factors	Corre	lations between fa	ctors				
Self-enhancement	_						
Self-transcendence	0.519	_					
Conservation	-0.129	-0.055	_				

Table A362 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2012, Netherlands (second half-sample: n = 923)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.32	.051	.902	.918	.874	.068 (.061076)
2a	2 first-order correlated factors- without cross-loadings	7.21	.064	.854	.871	.819	.082 (.075089)
2b	2 first-order correlated factors- with cross-loadings	6.77	.060	.865	.882	.832	.079 (.072086)
3a	3 first-order correlated factors- without cross-loadings	8.47	.076	.823	.839	.782	.090 (.083097)
3b	3 first-order correlated factors- with cross-loadings	5.82	.057	.893	.909	.859	.072 (.065080)
3c	3 first-order correlated factors (13 items)-with cross-loadings	4.93	.050	.911	.927	.889	.065 (.057073)
4	2 first-order correlated factors of unified values	6.03	.058	.928	.939	.910	.074 (.061087)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. a Higher values indicate better model fit

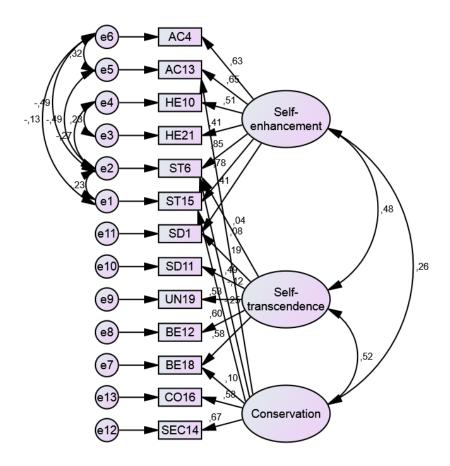

b Lower values indicate better model fit

Fig. 107 Standardized solution for the 3 first-order correlated factors (model 3c-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Netherlands (second half-sample: n = 923)

Table A363 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Netherlands (N = 1,845)

		Subscale	
	Self- enhancement	Self- transcendence	Conservation
Number of items	6	5	2
Mean (standard error)	3.04 (0.019)	2.15 (0.014)	2.69 (0.021)
95% Confidence interval	3.01-3.08	2.12-2.18	2.65-2.73
Standard deviation	0.827	0.621	0.895
Skewness (standard error)	0.416 (0.057)	1.068 (0.057)	0.541 (0.057)
Kurtosis (standard error)	0.379 (0.114)	3.574 (0.114)	0.521 (0.114)
Cronbach's alpha reliability coeff.	0.782	0.651	0.559
Split-half reliability coefficient	0.720	0.589	0.559
Average inter-item correlations	0.373	0.281	0.390
Minimum-maximum correlations	0.259-0.604	0.203-0.410	0.390-0.390
Range of correlations	0.345	0.207	0.000
	Average inter-i	tem correlations be	tween subscales
Self-enhancement	_		
Self-transcendence	0.265	_	
Conservation	0.253	0.234	_

Fig. 108 Standardized solution for the 3 first-order correlated factors (model 3c-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Netherlands (N = 1,845)

Table A364 Item analysis of Schwartz scale values of the European Social Survey, 2014: Netherlands (first half-sample: n = 913)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.51 (1.237)	2.43-2.59	23.3	29.4	30.0	9.4	4.7	2.8	0.3	0.75	0.31	0.344
SD11	2.00 (0.909)	1.94-2.06	29.9	47.4	16.2	3.9	1.3	0.5	0.7	1.17	2.23	0.366
UN3	2.08 (0.984)	2.02-2.15	28.5	44.8	20.5	2.8	2.0	1.2	0.2	1.27	2.56	0.239
UN8	2.45 (0.994)	2.38-2.51	14.1	42.8	31.9	6.8	2.5	1.4	0.4	0.92	1.53	0.323
UN19	2.20 (0.993)	2.13-2.26	24.2	43.4	23.7	5.6	1.6	1.1	0.4	1.01	1.63	0.248
BE12	2.31 (0.947)	2.25-2.37	18.5	43.5	29.2	5.5	2.3	0.5	0.4	0.78	1.10	0.328
BE18	2.08 (0.872)	2.03-2.14	23.9	50.7	20.3	2.7	1.4	0.5	0.4	1.10	2.50	0.352
TR9	3.12 (1.214)	3.04-3.20	6.9	25.6	33.6	18.4	11.4	3.5	0.5	0.39	-0.35	0.174
TR20	2.90 (1.284)	2.82-2.98	12.6	30.1	26.2	16.0	9.6	3.4	2.1	0.49	-0.38	0.268
CO7	3.04 (1.251)	2.96-3.13	7.3	30.3	31.8	16.0	9.6	4.7	0.2	0.57	-0.22	0.312
CO16	2.87 (1.130)	2.80-2.95	9.2	30.7	33.6	17.2	6.5	2.1	0.8	0.48	0.01	0.303
SEC5	2.75 (1.198)	2.68-2.83	13.0	33.2	31.1	12.6	7.4	2.4	0.2	0.62	0.03	0.328
SEC14	2.65 (1.115)	2.57-2.72	14.1	34.4	30.8	14.9	3.1	2.1	0.7	0.61	0.36	0.375
PO2	4.22 (1.250)	4.14-4.30	2.2	6.2	19.5	28.9	24.6	18.1	0.4	-0.33	-0.45	0.275
PO17	3.41 (1.200)	3.33-3.49	4.3	18.8	31.0	26.9	13.0	5.0	0.9	0.18	-0.42	0.386
AC4	3.28 (1.227)	3.20-3.36	6.0	22.0	30.7	24.2	12.6	4.2	0.3	0.21	-0.49	0.487
AC13	3.31 (1.255)	3.23-3.39	5.4	22.1	32.2	22.6	11.4	6.1	0.2	0.33	-0.42	0.484
HE10	3.00 (1.162)	2.93-3.08	8.5	25.8	35.2	19.3	8.2	2.5	0.4	0.37	-0.15	0.375
HE21	2.49 (1.092)	2.42-2.56	17.5	37.3	28.5	9.5	3.0	1.9	2.3	0.79	0.82	0.343
ST6	2.97 (1.255)	2.88-3.05	11.8	26.6	29.5	19.2	9.4	3.0	0.5	0.35	-0.43	0.408
ST15	3.73 (1.266)	3.65-3.82	4.3	11.8	26.8	29.0	18.4	9.1	0.5	-0.08	-0.50	0.357

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table A365 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Netherlands (first half-sample: n = 913)

	Pı				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Self-	Hedonism	variance
	enhancement		transcendence		
SD1	0.248	-0.080	0.421	-0.032	0.684
SD11	0.150	-0.033	0.311	0.211	0.739
UN8	-0.062	0.172	0.564	-0.086	0.714
BE12	-0.156	0.253	0.509	0.058	0.709
BE18	-0.120	0.221	0.467	0.146	0.713
CO7	0.188	0.608	0.153	-0.259	0.591
CO16	0.092	0.681	0.121	-0.159	0.539
SEC5	0.003	0.569	0.012	0.252	0.588
SEC14	-0.050	0.500	0.261	0.151	0.653
PO17	0.638	0.330	-0.218	-0.028	0.554
AC4	0.676	0.128	-0.069	0.131	0.498
AC13	0.698	0.137	-0.115	0.146	0.474
HE10	0.292	-0.020	-0.062	0.517	0.592
HE21	0.132	-0.070	0.154	0.442	0.667
ST6	0.431	-0.150	0.388	-0.017	0.511
ST15	0.552	-0.267	0.186	0.070	0.458
Factors		Correlations b	etween factors		
Self-enhancement	_				
Conservation	-0.051	_			
Self-transcendence	0.363	-0.087	_		
Hedonism	0.288	0.080	0.331	_	

Table A366 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Netherlands (first half-sample: n = 913)

		Sub	scale	
	Self- enhancement	Conservation	Self- transcendence	Hedonism
Number of items	5	4	5	2
Mean (standard error)	3.34 (0.029)	2.83 (0.028)	2.27 (0.021)	2.74 (0.031)
95% Confidence interval	3.28-3.40	2.77-2.88	2.23-2.31	2.68-2.81
Standard deviation	0.877	0.838	0.622	0.931
Skewness (standard error)	0.201 (0.081)	0.467 (0.081)	0.779 (0.081)	0.459 (0.081)
Kurtosis (standard error)	0.019 (0.162)	0.383 (0.162)	2.796 (0.162)	0.425 (0.162)
Cronbach's alpha reliability coeff.	0.750	0.678	0.603	0.534
Split-half reliability coefficient	0.730	0.714	0.533	0.534
Average inter-item correlations	0.374	0.347	0.242	0.365
Minimum-maximum correlations	0.172-0.573	0.292-0.434	0.154-0.338	0.365-0.365
Range of correlations	0.400	0.142	0.183	0.000
	Averag	ge inter-item corre	lations between s	ubscales
Self-enhancement	_			
Conservation	0.204	_		
Self-transcendence	0.218	0.185	_	
Hedonism	0.322	0.190	0.206	_

Table A367 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2014, Netherlands (first half-sample: n = 913)

	Principal a	xis factor analysis	tor analysis (factors)			
	Factor I	Factor II	Factor III	Unique		
Item	Self-	Conservation	Self-	variance		
	enhancement		transcendence			
SD1	0.373	-0.106	0.307	0.713		
SD11	0.339	-0.042	0.315	0.742		
UN8	0.034	0.127	0.490	0.742		
BE12	-0.034	0.223	0.520	0.702		
BE18	0.035	0.197	0.501	0.712		
CO7	0.004	0.568	0.092	0.675		
CO16	-0.078	0.676	0.121	0.548		
SEC5	0.007	0.565	0.143	0.669		
SEC14	-0.007	0.494	0.335	0.665		
PO17	0.493	0.359	-0.250	0.565		
AC4	0.691	0.154	-0.106	0.492		
AC13	0.704	0.170	-0.145	0.466		
HE10	0.475	0.018	0.061	0.756		
HE21	0.375	-0.053	0.228	0.772		
ST6	0.560	-0.167	0.248	0.555		
ST15	0.689	-0.270	0.078	0.466		
Factors	Correl	ations between fa	ctors			
Self-enhancement	_					
Conservation	0.117	_				
Self-transcendence	0.209	-0.058	_			

Table A368 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Netherlands (first half-sample: n = 913)

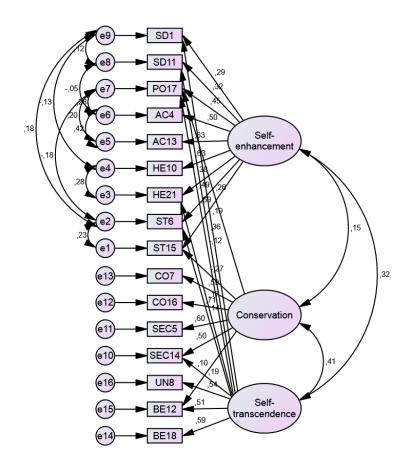

-	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.471	-0.053	0.784
SD11	0.441	0.007	0.805
BE12	0.106	0.243	0.920
BE18	0.170	0.225	0.906
CO7	-0.058	0.577	0.676
CO16	-0.143	0.694	0.535
SEC5	-0.035	0.585	0.664
SEC14	0.033	0.510	0.733
PO17	0.327	0.351	0.727
AC4	0.600	0.192	0.560
AC13	0.593	0.205	0.561
HE10	0.487	0.060	0.749
HE21	0.455	-0.003	0.793
ST6	0.648	-0.107	0.594
ST15	0.749	-0.220	0.452
	Correlations betw	veen factors	·
Openness to change			
Conservation	0.188	_	

Table A369 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2014, Netherlands (second half-sample: n = 914)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.89	.058	.887	.903	.836	.073 (.066080)
2a	2 first-order correlated factors (15 items)-without cross-						
	loadings	9.07	.088	.789	.806	.745	.094 (.088100)
2b	2 first-order correlated factors						
_	(15 items)-with cross-loadings	6.48	.065	.853	.872	.827	.077 (.071084)
3a	3 first-order correlated factors- without cross-loadings	7.10	.071	.825	.845	.796	.082 (.076088)
3b	3 first-order correlated factors- with cross-loadings	5.12	.050	.886	.905	.862	.067 (.061074)
4a	4 first-order correlated factors- without cross-loadings	8.33	.080	.788	.807	.754	.090 (.084095)
4b	4 first-order correlated factors-						,
_	with cross-loadings	5.90	.055	.866	.885	.836	.073 (.067080)
5	2 first-order correlated factors of unified values	7.97	.067	.899	.910	.867	.087 (.075101)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. a Higher values indicate better model fit

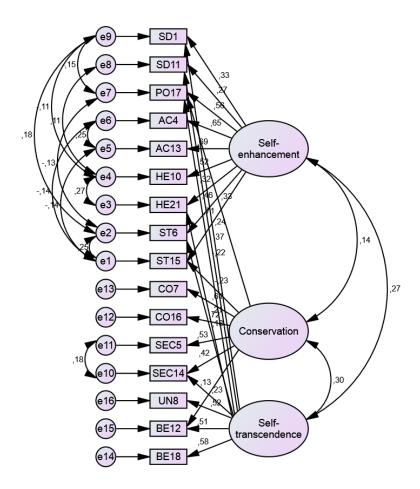

b Lower values indicate better model fit

Fig. 109 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Netherlands (second half-sample: n = 914)

Table A370 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Netherlands (N = 1,827)

		Subscale	
	Self-	Conservation	Self-
	enhancement		transcendence
Number of items	9	4	3
Mean (standard error)	2.98 (0.016)	2.84 (0.020)	2.29 (0.016)
95% Confidence interval	2.95-3.01	2.80-2.87	2.26-2.32
Standard deviation	0.704	0.843	0.684
Skewness (standard error)	0.333 (0.057)	0.458 (0.057)	0.732 (0.057)
Kurtosis (standard error)	0.451 (0.114)	0.418 (0.114)	1.974 (0.114)
Cronbach's alpha reliability coeff.	0.786	0.694	0.570
Split-half reliability coefficient	0.724	0.635	0.479
Average inter-item correlations	0.287	0.364	0.308
Minimum-maximum correlations	0.061-0.584	0.299-0.451	0.290-0.320
Range of correlations	0.522	0.152	0.030
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.191	_	
Self-transcendence	0.220	0.250	_

Fig. 110 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Netherlands (N = 1,827)

Table A371 Item analysis of Schwartz scale values of the European Social Survey, 2002: Norway (first half-sample: n = 911)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.60 (1.119)	2.53-2.68	16.4	34.5	28.1	14.2	6.5	0.1	0.3	0.42	-0.47	0.384
SD11	2.58 (1.229)	2.50-2.66	18.6	37.5	21.4	12.8	8.5	1.1	0.1	0.65	-0.31	0.397
UN3	2.35 (1.075)	2.28-2.42	20.9	43.2	19.3	12.6	3.0	0.7	0.3	0.77	0.23	0.241
UN8	2.60 (0.999)	2.54-2.67	10.9	40.5	29.7	14.5	4.0	0.1	0.3	0.46	-0.20	0.343
UN19	2.49 (1.081)	2.42-2.56	17.7	38.2	25.9	13.7	3.3	0.8	0.4	0.59	0.02	0.275
BE12	2.48 (0.991)	2.41-2.54	15.1	40.3	28.1	14.2	1.8	0.3	0.2	0.44	-0.14	0.379
BE18	2.16 (0.908)	2.10-2.22	21.6	50.8	18.6	7.1	1.4	0.2	0.2	0.88	0.99	0.422
TR9	3.46 (1.293)	3.37-3.54	6.1	19.2	26.5	22.3	21.6	4.0	0.3	-0.03	-0.84	0.072
TR20	2.99 (1.331)	2.91-3.08	10.5	32.6	23.8	16.6	11.7	4.3	0.4	0.48	-0.58	0.192
CO7	2.89 (1.230)	2.81-2.97	11.3	32.7	24.6	19.9	9.7	1.8	0.1	0.38	-0.58	0.256
CO16	2.85 (1.227)	2.77-2.93	11.0	36.6	20.9	20.4	9.4	1.5	0.2	0.43	-0.63	0.277
SEC5	2.95 (1.261)	2.86-3.03	12.4	28.2	26.5	20.0	10.9	2.0	0.1	0.29	-0.65	0.288
SEC14	3.06 (1.259)	2.98-3.14	9.8	28.1	24.6	22.6	12.3	2.2	0.4	0.22	-0.74	0.342
PO2	4.48 (1.114)	4.41-4.56	1.2	4.4	14.2	19.8	45.1	14.9	0.4	-0.79	0.24	0.296
PO17	3.42 (1.203)	3.34-3.49	4.6	19.5	29.1	24.4	19.2	2.5	0.7	0.01	-0.74	0.385
AC4	3.71 (1.289)	3.63-3.79	4.0	16.5	22.6	24.0	26.9	5.8	0.2	-0.19	-0.84	0.403
AC13	3.43 (1.232)	3.35-3.51	4.5	20.7	27.6	24.1	19.4	3.3	0.3	0.03	-0.79	0.499
HE10	3.52 (1.335)	3.43-3.60	5.8	19.9	25.2	18.4	25.7	4.5	0.4	-0.05	-0.99	0.426
HE21	3.37 (1.315)	3.28-3.45	7.9	20.3	25.6	22.3	19.9	3.6	0.4	0.00	-0.86	0.469
ST6	3.33 (1.335)	3.24-3.41	9.3	20.3	26.0	19.0	22.8	2.3	0.2	-0.04	-0.99	0.457
ST15	3.89 (1.378)	3.80-3.98	5.6	12.5	20.4	18.7	33.2	9.2	0.4	-0.40	-0.78	0.385

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table A372 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Norway (first half-sample: n = 911)

	Principal axis factor analysis (factors)							
Item	Factor I	Factor II	Factor III	Factor IV	Unique			
	Self-	Hedonism	Openness to	Self-	variance			
	enhancement		change	transcendence				
SD1	0.077	-0.199	0.659	0.120	0.600			
SD11	0.185	0.023	0.372	0.073	0.720			
UN8	-0.052	-0.054	0.222	0.464	0.708			
BE12	-0.078	0.053	0.062	0.655	0.544			
BE18	0.074	0.123	0.020	0.448	0.735			
SEC14	0.144	0.009	-0.107	0.358	0.862			
PO17	0.661	-0.067	-0.033	0.058	0.614			
AC4	0.669	0.035	0.081	-0.102	0.474			
AC13	0.744	0.057	-0.013	0.081	0.384			
HE10	0.101	0.636	0.064	-0.034	0.459			
HE21	-0.061	0.930	-0.155	0.135	0.307			
ST6	-0.119	0.099	0.789	0.005	0.356			
ST15	0.036	0.426	0.463	-0.178	0.355			
Factors		Correlations be	etween factors					
Self-enhancement	_							
Hedonism	0.558	_						
Openness to change	0.486	0.637	_					
Self-transcendence	0.127	0.134	0.281					

Table A373 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Norway (first half-sample: n = 911)

	Subscale					
	Self- enhancement	Hedonism	Openness to change	Self- transcendence		
Number of items	3	2	4	4		
Mean (standard error)	3.52 (0.033)	3.44 (0.039)	3.10 (0.031)	2.58 (0.023)		
95% Confidence interval	3.45-3.59	3.37-3.52	3.04-3.16	2.53-2.62		
Standard deviation	1.009	1.180	0.950	0.685		
Skewness (standard error)	-0.056 (0.081)	0.005 (0.081)	0.053 (0.081)	0.097 (0.081)		
Kurtosis (standard error)	-0.536 (0.162)	-0.810 (0.162)	-0.581 (0.162)	-0.227 (0.162)		
Cronbach's alpha reliability coeff.	0.742	0.739	0.738	0.553		
Split-half reliability coefficient	0.598	0.739	0.738	0.553		
Average inter-item correlations	0.489	0.586	0.411	0.250		
Minimum-maximum correlations	0.431-0.564	0.586-0.586	0.322-0.589	0.143-0.371		
Range of correlations	0.133	0.000	0.267	0.228		
	Averag	ge inter-item corre	lations between su	ibscales		
Self-enhancement	_					
Hedonism	0.395	_				
Openness to change	0.341	0.397	_			
Self-transcendence	0.197	0.207	0.223			

Table A374 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, Norway (first half-sample: n = 911)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Self-	Self-	variance			
	change	enhancement	transcendence				
SD1	0.371	0.000	0.283	0.709			
SD11	0.346	0.139	0.158	0.735			
UN8	0.056	-0.060	0.545	0.691			
BE12	-0.010	-0.047	0.648	0.593			
BE18	0.056	0.098	0.437	0.757			
SEC14	-0.146	0.170	0.333	0.880			
PO17	-0.077	0.642	0.064	0.621			
AC4	0.147	0.635	-0.084	0.491			
AC13	0.042	0.748	0.077	0.374			
HE10	0.642	0.140	-0.105	0.508			
HE21	0.605	0.075	-0.014	0.583			
ST6	0.736	-0.154	0.159	0.466			
ST15	0.882	-0.016	-0.159	0.310			
Factors	Correl	ations between fa	actors				
Openness to change	_						
Self-enhancement	0.075	_					
Self-transcendence	0.413	0.299	_				

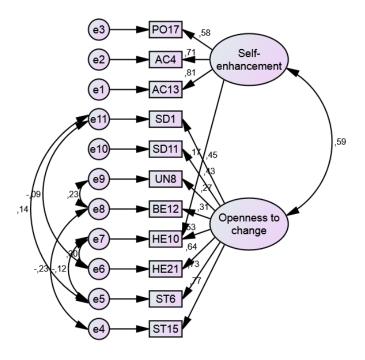
Table A375 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Norway (first half-sample: n = 911)

X7	Principal axis factor	II.	
Variables	Factor I Self-enhancement	Factor II Openness to change	Unique variance
SD1	-0.003	0.524	0.727
SD11	0.189	0.368	0.740
UN8	-0.180	0.425	0.885
BE12	-0.186	0.414	0.893
BE18	0.011	0.324	0.891
PO17	0.679	-0.183	0.665
AC4	0.811	-0.139	0.468
AC13	0.804	-0.094	0.442
HE10	0.354	0.392	0.543
HE21	0.248	0.447	0.597
ST6	-0.070	0.797	0.431
ST15	0.255	0.560	0.439
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.642	_	

Note: Component and factor loadings >.22 are in boldface.

Table A376 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-11 items): European Social Survey 2002, Norway (first half-sample: n = 911)

	Principal axis facto		
Variables	•	• , ,	Unique
	Factor I	Factor II	variance
	Self-enhancement	Openness to change	
SD1	0.471	-0.053	0.784
SD11	0.441	0.007	0.805
BE12	0.106	0.243	0.920
BE18	0.170	0.225	0.906
CO7	-0.058	0.577	0.676
AC4	0.600	0.192	0.560
AC13	0.593	0.205	0.561
HE10	0.487	0.060	0.749
HE21	0.455	-0.003	0.793
ST6	0.648	-0.107	0.594
ST15	0.749	-0.220	0.452
	Correlations be	etween factors	
Self-enhancement	_		
Openness to change	0.643	_	


Table A377 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2002, Norway (second half-sample: n = 911)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.63	.048	.903	.918	.882	.071 (.064079)
2a	2 first-order correlated factors (12 items)-without cross-						, ,
2b	loadings 2 first-order correlated factors	5.08	.044	.919	.934	.907	.067 (.059076)
20	(12 items)-with cross-loadings	5.05	.042	.925	.939	.908	.067 (.058076)
2c	2 first-order correlated factors (11 items)-with cross-loadings	4.35	.039	.943	.955	.931	.061 (.051071)
3a	3 first-order correlated factors-						,
3b	without cross-loadings 3 first-order correlated factors-	5.19	.047	.906	.922	.893	.068 (.060076)
4a	with cross-loadings 4 first-order correlated factors-	5.23	.047	.906	.922	.892	.068 (.061076)
4a	without cross-loadings	6.02	.051	.887	.903	.872	.074 (.067082)
4b	4 first-order correlated factors- with cross-loadings	5.57	.050	.899	.915	.883	.071 (.063079)
5	2 first-order correlated factors of unified values	4.91	.054	.936	.948	.924	.066 (.053079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

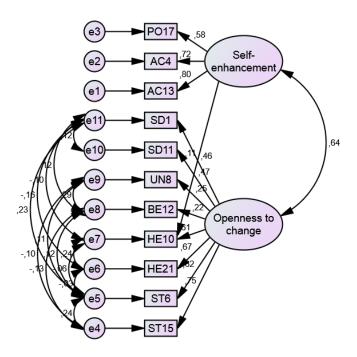

b Lower values indicate better model fit

Fig. 111 Standardized solution for the 2 first-order correlated factors (model 2c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Norway (second half-sample: n = 911)

Table A378 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Norway (N = 1,822)

	Sub	scale
	Self-enhancement	Openness to change
Number of items	3	8
Mean (standard error)	3.54 (0.024)	3.06 (0.018)
95% Confidence interval	3.49-3.59	3.02-3.09
Standard deviation	1.005	0.756
Skewness (standard error)	-0.074 (0.057)	-0.088 (0.057)
Kurtosis (standard error)	-0.537 (0.115)	-0.339 (0.115)
Cronbach's alpha reliability coeff.	0.742	0.773
Split-half reliability coefficient	0.590	0.603
Average inter-item correlations	0.488	0.287
Minimum-maximum correlations	0.420-0.572	0.075-0.585
Range of correlations	0.152	0.510
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Openness to change	0.274	_

Fig. 112 Standardized solution for the 2 first-order correlated factors (model 2c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Norway (N = 1,822)

Table A379 Item analysis of Schwartz scale values of the European Social Survey, 2004: Norway (first half-sample: n = 795)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.60 (1.141)	2.52-2.68	18.2	30.7	29.1	13.6	5.8	0.6	2.0	0.43	-0.31	0.317
SD11	2.60 (1.198)	2.51-2.68	18.4	35.1	22.5	15.6	6.3	1.1	1.0	0.55	-0.33	0.361
UN3	2.28 (1.033)	2.21-2.35	20.6	47.2	16.5	10.2	3.4	0.4	1.8	0.92	0.59	0.248
UN8	2.55 (0.995)	2.48-2.62	11.8	42.8	26.7	14.3	3.1	0.3	1.0	0.53	-0.08	0.354
UN19	2.56 (1.082)	2.48-2.63	16.2	36.9	25.3	16.4	3.8	0.4	1.1	0.43	-0.38	0.275
BE12	2.45 (1.002)	2.38-2.52	16.5	40.0	25.0	15.6	1.9	-	1.0	0.38	-0.55	0.393
BE18	2.15 (0.919)	2.09-2.22	22.8	48.9	17.5	7.7	1.8	-	1.4	0.83	0.58	0.433
TR9	3.44 (1.241)	3.36-3.53	4.8	21.1	24.3	24.2	21.9	2.4	1.4	-0.05	-0.90	0.133
TR20	3.08 (1.307)	2.99-3.17	9.8	29.4	22.4	21.3	12.7	3.4	1.0	0.30	-0.74	0.250
CO7	2.70 (1.087)	2.62-2.77	11.1	37.7	26.8	15.8	6.2	0.5	1.9	0.48	-0.26	0.271
CO16	2.78 (1.175)	2.70-2.86	13.1	33.2	24.3	18.6	8.8	0.4	1.6	0.33	-0.69	0.327
SEC5	2.92 (1.261)	2.83-3.00	12.7	30.4	22.0	19.1	13.1	0.8	1.9	0.26	-0.88	0.287
SEC14	2.89 (1.223)	2.81-2.98	11.4	32.2	23.5	20.3	9.9	1.4	1.3	0.34	-0.65	0.345
PO2	4.46 (1.081)	4.38-4.53	1.5	4.4	11.8	20.9	47.4	11.8	2.1	-0.92	0.70	0.339
PO17	3.33 (1.154)	3.25-3.41	3.9	22.3	29.1	25.8	15.5	2.0	1.5	0.11	-0.66	0.419
AC4	3.66 (1.217)	3.57-3.74	3.8	15.0	25.4	24.9	24.8	3.9	2.3	-0.20	-0.69	0.410
AC13	3.41 (1.180)	3.33-3.49	3.9	20.6	27.4	26.7	17.6	2.5	1.3	0.03	-0.71	0.534
HE10	3.54 (1.277)	3.45-3.62	4.7	19.2	25.4	22.0	22.6	4.4	1.6	-0.05	-0.85	0.427
HE21	3.46 (1.264)	3.38-3.55	6.2	18.0	25.2	25.7	20.3	3.5	1.3	-0.08	-0.75	0.458
ST6	3.33 (1.285)	3.25-3.42	8.2	19.6	25.8	21.5	20.8	2.1	2.0	-0.04	-0.87	0.456
ST15	3.83 (1.350)	3.73-3.92	6.2	12.1	21.3	19.4	33.3	6.7	1.1	-0.42	-0.73	0.373

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.087 and 0.173, respectively.

Table A380 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Norway (first half-sample: n = 795)

	Principal axis factor analysis (factors)					
Item	Factor I	Factor II	Factor III	Factor IV	Unique	
	Openness to	Self-	Self-	Conservation	variance	
	change	enhancement	transcendence			
SD1	-0.164	0.370	0.399	-0.161	0.689	
UN8	-0.097	0.005	0.569	0.074	0.709	
BE12	0.000	-0.132	0.624	0.277	0.562	
BE18	0.201	-0.108	0.400	0.312	0.675	
CO16	-0.168	0.242	0.060	0.630	0.552	
SEC14	0.112	0.001	0.129	0.498	0.717	
PO2	0.325	0.481	-0.246	0.048	0.573	
PO17	0.031	0.564	-0.052	0.229	0.636	
AC4	-0.046	0.732	0.053	-0.061	0.470	
AC13	0.075	0.656	0.061	0.180	0.453	
HE10	0.736	0.064	-0.105	0.038	0.467	
HE21	0.780	-0.047	0.007	0.092	0.431	
ST6	0.256	0.133	0.493	-0.186	0.435	
ST15	0.646	0.098	0.097	-0.215	0.355	
Factors		Correlations b	etween factors			
Openness to change	_					
Self-enhancement	0.579	_				
Self-transcendence	0.457	0.322	_			
Conservation	-0.087	-0.036	0.014	_		

Table A381 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Norway (first half-sample: n = 795)

		Sub	scale	
	Openness to change	Self- enhancement	Self- transcendence	Conservation
Number of items	3	4	5	2
Mean (standard error)	3.61 (0.038)	3.71 (0.031)	2.62 (0.025)	2.84 (0.035)
95% Confidence interval	3.53-3.68	3.65-3.77	2.57-2.67	2.77-2.90
Standard deviation	1.081	0.870	0.692	0.982
Skewness (standard error)	-0.190 (0.087)	-0.067 (0.087)	0.196 (0.087)	0.243 (0.087)
Kurtosis (standard error)	-0.641 (0.173)	-0.287 (0.173)	-0.324 (0.173)	-0.290 (0.173)
Cronbach's alpha reliability coeff.	0.780	0.742	0.646	0.508
Split-half reliability coefficient	0.685	0.747	0.532	0.508
Average inter-item correlations	0.542	0.417	0.270	0.341
Minimum-maximum correlations	0.536-0.549	0.323-0.536	0.098-0.410	0.341-0.341
Range of correlations	0.012	0.213	0.311	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Openness to change	_			
Self-enhancement	0.383	_		
Self-transcendence	0.271	0.229	_	
Conservation	0.203	0.254	0.195	_

Table A382 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Norway (first half-sample: n = 795)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Self-	Self-	Conservation	variance				
	enhancement	transcendence						
SD1	0.329	0.168	0.000	0.828				
SD11	0.369	0.127	0.016	0.818				
UN8	0.021	0.506	0.090	0.741				
BE12	-0.074	0.683	0.215	0.556				
BE18	0.077	0.524	0.210	0.679				
CO16	-0.069	0.218	0.660	0.566				
SEC14	0.001	0.299	0.399	0.784				
PO2	0.671	-0.263	0.108	0.567				
PO17	0.488	-0.075	0.356	0.630				
AC4	0.630	-0.112	0.140	0.604				
AC13	0.645	-0.004	0.324	0.462				
HE10	0.648	0.021	-0.093	0.567				
HE21	0.589	0.145	-0.080	0.572				
ST6	0.498	0.342	-0.169	0.490				
Factors	Corre	Correlations between factors						
Self-enhancement	_							
Self-transcendence	0.319	_						
Conservation	0.043	-0.137	_					

Table A383 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Norway (first half-sample: n = 795)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
_	Openness to change	Conservation	
SD1	0.384	0.042	0.842
SD11	0.403	0.065	0.820
BE12	0.132	0.265	0.894
BE18	0.212	0.284	0.842
CO16	-0.210	0.725	0.512
SEC14	-0.011	0.453	0.798
PO2	0.501	0.108	0.708
PO17	0.330	0.353	0.704
AC4	0.516	0.142	0.674
AC13	0.519	0.343	0.517
HE10	0.670	-0.036	0.562
HE21	0.657	-0.002	0.569
ST6	0.648	-0.060	0.597
ST15	0.845	-0.236	0.338
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.269	_	

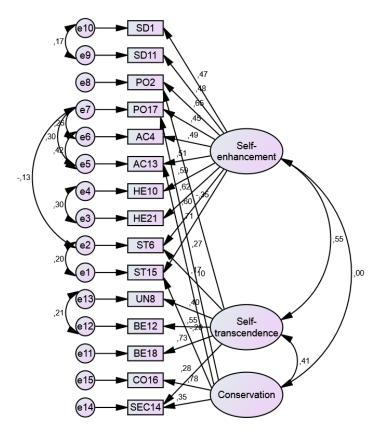

Note: Component and factor loadings >.22 are in boldface.

Table A384 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Norway (second half-sample: n = 796)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.52	.053	.896	.917	.878	.067 (.059074)
2a	2 first-order correlated factors (14 items)-without cross-						
	loadings	7.61	.076	.820	.839	.791	.091 (.084099)
2b	2 first-order correlated factors						
	(14 items)-with cross-loadings	6.33	.065	.857	.876	.831	.082 (.075089)
3a	3 first-order correlated factors- without cross-loadings	5.50	.063	.862	.883	.845	.075 (.068082)
3b	3 first-order correlated factors- with cross-loadings	3.30	.039	.923	.945	.921	.054 (.046061)
4a	4 first-order correlated factors(14 items)-without cross-			.,		.,	(1111)
41	loadings	6.76	.074	.845	.864	.815	.085 (.078093)
4b	4 first-order correlated factors(14 items)-with cross-						
	loadings	4.26	.048	.914	.932	.895	.064 (.056072)
5	2 first-order correlated factors of unified values	5.99	.070	.900	.915	.874	.079 (.066094)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

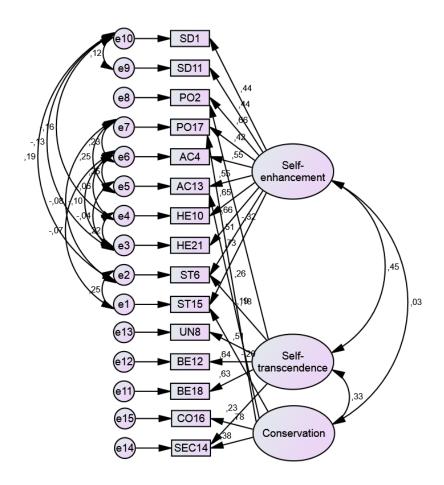


Fig. 113 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Norway (second half-sample: n = 796)

a Higher values indicate better model fit

Table A385 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Norway (N = 1,591)

		Subscale	
	Self- enhancement	Self- transcendence	Conservation
Number of items	10	3	2
Mean (standard error)	3.42 (0.019)	2.38 (0.018)	2.82 (0.025)
95% Confidence interval	3.38-3.45	2.35-2.42	2.77-2.87
Standard deviation	0.766	0.724	0.999
Skewness (standard error)	-0.070 (0.061)	0.436 (0.061)	0.211 (0.061)
Kurtosis (standard error)	-0.430 (0.123)	0.088 (0.123)	-0.452 (0.123)
Cronbach's alpha reliability coeff.	0.827	0.613	0.520
Split-half reliability coefficient	0.849	0.504	0.520
Average inter-item correlations	0.320	0.345	0.351
Minimum-maximum correlations	0.176-0.557	0.281-0.378	0.351-0.351
Range of correlations	0.381	0.097	0.000
	Average inter-it	tem correlations be	etween subscales
Self-enhancement	_		
Self-transcendence	0.253	_	
Conservation	0.243	0.252	_

Fig. 114 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Norway (N = 1,591)

Table A386 Item analysis of Schwartz scale values of the European Social Survey, 2006: Norway (first half-sample: n = 776)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.50 (1.309)	2.41-2.58	25.2	32.9	20.4	10.4	8.7	1.9	0.5	0.75	-0.24	0.448
SD11	2.14 (1.045)	2.08-2.21	28.3	43.0	15.2	8.5	2.8	0.5	1.7	1.02	0.87	0.471
UN3	2.02 (0.999)	1.95-2.08	32.4	45.1	13.6	5.4	2.1	0.8	0.6	1.30	2.11	0.403
UN8	2.38 (1.082)	2.31-2.45	19.8	42.8	22.3	9.8	4.5	0.6	0.3	0.81	0.38	0.458
UN19	2.23 (1.077)	2.16-2.30	27.0	39.5	19.7	9.2	2.9	0.7	1.0	0.89	0.57	0.409
BE12	2.25 (1.070)	2.19-2.32	24.2	43.5	17.7	9.8	3.1	0.7	0.0	0.93	0.66	0.466
BE18	2.05 (0.952)	1.99-2.11	29.1	46.4	14.4	6.3	1.9	0.3	1.6	1.09	1.38	0.521
TR9	2.71 (1.251)	2.63-2.79	16.6	32.8	24.5	13.5	9.9	1.4	1.4	0.51	-0.47	0.323
TR20	2.44 (1.217)	2.36-2.51	22.9	38.1	18.4	12.0	6.2	1.4	1.0	0.80	0.02	0.286
CO7	2.95 (1.354)	2.87-3.04	13.4	30.4	23.8	13.7	15.3	2.7	0.6	0.39	-0.79	0.281
CO16	2.69 (1.230)	2.61-2.76	15.1	37.3	22.2	12.6	9.9	1.2	1.8	0.61	-0.36	0.401
SEC5	2.11 (1.098)	2.04-2.18	31.7	41.8	12.8	7.5	4.7	0.3	1.1	1.11	0.79	0.424
SEC14	2.24 (1.178)	2.16-2.31	29.3	38.8	17.8	7.5	4.9	1.5	0.2	1.06	0.77	0.424
PO2	4.06 (1.325)	3.98-4.14	5.0	9.3	17.8	19.5	38.8	9.3	0.4	-0.63	-0.43	0.293
PO17	3.28 (1.409)	3.19-3.37	9.8	25.7	20.5	15.3	23.7	3.4	1.6	0.09	-1.13	0.457
AC4	3.00 (1.360)	2.92-3.09	12.4	30.3	22.9	14.0	16.6	2.7	1.0	0.35	-0.87	0.457
AC13	3.31 (1.422)	3.22-3.40	10.1	23.7	22.4	16.1	22.6	4.6	0.5	0.08	-1.08	0.528
HE10	3.50 (1.438)	3.41-3.59	9.4	19.8	18.5	20.1	25.7	5.7	0.8	-0.13	-1.07	0.391
HE21	3.06 (1.393)	2.97-3.15	13.3	26.8	22.7	17.7	14.0	4.5	0.9	0.31	-0.81	0.428
ST6	2.97 (1.427)	2.88-3.06	16.1	28.7	20.3	14.3	17.0	3.1	0.5	0.34	-0.97	0.503
ST15	3.83 (1.438)	3.74-3.92	7.3	13.8	18.7	18.2	31.7	9.6	0.6	-0.37	-0.89	0.329

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.088 and 0.175, respectively.

Table A387 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Norway (first half-sample: n = 776)

	Pı	Principal axis factor analysis (factors)					
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Openness to	Self-	Conservation	Self-	variance		
	change	enhancement		transcendence			
SD1	-0.013	0.273	-0.149	0.455	0.670		
SD11	0.135	0.228	-0.013	0.232	0.776		
UN3	-0.116	0.012	0.078	0.567	0.688		
UN8	-0.011	-0.082	0.055	0.633	0.613		
BE12	0.095	-0.092	0.315	0.422	0.637		
BE18	0.202	-0.006	0.325	0.196	0.737		
TR20	0.068	-0.137	0.604	0.039	0.629		
SEC5	-0.094	0.167	0.650	-0.017	0.544		
SEC14	-0.024	0.117	0.631	0.046	0.549		
PO2	0.324	0.488	0.007	-0.322	0.549		
PO17	0.026	0.464	0.231	0.032	0.664		
AC4	-0.119	0.881	-0.058	0.112	0.291		
AC13	0.102	0.693	0.089	-0.019	0.401		
HE10	0.646	0.101	0.073	-0.103	0.530		
HE21	0.832	-0.104	0.152	-0.110	0.435		
ST6	0.505	0.075	-0.079	0.300	0.472		
ST15	0.732	0.068	-0.250	0.120	0.294		
Factors		Correlations b	etween factors				
Openness to change	_						
Self-enhancement	0.642	_					
Conservation	0.089	0.158	_				
Self-transcendence	0.427	0.348	0.284	_			

Table A388 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Norway (first half-sample: n = 776)

		Sub	scale	
	Openness to change	Self- enhancement	Conservation	Self- transcendence
Number of items	4	4	4	5
Mean (standard error)	3.43 (0.038)	3.66 (0.034)	2.67 (0.031)	2.44 (0.025)
95% Confidence interval	3.36-3.51	3.59-3.72	2.61-273	2.39-2.49
Standard deviation	1.059	0.935	0.862	0.691
Skewness (standard error)	-0.156 (0.088)	-0.165 (0.088)	0.149 (0.088)	0.292 (0.088)
Kurtosis (standard error)	-0.637 (0.175)	-0.320 (0.175)	-0.447 (0.175)	-0.265 (0.175)
Cronbach's alpha reliability coeff.	0.805	0.767	0.670	0.630
Split-half reliability coefficient	0.743	0.784	0.627	0.627
Average inter-item correlations	0.508	0.449	0.335	0.259
Minimum-maximum correlations	0.381-0.624	0.277-0.656	0.226-0.489	0.112-0.389
Range of correlations	0.243	0.378	0.263	0.277
	Averag	ge inter-item corre	lations between su	ıbscales
Openness to change	_			
Self-enhancement	0.406	_		
Conservation	0.236	0.252	_	
Self-transcendence	0.273	0.239	0.218	_

Table A389 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2006, Norway (first half-sample: n = 776)

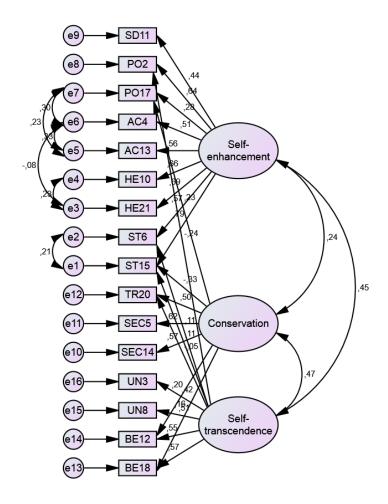
	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Self-	Conservation	Self-	variance			
	enhancement		transcendence				
SD1	0.276	-0.061	0.321	0.752			
SD11	0.344	0.020	0.191	0.786			
UN3	-0.073	0.125	0.505	0.735			
UN8	-0.079	0.073	0.614	0.638			
BE12	-0.022	0.287	0.500	0.628			
BE18	0.153	0.284	0.283	0.741			
TR20	-0.093	0.521	0.172	0.683			
SEC5	0.062	0.666	0.026	0.535			
SEC14	0.077	0.630	0.105	0.546			
PO2	0.762	0.028	-0.358	0.523			
PO17	0.472	0.295	-0.030	0.675			
AC4	0.708	0.103	-0.069	0.513			
AC13	0.751	0.181	-0.119	0.445			
HE10	0.625	-0.018	0.035	0.591			
HE21	0.561	-0.005	0.118	0.616			
ST6	0.508	-0.128	0.364	0.465			
ST15	0.690	-0.328	0.211	0.319			
Factors	Corre	lations between fa	actors				
Self-enhancement	_						
Conservation	0.104	_					
Self-transcendence	0.428	0.175	_				

Table A390 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Norway (first half-sample: n = 776)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0. 424	0.060	0.801
SD11	0.420	0.093	0.791
UN3	0.118	0.302	0.873
UN8	0.170	0.286	0.860
BE12	0.126	0.466	0.731
BE18	0.203	0.397	0.751
TR20	-0.152	0.601	0.672
SEC5	-0.089	0.670	0.580
SEC14	-0.037	0.679	0.553
PO2	0.568	-0.092	0.701
PO17	0.379	0.286	0.708
AC4	0.640	0.078	0.553
AC13	0.637	0.136	0.523
HE10	0.641	-0.004	0.590
HE21	0.610	0.043	0.610
ST6	0.680	0.015	0.532
ST15	0.850	-0.243	0.346
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.308	_	

Table A391 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-16 items): European Social Survey 2006, Norway (first half-sample: n = 776)

	Principal a	xis factor analysis		
	Factor I	Factor II	Factor III	Unique
Item	Self-	Conservation	Self-	variance
	enhancement		transcendence	
SD11	0.346	0.038	0.162	0.800
UN3	-0.058	0.162	0.443	0.788
UN8	-0.075	0.111	0.560	0.699
BE12	-0.040	0.299	0.532	0.624
BE18	0.134	0.279	0.342	0.730
TR20	-0.105	0.506	0.256	0.678
SEC5	0.080	0.649	0.088	0.547
SEC14	0.086	0.616	0.170	0.553
PO2	0.759	0.003	-0.321	0.543
PO17	0.497	0.300	-0.034	0.667
AC4	0.755	0.126	-0.136	0.484
AC13	0.788	0.187	-0.140	0.417
HE10	0.586	-0.047	0.120	0.579
HE21	0.508	-0.036	0.219	0.594
ST6	0.471	-0.114	0.364	0.486
Factors	Correl	ations between fa	actors	
Self-enhancement	_			
Conservation	0.041	_		
Self-transcendence	0.455	0.069	_	


Table A392 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2006, Norway (second half-sample: n = 777)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.61	.063	.869	.893	.853	.068 (.062075)
2a	2 first-order correlated factors- without cross-loadings	4.42	.060	.863	.890	.961	.066 (.060073)
2b	2 first-order correlated factors- with cross-loadings	4.03	.055	.877	.904	.877	.063 (.056069)
3a	3 first-order correlated factors- without cross-loadings	5.40	.073	.835	.860	.821	.075 (.069081)
3b	3 first-order correlated factors- with cross-loadings	3.64	.049	.896	.922	.893	.058 (.052065)
3c	3 first-order correlated factors (16 items)-with cross-loadings	3.43	.048	.907	.932	.906	.056 (.049063)
4a	4 first-order correlated factors- without cross-loadings	5.55	.079	.823	.849	.815	.077 (.071083)
4b	4 first-order correlated factors- with cross-loadings	4.17	.057	.876	.902	.871	.064 (.058070)
5	2 first-order correlated factors of unified values	8.86	.077	.860	.872	.812	.101 (.087115)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

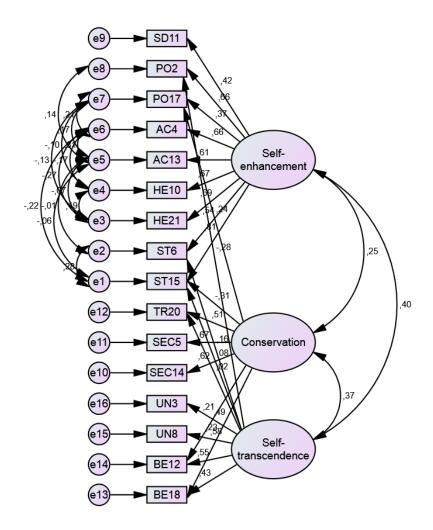

b Lower values indicate better model fit

Fig. 115 Standardized solution for the 3 first-order correlated factors (model 3c-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Norway (second half-sample: n = 777)

Table A393 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Norway (N = 1,553)

		Subscale	
	Self-	Conservation	Self-
	enhancement		transcendence
Number of items	9	3	4
Mean (standard error)	3.47 (0.021)	2.92 (0.025)	2.29 (0.017)
95% Confidence interval	3.43-3.51	2.87-2.97	2.25-2.32
Standard deviation	0.832	0.973	0.686
Skewness (standard error)	-0.153 (0.062)	0.156 (0.062)	0.468 (0.062)
Kurtosis (standard error)	-0.294 (0.124)	-0.425 (0.124)	0.027 (0.124)
Cronbach's alpha reliability coeff.	0.836	0.624	0.643
Split-half reliability coefficient	0.862	0.519	0.596
Average inter-item correlations	0.358	0.359	0.312
Minimum-maximum correlations	0.181-0.604	0.319-0.429	0.213-0.381
Range of correlations	0.424	0.111	0.168
	Average inter-it	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.245	_	
Self-transcendence	0.257	0.256	_

Fig. 116 Standardized solution for the 3 first-order correlated factors (model 3c-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Norway (N = 1,553)

Table A394 Item analysis of Schwartz scale values of the European Social Survey, 2008: Norway (first half-sample: n = 698)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.53 (1.136)	2.45-2.62	19.8	32.5	27.5	14.2	4.3	0.9	0.9	0.49	-0.21	0.359
SD11	2.50 (1.168)	2.41-2.59	21.3	33.7	24.9	14.0	4.7	1.0	0.3	0.57	-0.20	0.405
UN3	2.27 (1.072)	2.19-2.35	23.9	42.8	18.8	9.9	2.9	0.9	0.9	0.92	0.69	0.231
UN8	2.54 (0.964)	2.47-2.62	10.7	44.1	27.9	14.2	2.7	0.1	0.1	0.51	-0.09	0.270
UN19	2.54 (1.110)	2.46-2.62	18.3	33.5	28.4	13.6	4.3	0.7	1.1	0.48	-0.16	0.215
BE12	2.24 (0.931)	2.17-2.31	20.6	45.3	22.5	9.2	1.1	0.1	1.1	0.63	0.20	0.371
BE18	2.04 (0.866)	1.98-2.10	26.2	50.9	15.3	5.9	0.9	0.1	0.7	0.92	1.14	0.404
TR9	3.44 (1.248)	3.35-3.53	5.3	20.6	24.9	23.2	22.9	2.0	1.0	-0.08	-0.92	0.147
TR20	3.01 (1.310)	2.91-3.10	11.2	30.1	24.4	16.5	14.9	2.3	0.7	0.33	-0.80	0.236
CO7	2.73 (1.193)	2.64-2.82	13.5	36.7	22.5	18.9	5.9	1.9	0.7	0.53	-0.27	0.277
CO16	2.81 (1.197)	2.72-2.90	11.7	36.2	21.3	20.6	8.2	1.1	0.7	0.41	-0.60	0.328
SEC5	2.92 (1.258)	2.83-3.01	12.6	29.7	23.8	21.1	9.9	2.0	1.0	0.31	-0.65	0.325
SEC14	2.89 (1.279)	2.80-2.99	13.2	29.9	25.6	17.8	9.9	2.7	0.9	0.42	-0.51	0.394
PO2	4.39 (1.136)	4.30-4.47	1.7	3.6	17.5	22.1	40.3	14.0	0.9	-0.65	0.07	0.370
PO17	3.32 (1.175)	3.23-3.40	3.6	23.5	31.1	20.9	17.5	2.1	1.3	0.20	-0.74	0.489
AC4	3.56 (1.303)	3.46-3.66	6.0	16.3	27.1	20.1	25.2	4.3	1.0	-0.13	-0.84	0.426
AC13	3.41 (1.265)	3.31-3.50	5.3	22.1	25.6	21.2	22.5	2.4	0.9	0.00	-0.95	0.571
HE10	3.42 (1.284)	3.33-3.52	6.2	19.3	27.9	21.9	19.8	4.2	0.7	0.04	-0.78	0.478
HE21	3.36 (1.299)	3.26-3.45	8.9	19.1	23.1	27.1	18.5	2.9	0.6	-0.11	-0.82	0.487
ST6	3.31 (1.334)	3.21-3.41	9.5	20.9	24.5	20.3	21.2	2.6	1.0	-0.01	-0.96	0.460
ST15	3.77 (1.406)	3.67-3.88	7.6	13.2	20.2	18.6	32.1	7.3	1.0	-0.38	-0.84	0.420

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.093 and 0.185, respectively.

Table A395 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Norway (first half-sample: n = 698)

	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Conservation	variance
	change	enhancement		
SD1	0.322	0.150	0.007	0.823
SD11	0.311	0.190	0.078	0.784
BE12	0.320	-0.222	0.360	0.804
BE18	0.262	-0.066	0.376	0.789
CO16	-0.172	0.097	0.605	0.609
SEC5	-0.190	0.199	0.554	0.624
SEC14	0.104	-0.098	0.672	0.556
PO2	0.175	0.491	-0.036	0.650
PO17	0.058	0.530	0.176	0.597
AC4	-0.004	0.843	-0.137	0.339
AC13	0.175	0.635	0.094	0.403
HE10	0.536	0.160	0.081	0.572
HE21	0.739	-0.010	0.057	0.447
ST6	0.643	0.075	-0.035	0.537
ST15	0.819	0.065	-0.171	0.287
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Self-enhancement	0.518	_		
Conservation	0.145	0.285	_	

Table A396 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Norway (N = 698)

		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	6	4	5
Mean (standard error)	3.15 (0.034)	3.67 (0.036)	2.58 (0.027)
95% Confidence interval	3.08-3.22	3.60-3.74	2.53-2.63
Standard deviation	0.894	0.947	0.720
Skewness (standard error)	-0.125 (0.093)	-0.134 (0.093)	0.202 (0.093)
Kurtosis (standard error)	-0.445 (0.185)	-0.461 (0.185)	-0.184 (0.185)
Cronbach's alpha reliability coeff.	0.793	0.779	0.646
Split-half reliability coefficient	0.754	0.771	0.611
Average inter-item correlations	0.383	0.466	0.265
Minimum-maximum correlations	0.133-0.594	0.337-0.597	0.126-0.405
Range of correlations	0.462	0.259	0.279
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.356		
Conservation	0.203	0.222	_

Table A397 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Norway (first half-sample: n = 698)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.425	-0.017	0.822
SD11	0.443	0.074	0.783
BE18	0.207	0.262	0.862
CO16	-0.102	0.632	0.621
SEC5	-0.051	0.643	0.599
SEC14	0.040	0.521	0.717
PO2	0.521	0.107	0.690
PO17	0.434	0.335	0.629
AC4	0.561	0.141	0.627
AC13	0.619	0.261	0.470
HE10	0.640	0.030	0.580
HE21	0.703	-0.085	0.527
ST6	0.684	-0.134	0.559
ST15	0.846	-0.290	0.319
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.242	_	

Table A398 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-10 items): European Social Survey 2008, Norway (first half-sample: n = 698)

Variables	Principal axis factor	Unique	
variables	Factor I Openness to change	Factor II Self-enhancement	variance
SD1	0.269	0.189	0.828
SD11	0.275	0.233	0.789
PO2	0.155	0.473	0.659
PO17	-0.020	0.628	0.621
AC4	-0.044	0.787	0.422
AC13	0.061	0.751	0.374
HE10	0.563	0.135	0.569
HE21	0.785	-0.056	0.436
ST6	0.675	0.016	0.531
ST15	0.818	-0.014	0.346
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.633	_	

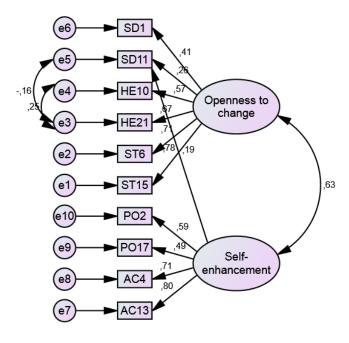

Note: Component and factor loadings >.22 are in boldface.

Table A399 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Norway (second half-sample: n = 699)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.35	.061	.872	.897	.860	.069 (.062077)
2a	2 first-order correlated factors (14 items)-without cross-						
2b	loadings 2 first-order correlated factors	5.59	.076	.856	.877	.820	.081 (.073090)
	(14 items)-with cross-loadings	4.67	.069	.886	.907	.856	.073 (.064081)
2c	2 first-order correlated factors (10 items)-without cross-						
2d	loadings 2 first-order correlated factors	2.90	.039	.952	.968	.955	.052 (.040065)
	(10 items)-with cross-loadings	2.67	.035	.957	.973	.960	.049 (.036062)
3a	3 first-order correlated factors- without cross-loadings	4.65	.064	.850	.878	.847	.072 (.065080)
3b	3 first-order correlated factors- with cross-loadings	4.15	.057	.871	.898	.868	.067 (.060075)
4	2 first-order correlated factors of unified values	4.48	.050	.914	.931	.898	.071 (.056086)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

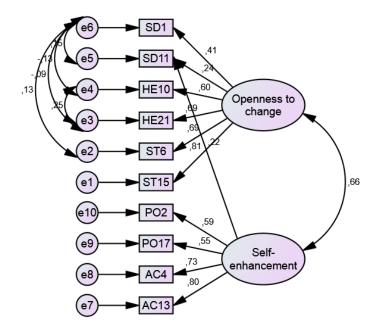


Fig. 117 Standardized solution for the 2 first-order correlated factors (model 2d-10 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Norway (second half-sample: n = 699)

a Higher values indicate better model fit

Table A400 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Norway (N = 1.397)

	Su	bscale
	Openness to change	Self-enhancement
Number of items	6	4
Mean (standard error)	3.15 (0.023)	3.65 (0.025)
95% Confidence interval	3.11-3.20	3.61-3.70
Standard deviation	0.749	0.922
Skewness (standard error)	-0.137 (0.065)	-0.096 (0.065)
Kurtosis (standard error)	-0.443 (0.131)	-0.395 (0.131)
Cronbach's alpha reliability coeff.	0.781	0.762
Split-half reliability coefficient	0.820	0.769
Average inter-item correlations	0.364	0.442
Minimum-maximum correlations	0.156-0.575	0.330-0.581
Range of correlations	0.419	0.250
	Average inter-	-item correlations
	between	n subscales
Openness to change	_	
Self-enhancement	0.331	

Fig. 118 Standardized solution for the 2 first-order correlated factors (model 2d-10 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Norway (N = 1,397)

Table A401 Item analysis of Schwartz scale values of the European Social Survey, 2010: Norway (first half-sample: n = 774)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.54 (1.201)	2.46-2.62	21.2	32.9	24.0	14.0	6.3	0.9	0.6	0.55	-0.35	0.232
SD11	2.49 (1.129)	2.42-2.57	18.9	38.4	21.8	14.5	5.7	0.1	0.6	0.55	-0.43	0.287
UN3	2.14 (1.010)	2.07-2.21	25.8	48.8	12.7	8.9	2.8	0.3	0.6	1.05	0.91	0.287
UN8	2.38 (0.965)	2.31-2.44	15.0	47.9	23.6	9.7	2.8	0.3	0.6	0.77	0.54	0.319
UN19	2.47 (1.090)	2.39-2.55	17.8	40.6	22.0	14.0	4.8	0.1	0.8	0.59	-0.30	0.265
BE12	2.20 (0.902)	2.13-2.26	21.4	47.0	22.1	7.5	1.3	-	0.6	0.64	0.22	0.459
BE18	1.86 (0.784)	1.81-1.92	32.3	53.7	7.8	4.9	0.4	-	0.9	1.05	1.55	0.403
TR9	3.46 (1.301)	3.37-3.55	5.2	23.3	21.8	21.3	24.8	2.8	0.8	-0.05	-1.05	0.098
TR20	2.88 (1.301)	2.79-2.97	13.4	33.3	20.8	17.3	12.8	1.7	0.6	0.39	-0.78	0.285
CO7	3.01 (1.186)	2.92-3.09	5.8	36.0	23.6	20.2	11.8	1.6	1.0	0.43	-0.66	0.261
CO16	2.47 (1.121)	2.39-2.55	16.1	46.1	18.0	12.8	5.3	0.9	0.8	0.84	0.23	0.310
SEC5	2.97 (1.322)	2.88-3.06	11.8	32.6	20.5	18.0	14.3	2.2	0.6	0.35	-0.85	0.315
SEC14	3.04 (1.263)	2.95-3.13	8.1	33.7	20.9	19.8	14.6	1.7	1.2	0.32	-0.87	0.414
PO2	4.49 (1.094)	4.42-4.57	1.2	4.9	12.4	19.5	48.2	13.2	0.6	-0.91	0.49	0.302
PO17	3.34 (1.240)	3.26-3.43	5.3	23.0	26.5	22.2	19.3	2.5	1.3	0.07	-0.85	0.386
AC4	3.73 (1.294)	3.64-3.82	4.9	15.4	21.1	22.9	30.7	4.3	0.8	-0.34	-0.82	0.344
AC13	3.34 (1.202)	3.25-3.42	4.8	24.5	22.7	26.6	19.0	1.0	1.3	-0.03	-0.96	0.442
HE10	3.15 (1.311)	3.06-3.24	9.2	28.7	20.9	19.9	19.0	1.4	0.9	0.13	-1.06	0.403
HE21	3.19 (1.265)	3.10-3.28	9.4	23.6	22.9	26.5	14.2	2.1	1.3	0.03	-0.82	0.377
ST6	3.29 (1.350)	3.20-3.39	10.7	20.8	22.0	21.8	22.2	1.8	0.6	-0.09	-1.05	0.379
ST15	3.87 (1.364)	3.77-3.97	6.8	12.0	17.2	20.2	37.0	5.9	0.9	-0.56	-0.67	0.297

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.088 and 0.176, respectively.

Table A402 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Norway (first half-sample: n = 774)

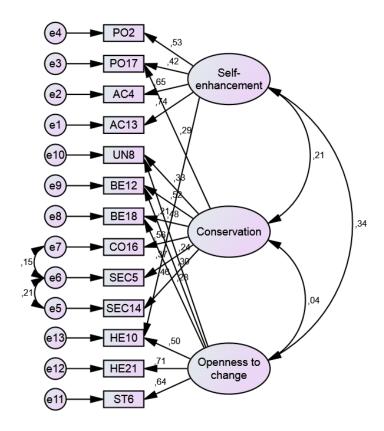
	Principal a	xis factor analysis				
Item	Factor I Self- enhancement	Factor II Conservation	Factor III Openness to change	Unique variance		
UN8	-0.131	0.291	0.266	0.837		
BE12	-0.158	0.505	0.306	0.636		
BE18	-0.057	0.430	0.253	0.724		
CO16	-0.034	0.641	-0.157	0.616		
SEC5	0.216	0.496	-0.203	0.667		
SEC14	0.079	0.506	0.041	0.702		
PO2	0.533	-0.113	0.176	0.666		
PO17	0.417	0.297	-0.058	0.681		
AC4	0.673	-0.060	0.022	0.559		
AC13	0.659	0.088	0.044	0.503		
HE10	0.236	0.015	0.480	0.647		
HE21	0.060	-0.038	0.690	0.508		
ST6	0.042	-0.042	0.644	0.579		
Factors	Correlations between factors					
Self-enhancement	_					
Conservation	0.300	_				
Openness to change	0.270	0.211	_			

Table A403 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Norway (first half-sample: n = 774)

		Subscale	
	Self- enhancement	Conservation	Openness to change
Number of items	4	6	3
Mean (standard error)	3.73 (0.031)	2.49 (0.023)	3.21 (0.037)
95% Confidence interval	3.66-3.79	2.44-2.53	3.14-3.28
Standard deviation	0.869	0.645	1.019
Skewness (standard error)	-0.318 (0.088)	0.220 (0.088)	-0.014 (0.088)
Kurtosis (standard error)	-0.185 (0.176)	-0.065 (0.176)	-0.626 (0.176)
Cronbach's alpha reliability coeff.	0.687	0.643	0.675
Split-half reliability coefficient	0.673	0.700	0.632
Average inter-item correlations	0.354	0.241	0.411
Minimum-maximum correlations	0.215-0.496	0.029-0.383	0.355-0.446
Range of correlations	0.280	0.355	0.091
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.194	_	
Openness to change	0.267	0.190	_

Table A404 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Norway (first half-sample: n = 774)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
BE12	0.180	0.268	0.861
BE18	0.185	0.284	0.847
CO16	-0.211	0.548	0.738
SEC5	-0.165	0.633	0.647
SEC14	0.028	0.472	0.767
PO2	0.400	0.178	0.757
PO17	0.086	0.527	0.683
AC4	0.283	0.309	0.762
AC13	0.300	0.433	0.629
HE10	0.592	0.050	0.626
HE21	0.707	-0.141	0.552
ST6	0.644	-0.144	0.631
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.360	_	


Table A405 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2010, Norway (second half-sample: n = 774)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.28	.065	.861	.882	.816	.074 (.066083)
2a	2 first-order correlated factors						
	(12 items)-without cross-						
	loadings	7.10	.076	.810	.830	.761	.089 (.080098)
2b	2 first-order correlated factors						
	(12 items)-with cross-loadings	6.79	.069	.826	.846	.773	.087 (.078096)
3a	3 first-order correlated factors-						
	without cross-loadings	5.03	.068	.841	.867	.827	.072 (.064080)
3b	3 first-order correlated factors-	4.0.	0.7.6	002	000	0.50	0.50 (0.54 0.50)
4	with cross-loadings	4.05	.056	.883	.908	.869	.063 (.054072)
4	2 first-order correlated factors of unified values	4.04	.054	.916	.935	.903	.063 (.048078)
	of unified values	4.04	.034	.910	.933	.903	.003 (.048078)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

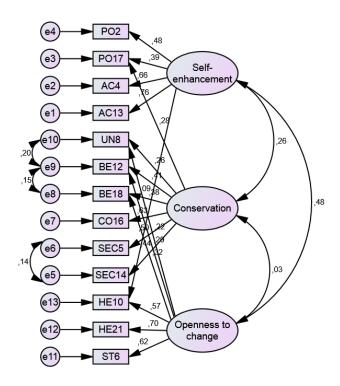

b Lower values indicate better model fit

Fig. 119 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Norway (second half-sample: n = 774)

Table A406 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Norway (N = 1,548)

		Subscale	
	Self- enhancement	Conservation	Openness to change
Number of items	4	6	3
Mean (standard error)	3.71 (0.022)	2.49 (0.016)	3.23 (0.026)
95% Confidence interval	3.67-3.75	2.46-2.52	3.18-3.28
Standard deviation	0.857	0.646	1.025
Skewness (standard error)	-0.260 (0.062)	0.271 (0.062)	-0.045 (0.062)
Kurtosis (standard error)	-0.203 (0.124)	0.015 (0.124)	-0.565 (0.124)
Cronbach's alpha reliability coeff.	0.678	0.643	0.678
Split-half reliability coefficient	0.664	0.698	0.626
Average inter-item correlations	0.342	0.241	0.415
Minimum-maximum correlations	0.178-0.507	0.084-0.382	0.362-0.455
Range of correlations	0.329	0.298	0.093
	Average inter-it	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.191	_	
Openness to change	0.278	0.190	_

Fig. 120 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Norway (N = 1,548)

Table A407 Item analysis of Schwartz scale values of the European Social Survey, 2012: Norway (first half-sample: n = 812)

			Frequency percent of response categories					ies				
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.47 (1.073)	2.40-2.54	19.2	34.4	30.3	11.1	3.9	0.5	0.6	0.53	-0.03	0.240
SD11	2.38 (1.112)	2.30-2.46	21.6	40.0	20.2	12.2	4.2	0.6	1.2	0.74	0.08	0.312
UN3	2.10 (1.027)	2.03-2.17	29.2	45.1	13.9	7.1	3.2	0.4	1.1	1.11	1.12	0.305
UN8	2.35 (0.935)	2.29-2.42	16.3	45.2	25.2	10.5	1.6	0.1	1.1	0.58	0.12	0.371
UN19	2.49 (1.126)	2.41-2.56	17.6	41.6	19.7	14.4	5.0	0.6	1.0	0.68	-0.12	0.241
BE12	2.13 (0.915)	2.07-2.20	24.9	46.3	18.3	8.6	0.9	-	1.0	0.68	0.07	0.463
BE18	1.85 (0.799)	1.79-1.90	34.9	49.6	10.0	3.9	0.6	-	1.0	1.03	1.45	0.432
TR9	3.31 (1.292)	3.23-3.40	6.9	23.9	25.1	19.1	22.0	2.0	1.0	0.04	-1.00	0.125
TR20	2.92 (1.341)	2.83-3.01	13.2	33.6	19.1	17.0	13.7	2.5	1.0	0.41	-0.81	0.228
CO7	2.79 (1.211)	2.70-2.87	12.9	34.6	23.6	17.6	9.0	1.2	1.0	0.44	-0.53	0.332
CO16	2.41 (1.114)	2.33-2.49	19.2	43.7	17.9	12.9	4.7	0.6	1.0	0.79	0.10	0.351
SEC5	2.83 (1.350)	2.73-2.92	17.4	30.8	19.5	15.5	14.5	1.2	1.1	0.37	-0.93	0.363
SEC14	2.69 (1.182)	2.61-2.77	13.3	39.4	20.7	15.5	9.1	0.5	1.5	0.53	-0.52	0.451
PO2	4.44 (1.105)	4.37-4.52	1.7	4.9	11.7	21.6	47.5	11.8	0.7	-0.94	0.67	0.291
PO17	3.34 (1.197)	3.26-3.42	5.4	21.8	26.2	24.9	19.7	0.9	1.1	-0.06	-0.90	0.435
AC4	3.59 (1.266)	3.50-3.67	5.2	15.9	26.6	22.5	24.8	3.9	1.1	-0.16	-0.78	0.423
AC13	3.14 (1.155)	3.06-3.22	5.8	26.7	28.7	24.4	11.9	1.5	1.0	0.19	-0.62	0.506
HE10	3.04 (1.233)	2.96-3.13	10.2	27.3	24.8	21.4	15.0	0.2	1.0	0.10	-0.97	0.446
HE21	3.09 (1.178)	3.01-3.17	7.8	27.6	24.8	26.2	11.7	0.9	1.1	0.09	-0.80	0.484
ST6	3.20 (1.312)	3.11-3.29	11.6	20.6	24.8	21.4	19.7	1.0	1.0	-0.05	-1.00	0.444
ST15	3.69 (1.360)	3.60-3.79	7.0	15.0	20.6	20.1	31.7	4.7	1.0	-0.35	-0.88	0.365

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.086 and 0.171, respectively.

Table A408 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Norway (first half-sample: n = 812)

	Principal a			
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		transcendence	
SD11	0.343	0.028	0.060	0.861
UN3	-0.003	0.142	0.378	0.813
UN8	0.037	0.070	0.520	0.694
BE12	0.098	0.150	0.526	0.618
BE18	0.202	0.097	0.415	0.700
CO7	-0.157	0.513	0.263	0.641
CO16	-0.166	0.534	0.280	0.606
SEC5	0.038	0.622	-0.003	0.602
SEC14	0.096	0.482	0.181	0.655
PO17	0.356	0.402	-0.094	0.679
AC4	0.623	0.233	-0.239	0.553
AC13	0.584	0.277	-0.128	0.558
HE10	0.610	-0.008	0.048	0.610
HE21	0.606	-0.034	0.157	0.561
ST6	0.565	-0.162	0.253	0.562
ST15	0.698	-0.280	0.133	0.461
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Conservation	0.214	_		
Self-transcendence	0.301	0.229	_	

Table A409 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Norway (first half-sample: n = 812)

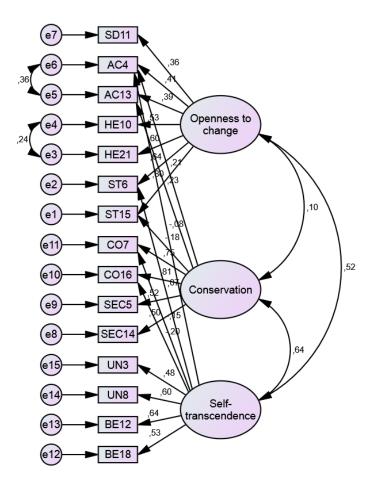
		Subscale	
	Openness to	Conservation	Self-
	change		transcendence
Number of items	7	5	4
Mean (standard error)	3.16 (0.029)	2.81 (0.029)	2.11 (0.023)
95% Confidence interval	3.11-3.22	2.76-2.87	2.06-2.15
Standard deviation	0.814	0.813	0.645
Skewness (standard error)	-0.052 (0.086)	0.354 (0.086)	0.551 (0.086)
Kurtosis (standard error)	-0.518 (0.171)	-0.223 (0.171)	0.441 (0.171)
Cronbach's alpha reliability coeff.	0.783	0.693	0.651
Split-half reliability coefficient	0.814	0.628	0.625
Average inter-item correlations	0.338	0.311	0.322
Minimum-maximum correlations	0.187-0.505	0.223-0.436	0.247-0.386
Range of correlations	0.318	0.214	0.139
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.218	_	
Self-transcendence	0.248	0.241	_

Table A410 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Norway (first half-sample: n = 812)

	Principal axis factor a						
Variables		Т. И	Unique				
	Factor I	Factor II	variance				
	Openness to change	Conservation					
SD11	0.360	0.042	0.859				
UN3	0.089	0.292	0.890				
UN8	0.176	0.274	0.863				
BE12	0.230	0.352	0.771				
BE18	0.309	0.261	0.784				
CO7	-0.142	0.626	0.645				
CO16	-0.148	0.653	0.614				
SEC5	-0.029	0.599	0.652				
SEC14	0.092	0.558	0.647				
PO17	0.281	0.343	0.741				
AC4	0.504	0.114	0.696				
AC13	0.506	0.204	0.636				
HE10	0.631	-0.006	0.605				
HE21	0.660	0.015	0.558				
ST6	0.647	-0.065	0.604				
ST15	0.770	-0.240	0.469				
Correlations between factors							
Openness to change	_						
Conservation	0.323	_					

Table A411 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-15 items): European Social Survey 2010, Norway (first half-sample: n = 812)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Conservation	Self-	variance			
	change		transcendence				
SD11	0.340	0.025	0.057	0.863			
UN3	-0.014	0.116	0.398	0.805			
UN8	0.018	0.038	0.545	0.681			
BE12	0.091	0.129	0.531	0.615			
BE18	0.184	0.065	0.436	0.695			
CO7	-0.145	0.474	0.269	0.655			
CO16	-0.156	0.491	0.292	0.621			
SEC5	0.088	0.668	-0.066	0.554			
SEC14	0.137	0.510	0.129	0.631			
AC4	0.620	0.227	-0.226	0.600			
AC13	0.607	0.291	-0.153	0.561			
HE10	0.605	-0.007	0.041	0.616			
HE21	0.614	-0.015	0.125	0.557			
ST6	0.561	-0.145	0.227	0.567			
ST15	0.685	-0.268	0.119	0.462			
Factors	Correl	ations between fa	ctors				
Openness to change	_						
Conservation	0.155	_					
Self-transcendence	0.355	0.296	_				


Table A412 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2012, Norway (second half-sample: n = 812)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.92	.063	.864	.887	.835	.070 (.063076)
2a	2 first-order correlated factors- without cross-loadings	7.45	.092	.757	.781	.729	.089 (.083095)
2b	2 first-order correlated factors- with cross-loadings	5.64	.075	.824	.849	.805	.076 (.069082)
3a	3 first-order correlated factors- without cross-loadings	5.78	.084	.809	.836	.799	.077 (.071083)
3b	3 first-order correlated factors- with cross-loadings	4.12	.057	.874	.900	.869	.062 (.056069)
3c	3 first-order correlated factors (15 items)-with cross-loadings	3.46	.048	.900	.926	.901	.055 (.048062)
4	2 first-order correlated factors of unified values	4.69	.059	.917	.933	.901	.067 (.054082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

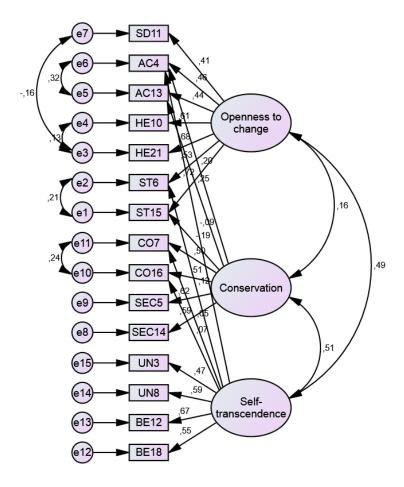

b Lower values indicate better model fit

Fig. 121 Standardized solution for the 3 first-order correlated factors (model 3c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Norway (second half-sample: n = 812)

Table A413 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Norway (N = 1,624)

		Subscale	
	Openness to change	Conservation	Self- transcendence
Number of items	7	4	4
Mean (standard error)	3.16 (0.020)	2.71 (0.022)	2.14 (0.016)
95% Confidence interval	3.12-3.20	2.67-2.75	2.10-2.17
Standard deviation	0.805	0.877	0.655
Skewness (standard error)	-0.099 (0.061)	0.325 (0.061)	0.512 (0.061)
Kurtosis (standard error)	-0.434 (0.121)	-0.286 (0.121)	0.141 (0.121)
Cronbach's alpha reliability coeff.	0.772	0.680	0.648
Split-half reliability coefficient	0.800	0.715	0.625
Average inter-item correlations	0.323	0.350	0.318
Minimum-maximum correlations	0.173-0.522	0.300-0.462	0.227-0.393
Range of correlations	0.349	0.163	0.166
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.195	_	
Self-transcendence	0.243	0.252	_

Fig. 122 Standardized solution for the 3 first-order correlated factors (model 3c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Norway (N = 1,624)

Table A414 Item analysis of Schwartz scale values of the European Social Survey, 2014: Norway (first half-sample: n = 718)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.38 (1.136)	2.29-2.46	25.1	33.8	23.1	12.1	5.2	-	0.7	0.57	-0.45	0.290
SD11	2.35 (1.134)	2.27-2.44	23.5	40.0	18.2	11.7	5.6	0.1	0.8	0.74	-0.16	0.222
UN3	2.15 (1.046)	2.08-2.23	27.6	44.8	14.5	9.2	2.6	0.6	0.7	1.02	0.86	0.210
UN8	2.39 (0.954)	2.32-2.46	15.9	44.4	24.4	12.7	1.7	-	1.0	0.50	-0.25	0.302
UN19	2.42 (1.142)	2.34-2.50	20.9	40.8	18.7	13.2	5.2	0.6	0.7	0.72	-0.10	0.195
BE12	2.23 (0.981)	2.16-2.30	22.6	46.1	18.0	10.9	1.7	0.1	0.7	0.74	0.17	0.425
BE18	1.81 (0.820)	1.75-1.87	38.4	46.8	8.6	5.0	0.1	0.1	0.8	1.12	1.60	0.406
TR9	3.43 (1.300)	3.33-3.52	6.7	21.0	22.1	23.7	22.3	2.9	1.3	-0.08	-0.94	0.132
TR20	3.02 (1.338)	2.92-3.12	13.0	28.6	20.2	20.6	14.8	2.1	0.8	0.22	-0.94	0.197
CO7	2.78 (1.241)	2.69-2.87	14.2	35.4	19.5	19.4	9.9	0.8	0.8	0.39	-0.76	0.306
CO16	2.46 (1.161)	2.37-2.54	19.2	42.2	18.4	12.3	6.7	0.6	0.7	0.76	-0.09	0.317
SEC5	2.99 (1.330)	2.89-3.08	12.7	30.2	21.3	17.7	15.7	1.7	0.7	0.27	-0.94	0.255
SEC14	2.75 (1.190)	2.66-2.84	13.6	34.8	22.6	19.8	7.1	1.1	1.0	0.41	-0.53	0.437
PO2	4.42 (1.117)	4.33-4.50	1.1	5.7	13.6	21.4	44.7	12.7	0.7	-0.76	0.15	0.287
PO17	3.40 (1.201)	3.31-3.48	4.0	21.6	28.7	22.0	20.9	1.8	1.0	0.04	-0.87	0.381
AC4	3.71 (1.295)	3.61-3.80	4.5	17.0	20.2	23.8	28.8	4.7	1.0	-0.28	-0.86	0.372
AC13	3.30 (1.224)	3.21-3.39	6.0	23.5	25.3	24.8	17.8	1.7	0.8	0.02	-0.86	0.490
HE10	3.16 (1.294)	3.07-3.26	9.3	26.9	21.6	22.7	17.3	1.5	0.7	0.09	-0.99	0.385
HE21	3.15 (1.269)	3.06-3.25	8.9	26.9	20.9	26.5	13.5	2.2	1.1	0.11	-0.84	0.429
ST6	3.26 (1.293)	3.16-3.35	9.2	22.7	22.4	23.7	19.8	1.3	1.0	-0.05	-1.00	0.377
ST15	3.71 (1.393)	3.61-3.82	7.4	15.5	18.7	20.6	31.1	6.0	0.8	-0.35	-0.90	0.298

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.091 and 0.182, respectively.

Table A415 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Norway (first half-sample: n = 718)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Conservation	Openness to	Self-	variance
		change	enhancement	
UN8	0.282	0.322	-0.177	0.816
BE12	0.397	0.269	-0.069	0.746
BE18	0.353	0.294	-0.038	0.756
CO7	0.612	-0.119	0.039	0.632
CO16	0.672	-0.198	0.090	0.538
SEC14	0.553	0.090	0.037	0.647
PO17	0.108	-0.013	0.555	0.649
AC4	-0.070	0.049	0.667	0.554
AC13	0.053	0.056	0.723	0.417
HE10	-0.039	0.601	0.080	0.609
HE21	-0.067	0.668	0.100	0.516
ST6	-0.034	0.603	0.000	0.645
Factors	Correl	ations between fa	ctors	
Conservation	_			
Openness to change	0.230	_		
Self-enhancement	0.305	0.365	_	

Table A416 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Norway (first half-sample: n = 718)

		Subscale	
	Conservation	Openness to	Self-
		change	enhancement
Number of items	5	4	3
Mean (standard error)	2.41 (0.027)	2.99 (0.031)	3.47 (0.037)
95% Confidence interval	2.35-2.46	2.93-3.05	3.40-3.54
Standard deviation	0.712	0.839	0.985
Skewness (standard error)	0.426 (0.091)	0.076 (0.091)	-0.176 (0.091)
Kurtosis (standard error)	0.121 (0.182)	-0.386 (0.182)	-0.579 (0.182)
Cronbach's alpha reliability coeff.	0.665	0.640	0.706
Split-half reliability coefficient	0.689	0.574	0.564
Average inter-item correlations	0.284	0.296	0.445
Minimum-maximum correlations	0.163-0.428	0.140-0.479	0.376-0.519
Range of correlations	0.265	0.340	0.143
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.197	_	
Self-enhancement	0.230	0.239	_

Table A417 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Norway (first half-sample: n = 718)

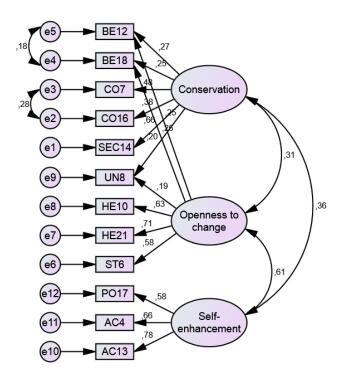

Variables	Principal axis factor a	I I	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
BE12	0.181	0.303	0.840
BE18	0.232	0.279	0.826
CO7	-0.138	0.616	0.657
CO16	-0.196	0.717	0.539
SEC14	0.068	0.523	0.698
PO17	0.293	0.328	0.743
AC4	0.396	0.191	0.757
AC13	0.433	0.319	0.622
HE10	0.627	-0.076	0.632
HE21	0.706	-0.103	0.539
ST6	0.560	-0.102	0.714
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.325	_	

Table A418 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2014, Norway (second half-sample: n = 718)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.81	.064	.845	.866	.804	.082 (.072092)
2a	2 first-order correlated factors (11 items)-without cross-						
	loadings	6.54	.067	.845	.864	.797	.088 (.078099)
2b	2 first-order correlated factors						
	(11 items)-with cross-loadings	5.85	.062	.872	.890	.822	.082 (.071093)
3a	3 first-order correlated factors-						
	without cross-loadings	6.40	.073	.814	.836	.780	.087 (.078096)
3b	3 first-order correlated factors-						
	with cross-loadings	5.63	.061	.846	.869	.811	.080 (.071090)
4	2 first-order correlated factors of unified values	4.08	.056	.917	.935	.904	.066 (.051081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

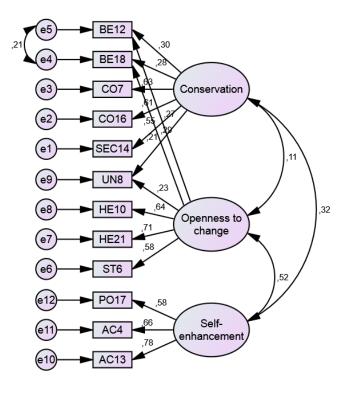


Fig. 123 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Norway (second half-sample: n = 718)

a Higher values indicate better model fit

Table A419 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Norway (N = 1,436)

		Subscale	
	Conservation	Openness to change	Self- enhancement
Number of items	5	4	3
Mean (standard error)	2.39 (0.018)	3.01 (0.022)	3.46 (0.026)
95% Confidence interval	2.36-2.43	2.97-3.05	3.41-3.51
Standard deviation	0.683	0.833	0.994
Skewness (standard error)	0.401 (0.065)	0.047 (0.065)	-0.119 (0.065)
Kurtosis (standard error)	0.065 (0.129)	-0.463 (0.129)	-0.640 (0.129)
Cronbach's alpha reliability coeff.	0.635	0.630	0.709
Split-half reliability coefficient	0.665	0.559	0.571
Average inter-item correlations	0.257	0.287	0.448
Minimum-maximum correlations	0.146-0.418	0.097-0.472	0.388-0.519
Range of correlations	0.273	0.375	0.131
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.190	_	
Self-enhancement	0.217	0.255	_

Fig. 124 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Norway (N = 1,436)

Table A420 Item analysis of Schwartz scale values of the European Social Survey, 2002: Poland (first half-sample: n = 1,055)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.90 (1.355)	2.81-2.98	12.7	35.0	21.4	11.8	13.8	3.5	1.7	0.55	-0.62	0.416
SD11	2.11 (1.003)	2.05-2.17	27.5	45.7	15.5	6.6	2.7	0.5	1.5	1.10	1.31	0.361
UN3	1.89 (0.838)	1.84-1.94	31.9	53.4	9.1	3.1	1.1	0.5	0.9	1.49	3.91	0.338
UN8	2.62 (1.110)	2.55-2.69	11.9	42.3	23.5	10.8	7.5	0.8	3.2	0.73	0.09	0.372
UN19	2.05 (0.826)	2.00-2.10	24.5	51.0	17.6	4.3	0.9	0.1	1.7	0.83	1.19	0.331
BE12	2.35 (0.902)	2.29-2.40	14.8	46.4	26.4	9.1	1.4	0.2	1.7	0.63	0.43	0.422
BE18	2.04 (0.753)	1.99-2.08	20.9	57.3	16.6	2.4	0.8	0.2	1.9	0.97	2.60	0.407
TR9	2.79 (1.253)	2.71-2.86	12.0	38.5	22.2	12.9	11.8	1.6	0.9	0.59	-0.48	0.103
TR20	2.15 (0.998)	2.09-2.21	25.5	47.0	17.1	6.4	2.6	0.7	0.9	1.11	1.50	0.234
CO7	2.30 (1.045)	2.24-2.37	18.4	49.0	18.8	6.0	5.0	0.1	2.1	1.14	1.33	0.312
CO16	2.33 (1.011)	2.27-2.39	16.2	51.4	18.1	8.7	3.7	0.7	1.2	1.06	1.14	0.324
SEC5	1.99 (0.964)	1.93-2.05	31.4	48.9	11.9	3.7	2.8	0.6	0.7	1.42	2.65	0.254
SEC14	1.97 (0.886)	1.92-2.03	29.9	49.5	13.6	3.7	1.2	0.6	1.5	1.29	2.84	0.316
PO2	3.86 (1.351)	3.78-3.94	4.5	13.9	20.9	20.6	29.9	9.2	0.9	-0.30	-0.81	0.293
PO17	3.09 (1.362)	3.01-3.18	9.6	31.5	22.2	12.6	19.1	3.0	2.0	0.35	-0.94	0.285
AC4	3.16 (1.343)	3.08-3.24	7.9	29.4	26.6	12.2	18.0	4.2	1.7	0.38	-0.81	0.415
AC13	2.96 (1.253)	2.88-3.03	9.0	33.1	26.8	14.8	11.3	3.1	1.9	0.53	-0.39	0.560
HE10	3.58 (1.444)	3.49-3.67	6.7	20.9	21.3	17.3	22.9	9.3	1.5	-0.01	-1.05	0.432
HE21	3.67 (1.457)	3.58-3.76	6.2	19.4	20.9	18.3	22.4	11.6	1.2	-0.05	-1.04	0.369
ST6	2.91 (1.350)	2.83-2.99	13.1	33.4	22.0	13.5	13.5	3.3	1.3	0.50	-0.65	0.496
ST15	3.97 (1.471)	3.88-4.06	4.9	16.2	16.3	16.9	29.7	15.3	0.8	-0.33	-1.00	0.386

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.075 and 0.150, respectively.

Table A421 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Poland (first half-sample: n = 1.055)

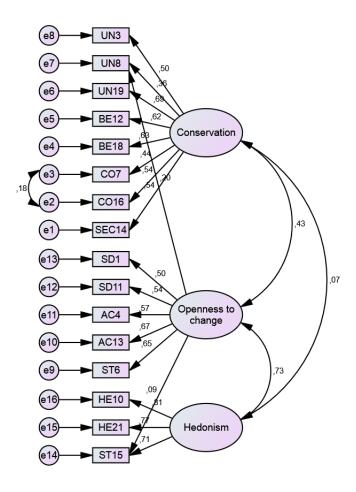
	Principal a	xis factor analysis	(factors)	
	Factor I	Factor II	Factor III	Unique
Item	Conservation	Openness to	Hedonism	variance
		change		
SD1	-0.059	0.662	-0.068	0.635
SD11	0.110	0.418	-0.006	0.786
UN3	0.490	0.123	-0.074	0.709
UN8	0.314	0.308	-0.064	0.762
UN19	0.615	-0.067	0.031	0.647
BE12	0.430	0.207	0.003	0.713
BE18	0.565	0.004	0.098	0.672
CO7	0.562	0.006	-0.104	0.669
CO16	0.618	-0.106	0.006	0.651
SEC14	0.573	-0.100	0.074	0.705
AC4	-0.051	0.554	-0.029	0.728
AC13	0.044	0.573	0.151	0.525
HE10	0.055	0.041	0.741	0.409
HE21	0.022	-0.103	0.912	0.275
ST6	-0.011	0.653	0.050	0.536
ST15	-0.121	0.286	0.551	0.425
Factors	Correl	ations between fac	ctors	
Conservation	_			
Openness to change	0.328	_		
Hedonism	-0.025	0.614	_	

Table A422 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Poland (first half-sample: n = 1,055)

		Subscale	
	Conservation	Openness to	Hedonism
		change	
Number of items	8	5	3
Mean (standard error)	2.19 (0.017)	2.81 (0.027)	3.74 (0.038)
95% Confidence interval	2.16-2.23	2.75-2.86	3.66-3.82
Standard deviation	0.564	0.874	1.250
Skewness (standard error)	0.501 (0.075)	0.531 (0.075)	-0.048 (0.075)
Kurtosis (standard error)	1.444 (0.150)	0.334 (0.150)	-0.846 (0.150)
Cronbach's alpha reliability coeff.	0.755	0.724	0.821
Split-half reliability coefficient	0.737	0.669	0.756
Average inter-item correlations	0.287	0.343	0.604
Minimum-maximum correlations	0.175-0.415	0.215-0.453	0.561-0.648
Range of correlations	0.240	0.238	0.087
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.212	_	
Hedonism	0.186	0.355	-

Table A423 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Poland (first half-sample: n = 1.055)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.470	0.172	0.722
SD11	0.338	0.244	0.798
UN3	0.023	0.531	0.713
UN8	0.187	0.423	0.759
UN19	-0.032	0.549	0.703
BE12	0.169	0.480	0.714
BE18	0.091	0.510	0.715
CO7	-0.104	0.566	0.689
CO16	-0.087	0.539	0.718
SEC14	-0.016	0.486	0.766
AC4	0.423	0.139	0.781
AC13	0.618	0.186	0.544
HE10	0.741	-0.136	0.467
HE21	0.755	-0.233	0.437
ST6	0.580	0.184	0.594
ST15	0.786	-0.185	0.399
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.173	_	


Table A424 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2002, Poland (second half-sample: n = 1,055)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.33	.035	.951	.961	.915	.056 (.049064)
2a	2 first-order correlated factors- without cross-loadings	5.40	.070	.898	.915	.887	.065 (.059070)
2b	2 first-order correlated factors- with cross-loadings	5.10	.067	.906	.922	.895	.062 (.057068)
3a	3 first-order correlated factors- without cross-loadings	5.25	.060	.891	.909	.891	.064 (.058069)
3b	3 first-order correlated factors- with cross-loadings	5.01	.056	.898	.916	.897	.062 (.056067)
4	4 first-order correlated factors of unified values	5.53	.062	.877	.896	.875	.066 (.061071)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

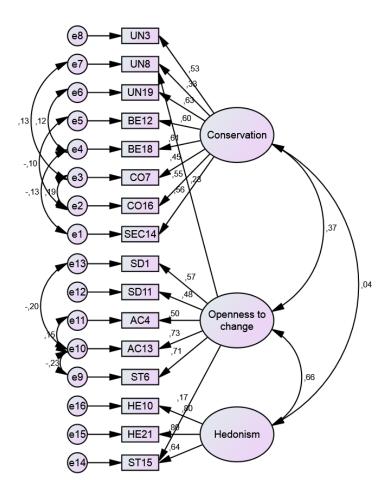

b Lower values indicate better model fit

Fig. 125 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Poland (second half-sample: n = 1,055)

Table A425 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Poland (N = 2,110)

		Subscale	
	Conservation	Openness to change	Hedonism
Number of items	8	5	3
Mean (standard error)	2.21 (0.013)	2.81 (0.019)	3.73 (0.028)
95% Confidence interval	2.18-2.23	2.78-2.85	3.67-3.78
Standard deviation	0.584	0.874	1.270
Skewness (standard error)	0.555 (0.053)	0.458 (0.053)	-0.075 (0.053)
Kurtosis (standard error)	1.314 (0.107)	0.136 (0.107)	-0.847 (0.107)
Cronbach's alpha reliability coeff.	0.767	0.724	0.825
Split-half reliability coefficient	0.742	0.664	0.750
Average inter-item correlations	0.299	0.344	0.611
Minimum-maximum correlations	0.184-0.450	0.248-0.454	0.583-0.644
Range of correlations	0.266	0.206	0.061
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.223	_	
Hedonism	0.197	0.361	

Fig. 126 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Poland (N = 2,110)

Table A426 Item analysis of Schwartz scale values of the European Social Survey, 2004: Poland (first half-sample: n = 858)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.85 (1.236)	2.77-2.94	11.9	32.2	28.1	12.0	12.4	1.5	2.0	0.49	-0.47	0.392
SD11	2.19 (1.052)	2.12-2.26	25.9	43.7	18.2	6.9	3.5	0.7	1.2	1.05	1.09	0.406
UN3	1.97 (0.858)	1.92-2.03	28.3	51.9	13.2	3.5	1.4	0.3	1.4	1.25	2.71	0.373
UN8	2.62 (1.049)	2.55-2.69	10.8	41.8	25.2	12.4	5.9	0.3	3.5	0.63	0.02	0.333
UN19	2.02 (0.891)	1.96-2.08	28.6	47.9	15.9	4.9	1.3	0.2	1.3	1.02	1.49	0.406
BE12	2.32 (0.943)	2.25-2.38	16.3	47.3	24.6	6.8	2.8	0.3	1.9	0.87	1.06	0.486
BE18	1.93 (0.813)	1.88-1.98	28.4	54.7	10.7	3.4	0.7	0.5	1.6	1.34	3.64	0.494
TR9	2.74 (1.234)	2.66-2.82	13.5	37.6	22.3	14.1	10.1	1.4	0.9	0.58	-0.43	0.158
TR20	2.14 (1.047)	2.07-2.21	28.4	43.6	15.7	7.5	2.9	0.7	1.2	1.09	1.16	0.249
CO7	2.47 (1.153)	2.39-2.54	17.4	43.8	18.9	10.7	6.5	1.0	1.6	0.88	0.27	0.299
CO16	2.26 (0.999)	2.19-2.33	18.9	50.0	19.0	5.6	4.3	0.5	1.7	1.12	1.43	0.334
SEC5	1.96 (0.986)	1.89-2.03	34.6	45.6	11.5	4.5	2.2	0.8	0.7	1.43	2.62	0.328
SEC14	2.04 (0.941)	1.98-2.10	28.6	47.4	14.5	4.9	2.7	0.1	1.9	1.13	1.51	0.345
PO2	3.93 (1.288)	3.85-4.02	2.8	13.6	20.6	20.2	33.2	8.2	1.4	-0.34	-0.80	0.240
PO17	2.80 (1.331)	2.71-2.89	15.4	33.7	21.3	11.0	13.4	2.3	2.9	-0.34	-0.80	0.319
AC4	3.03 (1.318)	2.95-3.12	9.2	32.3	23.9	13.2	15.7	3.1	2.6	0.44	-0.72	0.413
AC13	2.96 (1.211)	2.88-3.04	8.3	33.0	27.9	14.0	13.8	1.3	1.9	0.44	-0.60	0.533
HE10	3.59 (1.474)	3.49-3.69	7.8	20.5	19.9	15.5	25.6	9.0	1.6	-0.08	-1.11	0.408
HE21	3.62 (1.443)	3.52-3.71	6.3	20.6	21.3	17.1	24.0	9.6	1.0	-0.04	-1.07	0.301
ST6	2.98 (1.353)	2.89-3.08	12.5	31.1	20.7	17.0	13.9	3.3	1.5	0.38	-0.79	0.442
ST15	3.93 (1.485)	3.84-4.03	5.8	15.6	17.6	14.3	31.4	14.2	1.0	-0.34	-1.01	0.333

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.167, respectively.

Table A427 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Poland (first half-sample: n = 858)

	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Self-	Openness to	Self-	variance		
	transcendence	change	enhancement			
SD1	0.106	0.176	0.314	0.771		
SD11	0.166	0.168	0.299	0.756		
UN3	0.537	0.071	-0.052	0.726		
UN8	0.383	0.128	0.002	0.829		
UN19	0.630	0.040	-0.064	0.630		
BE12	0.607	0.098	0.029	0.596		
BE18	0.720	0.160	-0.111	0.513		
CO16	0.589	-0.247	0.056	0.596		
SEC5	0.498	-0.200	0.119	0.687		
SEC14	0.507	-0.088	0.057	0.719		
PO17	0.213	-0.099	0.272	0.854		
AC4	-0.085	-0.037	0.705	0.571		
AC13	0.001	0.157	0.645	0.451		
HE10	0.048	0.820	-0.061	0.373		
HE21	-0.023	0.761	-0.074	0.476		
ST6	0.103	0.419	0.198	0.665		
ST15	-0.149	0.685	0.163	0.397		
Factors	Correl	ations between fa	ctors			
Self-transcendence	_					
Openness to change	0.066	_				
Self-enhancement	0.414	0.529	_			

Table A428 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Poland (first half-sample: n = 858)

		Subscale	
	Self-	Openness to	Self-
	transcendence	change	enhancement
Number of items	8	4	5
Mean (standard error)	2.14 (0.020)	3.53 (0.039)	2.77 (0.027)
95% Confidence interval	2.10-2.18	3.46-3.61	2.72-2.82
Standard deviation	0.587	1.129	0.793
Skewness (standard error)	0.694 (0.083)	-0.015 (0.083)	0.362 (0.083)
Kurtosis (standard error)	1.868 (0.167)	-0.737 (0.167)	0.381 (0.167)
Cronbach's alpha reliability coeff.	0.778	0.791	0.821
Split-half reliability coefficient	0.751	0.796	0.605
Average inter-item correlations	0.312	0.483	0.272
Minimum-maximum correlations	0.117-0.492	0.322-0.607	0.129-0.486
Range of correlations	0.375	0.286	0.357
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.193	_	
Self-enhancement	0.223	0.288	_

Table A429 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Poland (first half-sample: n = 858)

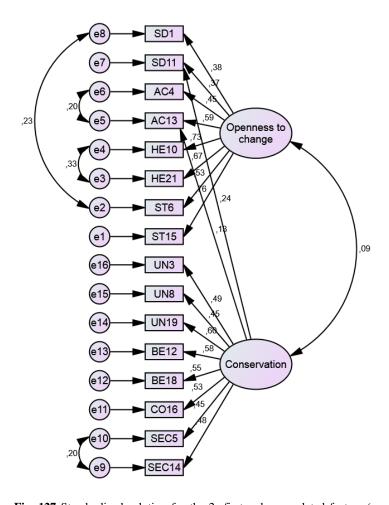
	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.385	0.210	0.779
SD11	0.370	0.264	0.760
UN3	0.050	0.478	0.760
UN8	0.139	0.346	0.844
UN19	0.014	0.565	0.677
BE12	0.131	0.577	0.624
BE18	0.105	0.605	0.601
CO16	-0.197	0.638	0.598
SEC5	-0.112	0.571	0.683
SEC14	-0.039	0.531	0.723
PO17	0.084	0.343	0.865
AC4	0.404	0.218	0.759
AC13	0.566	0.249	0.569
HE10	0.761	-0.116	0.438
HE21	0.700	-0.181	0.521
ST6	0.554	0.114	0.658
ST15	0.798	-0.197	0.379
	Correlations betw	veen factors	
Openness to change			
Conservation	0.173	_	

Table A430 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-12 items): European Social Survey 2004, Poland (first half-sample: n = 858)

	Principal axis factor		
Variables	•	Unique	
	Factor I	Factor II	variance
	Self-transcendence	Openness to change	
UN3	0.551	0.048	0.691
UN8	0.391	0.129	0.825
UN19	0.590	0.013	0.651
BE12	0.635	0.112	0.576
BE18	0.656	0.112	0.549
CO16	0.597	-0.202	0.616
SEC5	0.545	-0.123	0.695
SEC14	0.519	-0.053	0.730
HE10	0.019	0.791	0.372
HE21	-0.056	0.722	0.480
ST6	0.192	0.517	0.685
ST15	-0.083	0.766	0.413
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.055	_	

Table A431 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-16 items): European Social Survey 2004, Poland (first half-sample: n = 858)

	Principal axis factor a			
Variables			Unique	
	Factor I	Factor II	variance	
	Openness to change	Conservation		
SD1	0.391	0.204	0.779	
SD11	0.376	0.239	0.772	
UN3	0.059	0.516	0.720	
UN8	0.146	0.362	0.830	
UN19	0.026	0.561	0.680	
BE12	0.142	0.605	0.585	
BE18	0.118	0.594	0.610	
CO16	-0.182	0.615	0.626	
SEC5	-0.100	0.562	0.693	
SEC14	-0.028	0.524	0.729	
AC4	0.409	0.191	0.770	
AC13	0.572	0.228	0.577	
HE10	0.760	-0.126	0.438	
HE21	0.698	-0.191	0.521	
ST6	0.559	0.126	0.648	
ST15	0.796	-0.208	0.379	
	Correlations betw	veen factors		
Openness to change	_			
Conservation	0.167	_		


Table A432 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Poland (second half-sample: n = 858)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.65	.053	.925	.944	.895	.056 (.049063)
2a	2 first-order correlated factors (17 items)-without cross-						
	loadings	5.01	.075	.847	.872	.841	.068 (.063074)
2b	2 first-order correlated factors						
	(17 items)-with cross-loadings	4.70	.070	.859	.884	.853	.066 (.060072)
2c	2 first-order correlated factors (12 items)-without cross-						
	loadings	4.76	.062	.895	.914	.891	.066 (.058075)
2d	2 first-order correlated factors						
	(16 items)-with cross-loadings	4.53	.069	.869	.894	.869	.064 (.058070)
3a	3 first-order correlated factors-						
	without cross-loadings	5.09	.066	.836	.863	.838	.069 (.064075)
3b	3 first-order correlated factors-						
	with cross-loadings	4.89	.063	.843	.870	.845	.067 (.062073)
4	4 first-order correlated factors of unified values	4.88	.068	.852	.878	.853	.067 (.062073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

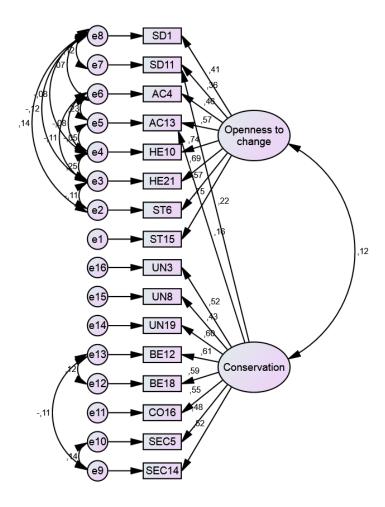

b Lower values indicate better model fit

Fig. 127 Standardized solution for the 2 first-order correlated factors (model 2d-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Poland (second half-sample: n = 858)

Table A433 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Poland (N=1,716)

	Subscale			
	Openness to change	Conservation		
Number of items	8	8		
Mean (standard error)	3.13 (0.021)	2.16 (0.014)		
95% Confidence interval	3.09-3.17	2.13-2.18		
Standard deviation	0.865	0.578		
Skewness (standard error)	0.216 (0.059)	0.671 (0.059)		
Kurtosis (standard error)	-0.420 (0.118)	1.466 (0.118)		
Cronbach's alpha reliability coeff.	0.807	0.762		
Split-half reliability coefficient	0.684	0.754		
Average inter-item correlations	0.339	0.293		
Minimum-maximum correlations	0.197-0.632	0.158-0.438		
Range of correlations	0.435	0.280		
	Average inter	-item correlations		
	between	n subscales		
Openness to change	_			
Conservation	0.191	_		

Fig. 128 Standardized solution for the 2 first-order correlated factors (model 2d-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Poland (N = 1,716)

Table A434 Item analysis of Schwartz scale values of the European Social Survey, 2006: Poland (first half-sample: n = 860)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.86 (1.242)	2.77-2.94	11.5	33.3	27.1	11.5	12.9	1.5	2.2	0.51	-0.49	0.344
SD11	2.14 (0.913)	2.08-2.20	21.2	53.0	15.5	5.7	2.7	0.1	1.9	1.10	1.57	0.381
UN3	1.94 (0.758)	1.89-1.99	26.3	56.5	12.4	2.6	0.6	0.2	1.5	1.09	2.97	0.330
UN8	2.35 (0.955)	2.28-2.41	14.7	48.5	23.5	7.7	2.6	0.7	2.4	0.98	1.38	0.385
UN19	2.08 (0.868)	2.03-2.14	23.3	51.5	16.6	4.9	1.6	0.1	2.0	0.99	1.51	0.426
BE12	2.38 (0.877)	2.32-2.44	12.2	47.8	29.8	6.7	1.9	0.3	1.3	0.76	1.14	0.400
BE18	2.03 (0.784)	1.98-2.08	21.7	57.0	14.8	2.9	1.3	0.1	2.2	1.09	2.57	0.430
TR9	2.72 (1.177)	2.64-2.80	11.4	40.1	24.4	13.1	8.5	1.5	0.9	0.68	-0.11	0.175
TR20	2.16 (0.995)	2.10-2.23	24.3	47.6	16.7	7.1	2.3	0.7	1.3	1.10	1.47	0.244
CO7	2.37 (1.071)	2.30-2.44	18.5	44.3	20.2	9.1	4.9	0.6	2.4	0.91	0.57	0.291
CO16	2.33 (0.975)	2.27-2.40	14.1	53.0	21.0	5.6	4.0	0.8	1.5	1.21	1.89	0.349
SEC5	2.05 (0.917)	1.99-2.11	25.9	52.2	13.5	4.5	2.6	0.2	1.0	1.23	2.08	0.338
SEC14	2.14 (1.002)	2.07-2.21	25.3	45.8	16.6	5.6	2.6	0.9	3.1	1.22	1.96	0.374
PO2	3.88 (1.238)	3.80-3.97	2.4	12.8	23.8	20.5	33.1	6.0	0.5	-0.30	-0.79	0.262
PO17	2.83 (1.302)	2.74-2.92	13.6	34.5	22.7	11.0	14.7	1.5	2.0	0.51	-0.67	0.365
AC4	3.01 (1.225)	2.93-3.09	8.3	30.5	28.7	14.3	14.7	1.5	2.1	0.38	-0.64	0.470
AC13	2.95 (1.172)	2.87-3.02	7.9	31.7	30.9	14.2	12.1	1.3	1.9	0.45	-0.43	0.534
HE10	3.57 (1.396)	3.48-3.66	5.7	21.3	22.7	17.7	24.1	7.6	1.0	-0.01	-1.03	0.414
HE21	3.57 (1.405)	3.48-3.66	5.8	21.4	22.1	17.4	23.4	8.0	1.9	-0.00	-1.03	0.388
ST6	2.87 (1.231)	2.79-2.95	11.0	33.8	25.1	15.7	11.2	1.6	1.5	0.46	-0.52	0.474
ST15	3.88 (1.408)	3.78-3.97	5.7	14.1	19.0	18.3	31.0	10.5	1.5	-0.35	-0.86	0.385

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.167, respectively.

Table A435 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Poland (first half-sample: n = 860)

	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Self-	Openness to	Self-	variance		
	transcendence	change	enhancement			
SD1	0.045	0.195	0.290	0.803		
SD11	0.229	0.196	0.157	0.807		
UN3	0.474	0.042	-0.033	0.784		
UN8	0.438	0.039	0.064	0.769		
UN19	0.695	0.027	-0.116	0.576		
BE12	0.469	0.093	0.004	0.758		
BE18	0.699	0.066	-0.115	0.565		
CO16	0.549	-0.176	0.072	0.664		
SEC5	0.469	-0.135	0.113	0.732		
SEC14	0.464	-0007	0.053	0.760		
PO17	0.247	-0.052	0.277	0.814		
AC4	-0.059	-0.021	0.754	0.485		
AC13	0.026	0.232	0.544	0.504		
HE10	-0.013	0.885	-0.070	0.277		
HE21	-0.005	0.836	-0.086	0.369		
ST6	0.133	0.368	0.219	0.675		
ST15	-0.102	0.664	0.142	0.462		
Factors	Correl	ations between fa	ctors			
Self-transcendence	_					
Openness to change	0.132	_				
Self-enhancement	0.468	0.516	_			

Table A436 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Poland (first half-sample: n = 860)

		Subscale	
	Self-	Openness to	Self-
	transcendence	change	enhancement
Number of items	9	4	4
Mean (standard error)	2.16 (0.018)	3.47 (0.037)	2.91 (0.028)
95% Confidence interval	2.13-2.20	3.40-3.54	2.86-2.97
Standard deviation	0.521	1.080	0.833
Skewness (standard error)	0.329 (0.083)	0.016 (0.083)	0.300 (0.083)
Kurtosis (standard error)	0.437 (0.167)	-0.677 (0.167)	-0.071 (0.167)
Cronbach's alpha reliability coeff.	0.754	0.803	0.600
Split-half reliability coefficient	0.722	0.806	0.585
Average inter-item correlations	0.259	0.499	0.277
Minimum-maximum correlations	0.053-0.480	0.351-0.689	0.049-0.481
Range of correlations	0.427	0.338	0.432
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.194	_	
Self-enhancement	0.217	0.317	_

Table A437 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Poland (first half-sample: n = 860)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Self-transcendence	
SD1	0.361	0.165	0.815
SD11	0.288	0.275	0.804
UN3	0.025	0.431	0.809
UN8	0.076	0.450	0.776
UN19	-0.033	0.590	0.660
BE12	0.098	0.438	0.778
BE18	0.005	0.591	0.649
CO16	-0.139	0.592	0.669
SEC5	-0.075	0.533	0.730
SEC14	0.023	0.476	0.768
PO17	0.102	0.388	0.820
AC4	0.385	0.304	0.704
AC13	0.533	0.267	0.577
HE10	0.848	-0.170	0.321
HE21	0.788	-0.163	0.413
ST6	0.499	0.189	0.670
ST15	0.761	-0.123	0.450
	Correlations bet	ween factors	
Openness to change	<u> </u>		
Self-transcendence	0.236	-	

Table A438 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-13 items): European Social Survey 2006, Poland (first half-sample: n = 860)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Openness to change	
SD11	0.286	0.271	0.824
UN3	0.475	0.031	0.769
UN8	0.482	0.069	0.754
UN19	0.628	-0.024	0.610
BE12	0.473	0.097	0.754
BE18	0.629	0.019	0.601
CO16	0.562	-0.133	0.686
SEC5	0.517	-0.069	0.737
SEC14	0.498	0.021	0.749
HE10	-0.054	0.859	0.272
HE21	-0.058	0.801	0.367
ST6	0.228	0.465	0.703
ST15	-0.046	0.721	0.487
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.134	_	

Table A439 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2006, Poland (second half-sample: n = 861)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.01	.056	.897	.920	.876	.059 (.053066)
2a	2 first-order correlated factors (17 items)-without cross-						
2b	loadings 2 first-order correlated factors	4.58	.065	.854	.881	.853	.065 (.059070)
	(17 items)-with cross-loadings	4.30	.060	.866	.893	.864	.062 (.056068)
2c	2 first-order correlated factors (13 items)-without cross-						
2d	loadings 2 first-order correlated factors	5.00	.071	.872	.895	.867	.068 (.061076)
	(13 items)-with cross-loadings	3.53	.049	.913	.935	.916	.054 (.046062)
3a	3 first-order correlated factors- without cross-loadings	5.13	.073	.830	.858	.830	.069 (.064075)
3b	3 first-order correlated factors- with cross-loadings	5.09	.072	.834	.862	.832	.069 (.063075)
4	4 first-order correlated factors of unified values	4.87	.064	.845	.872	.846	.067 (.062073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

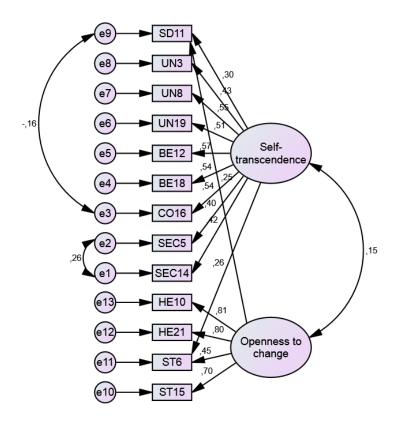


Fig. 129 Standardized solution for the 2 first-order correlated factors (model 2d-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Poland (second half-sample: n = 861)

a Higher values indicate better model fit

Table A440 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Poland (N = 1,721)

	Sul	bscale
	Self-	Openness to
	transcendence	change
Number of items	9	4
Mean (standard error)	2.16 (0.012)	3.47 (0.026)
95% Confidence interval	2.14-2.19	3.42-3.52
Standard deviation	0.513	1.066
Skewness (standard error)	0.351 (0.059)	-0.011 (0.059)
Kurtosis (standard error)	0.580 (0.118)	-0.634 (0.118)
Cronbach's alpha reliability coeff.	0.740	0.798
Split-half reliability coefficient	0.683	0.804
Average inter-item correlations	0.244	0.492
Minimum-maximum correlations	0.045-0.384	0.358-0.671
Range of correlations	0.339	0.313
	Average inter-	item correlations
	betweer	n subscales
Self-transcendence	_	
Openness to change	0.190	_

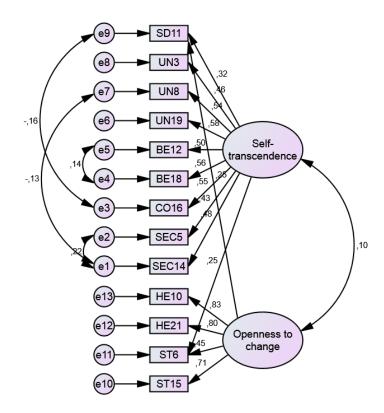


Fig. 130 Standardized solution for the 2 first-order correlated factors (model 2d-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Poland (N = 1,721)

Table A441 Item analysis of Schwartz scale values of the European Social Survey, 2008: Poland (first half-sample: n = 809)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.85 (1.286)	2.76-2.94	13.7	32.5	23.2	15.0	12.4	1.7	1.5	0.44	-0.65	0.329
SD11	2.26 (1.036)	2.19-2.33	22.2	44.3	20.9	6.6	4.1	0.5	1.5	0.97	0.92	0.457
UN3	2.07 (0.924)	2.01-2.13	26.6	48.3	16.7	4.7	2.0	0.4	1.4	1.11	1.79	0.346
UN8	2.37 (1.020)	2.30-2.44	17.4	43.3	22.5	10.3	3.0	0.6	3.0	0.82	0.60	0.423
UN19	2.10 (0.927)	2.04-2.17	25.2	47.6	18.7	4.6	1.9	0.5	1.6	1.08	1.83	0.455
BE12	2.37 (0.898)	2.31-2.43	13.7	46.6	28.7	7.9	1.4	0.5	1.2	0.73	1.03	0.495
BE18	2.02 (0.850)	1.97-2.08	24.8	53.9	14.3	3.7	1.4	0.4	1.5	1.21	2.71	0.539
TR9	2.80 (1.205)	2.72-2.88	11.6	34.4	28.2	13.2	8.8	2.2	1.6	0.60	-0.13	0.214
TR20	2.22 (1.051)	2.15-2.30	23.6	45.0	19.5	5.8	3.5	1.1	1.5	1.14	1.53	0.378
CO7	2.51 (1.140)	2.43-2.59	15.5	44.9	20.3	9.5	7.2	1.0	1.7	0.86	0.29	0.289
CO16	2.41 (1.064)	2.33-2.48	16.6	45.0	23.0	8.7	4.0	1.2	1.6	0.98	1.00	0.450
SEC5	2.16 (1.068)	2.09-2.24	27.3	44.4	15.3	7.7	2.8	1.1	1.4	1.16	1.40	0.422
SEC14	2.21 (1.030)	2.14-2.28	23.5	46.5	17.4	7.2	3.0	0.9	1.6	1.11	1.39	0.458
PO2	3.85 (1.323)	3.76-3.94	4.3	14.2	19.8	21.6	31.3	7.5	1.2	-0.35	-0.78	0.276
PO17	2.82 (1.280)	2.73-2.90	14.2	32.9	24.0	13.7	12.0	1.7	1.5	0.48	-0.58	0.389
AC4	3.08 (1.327)	2.99-3.17	9.5	29.2	26.2	13.3	16.4	3.3	2.0	0.37	-0.75	0.481
AC13	2.97 (1.199)	2.89-3.05	7.8	33.0	25.8	17.4	11.4	1.9	2.7	0.44	-0.50	0.519
HE10	3.52 (1.437)	3.42-3.62	8.0	20.5	21.3	18.7	22.6	7.8	1.1	-0.03	-1.02	0.454
HE21	3.68 (1.439)	3.59-3.78	7.0	17.6	18.5	22.6	22.0	10.6	1.6	-0.15	-0.93	0.452
ST6	2.93 (1.370)	2.84-3.03	13.5	32.9	20.0	15.0	14.3	3.2	1.1	0.44	-0.79	0.502
ST15	3.93 (1.407)	3.84-4.03	6.1	12.0	17.8	21.6	28.6	12.4	1.6	-0.40	-0.72	0.319

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.086 and 0.172, respectively.

Table A442 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Poland (first half-sample: n = 809)

	Principal a	(factors)		
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Hedonism	variance
	transcendence	change		
SD1	-0.099	0.645	-0.098	0.689
SD11	0.263	0.372	-0.011	0.724
UN3	0.457	0.069	-0.061	0.772
UN8	0.429	0.233	-0.124	0.722
UN19	0.709	-0.151	0.108	0.542
BE12	0.470	0.269	-0.073	0.641
BE18	0.629	0.055	0.070	0.552
TR20	0.684	-0.158	0.002	0.589
CO16	0.675	-0.003	-0.086	0.556
SEC5	0.584	-0.008	-0.013	0.664
SEC14	0.657	-0.068	0.054	0.589
PO17	0.354	0.082	0.070	0.827
AC4	0.072	0.532	0.063	0.636
AC13	0.055	0.490	0.211	0.559
HE10	0.005	0.130	0.661	0.437
HE21	0.051	-0.106	0.943	0.211
ST6	0.067	0.498	0.146	0.607
ST15	-0.214	0.353	0.432	0.537
Factors	Correl	ations between fac	ctors	
Self-transcendence	_			
Openness to change	0.379	_		
Hedonism	0.148	0.626	_	

Table A443 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Poland (first half-sample: n = 809)

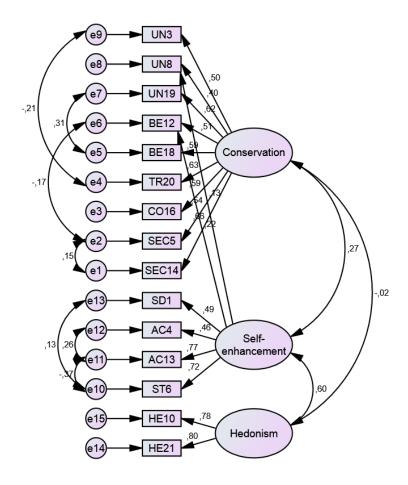
		Subscale	
	Self- transcendence	Openness to change	Hedonism
Number of items	10	5	3
Mean (standard error)	2.27 (0.022)	2.82 (0.030)	3.71 (0.042)
95% Confidence interval	2.23-2.32	2.76-2.88	3.63-3.79
Standard deviation	0.633	0.848	1.195
Skewness (standard error)	0.673 (0.086)	0.408 (0.086)	-0.103 (0.086)
Kurtosis (standard error)	1.603 (0.172)	0.029 (0.172)	-0.650 (0.172)
Cronbach's alpha reliability coeff.	0.824	0.708	0.786
Split-half reliability coefficient	0.783	0.645	0.760
Average inter-item correlations	0.331	0.326	0.550
Minimum-maximum correlations	0.084-0.491	0.232-0.497	0.458-0.654
Range of correlations	0.407	0.265	0.196
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.254	_	
Hedonism	0.238	0.349	_

Table A444 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Poland (first half-sample: n = 809)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	0.047	0.419	0.811
SD11	0.338	0.289	0.745
UN3	0.483	-0.015	0.770
UN8	0.495	0.061	0.734
UN19	0.658	-0.030	0.578
BE12	0.535	0.140	0.651
BE18	0.630	0.103	0.555
TR20	0.648	-0.138	0.613
CO16	0.689	-0.100	0.555
SEC5	0.586	-0.031	0.666
SEC14	0.633	-0.016	0.604
PO17	0.359	0.130	0.827
AC4	0.166	0.491	0.683
AC13	0.120	0.608	0.573
HE10	-0.070	0.751	0.461
HE21	-0.086	0.765	0.446
ST6	0.143	0.547	0.634
ST15	-0.216	0.727	0.516
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.292	_	

Table A445 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-15 items): European Social Survey 2008, Poland (first half-sample: n = 809)

	Principal axis factor analysis (factors)									
	Factor I	Factor II	Factor III	Unique						
Item	Conservation	Self-	Hedonism	variance						
		enhancement								
SD1	-0.070	0.559	-0.040	0.738						
UN3	0.469	0.088	-0.065	0.755						
UN8	0.444	0.226	-0.115	0.713						
UN19	0.726	-0.169	0.123	0.516						
BE12	0.492	0.245	-0.071	0.634						
BE18	0.630	0.022	0.084	0.562						
TR20	0.694	-0.162	0.004	0.579						
CO16	0.664	0.005	-0.106	0.573						
SEC5	0.544	0.044	-0.018	0.688						
SEC14	0.651	-0.063	0.058	0.591						
AC4	0.015	0.641	-0.013	0.591						
AC13	0.018	0.542	0.158	0.566						
HE10	-0.030	0.064	0.813	0.281						
HE21	-0.017	0.067	0.736	0.399						
ST6	0.074	0.469	0.180	0.606						
Factors	Correla	tions between fac	etors							
Conservation	_									
Self-enhancement	0.388	_								
Hedonism	0.192	0.615	_							


Table A446 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2008, Poland (second half-sample: n = 810)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.10	.075	.866	.884	.815	.079 (.073086)
2a	2 first-order correlated factors- without cross-loadings	6.04	.085	.834	.856	.817	.079 (.073085)
2b	2 first-order correlated factors- with cross-loadings	5.59	.075	.847	.870	.833	.075 (.070081)
3a	3 first-order correlated factors- without cross-loadings	5.31	.064	.845	.870	.843	.073 (.068078)
3b	3 first-order correlated factors- with cross-loadings	4.83	.059	.864	.888	.861	.069 (.063074)
3c	3 first-order correlated factors (15 items)-with cross-loadings	3.59	.047	.916	.938	.916	.057 (.049064)
4	4 first-order correlated factors of unified values	5.62	.074	.835	.860	.831	.076 (.070081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

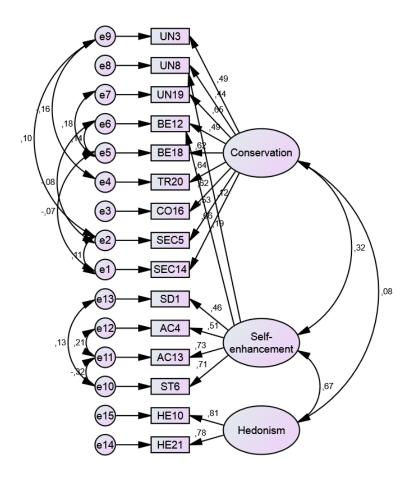

b Lower values indicate better model fit

Fig. 131 Standardized solution for the 3 first-order correlated factors (model 3c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Poland (second half-sample: n = 810)

Table A447 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Poland (first half-sample: n = 1,619)

		Subscale	
	Conservation	Self- enhancement	Hedonism
Number of items	9	4	2
Mean (standard error)	2.22 (0.016)	2.95 (0.023)	3.60 (0.032)
95% Confidence interval	2.19-2.26	2.90-2.99	3.54-3.66
Standard deviation	0.632	0.931	1.274
Skewness (standard error)	0.877 (0.061)	0.434 (0.061)	-0.020 (0.061)
Kurtosis (standard error)	2.018 (0.122)	-0.072 (0.122)	-0.847 (0.122)
Cronbach's alpha reliability coeff.	0.822	0.702	0.778
Split-half reliability coefficient	0.798	0.745	0.778
Average inter-item correlations	0.342	0.373	0.637
Minimum-maximum correlations	0.203-0.516	0.295-0.505	0.637-0.637
Range of correlations	0.313	0.210	0.000
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Self-enhancement	0.249	_	
Hedonism	0.253	0.364	_

Fig. 132 Standardized solution for the 3 first-order correlated factors (model 3c-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Poland (N = 1,619)

Table A448 Item analysis of Schwartz scale values of the European Social Survey, 2010: Poland (first half-sample: n = 678)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.74 (1.291)	2.65-2.83	16.2	32.8	25.5	10.7	10.5	2.5	1.7	0.61	-0.31	0.432
SD11	2.13 (1.016)	2.07-2.20	28.3	41.8	20.2	4.8	3.3	0.5	1.0	1.03	1.17	0.425
UN3	1.97 (0.876)	1.92-2.03	29.9	48.9	15.1	3.5	1.1	0.5	0.9	1.18	2.44	0.370
UN8	2.37 (1.044)	2.30-2.44	17.9	43.9	22.5	9.4	3.3	0.9	2.1	0.90	0.83	0.431
UN19	2.06 (0.930)	1.99-2.12	27.9	46.9	17.5	4.5	1.6	0.6	1.1	1.13	1.98	0.392
BE12	2.22 (0.881)	2.16-2.28	18.3	49.7	22.5	6.4	1.4	0.2	1.5	0.80	1.03	0.463
BE18	1.92 (0.784)	1.87-1.98	28.9	53.0	12.9	2.9	0.6	0.2	1.5	1.06	2.47	0.479
TR9	2.81 (1.238)	2.73-2.89	12.2	35.0	24.9	14.7	9.4	2.3	1.5	0.57	-0.31	0.159
TR20	2.21 (1.053)	2.14-2.28	24.2	45.8	16.5	8.3	3.0	0.9	1.3	1.08	1.17	0.256
CO7	2.48 (1.085)	2.41-2.55	15.8	41.3	25.0	9.6	5.8	0.6	1.9	0.78	0.29	0.279
CO16	2.38 (1.034)	2.31-2.45	17.1	44.9	22.6	9.0	4.0	0.6	1.7	0.87	0.66	0.346
SEC5	2.08 (1.035)	2.01-2.15	30.9	42.5	16.3	4.6	3.7	0.6	1.5	1.20	1.54	0.376
SEC14	2.05 (1.022)	1.99-2.12	31.0	44.2	14.1	4.6	3.8	0.5	1.9	1.26	1.71	0.418
PO2	3.69 (1.297)	3.60-3.77	4.3	15.5	25.4	21.7	25.5	6.4	1.1	-0.14	-0.81	0.321
PO17	2.79 (1.312)	2.70-2.87	15.2	33.9	22.4	12.3	11.2	2.7	2.2	0.58	-0.44	0.385
AC4	2.96 (1.311)	2.88-3.05	12.5	29.3	24.8	15.1	14.5	2.2	1.7	0.35	-0.75	0.493
AC13	2.85 (1.260)	2.77-2.93	12.9	32.1	25.3	16.1	9.6	2.5	1.5	0.49	-0.42	0.561
HE10	3.65 (1.435)	3.56-3.75	6.5	18.6	21.4	19.0	22.9	10.2	1.5	-0.07	-0.99	0.390
HE21	3.71 (1.371)	3.62-3.80	4.1	17.9	23.9	19.5	23.1	10.1	1.4	-0.04	-0.95	0.346
ST6	2.87 (1.274)	2.79-2.96	12.2	33.3	24.3	15.0	11.5	2.3	1.4	0.49	-0.53	0.465
ST15	3.98 (1.450)	3.88-4.08	5.6	12.6	19.4	16.6	29.0	15.2	1.6	-0.36	-0.87	0.332

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.165, respectively.

Table A449 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Poland (first half-sample: n = 678)

	Pri	ncipal axis facto	r analysis (factors	s)		
Item	Factor I	Factor II	Factor III	Factor IV	Unique	
	Conservation	Hedonism	Openness to	Power	variance	
			change			
SD1	-0.008	-0.111	0.719	-0.004	0.579	
SD11	0.195	0.186	0.272	0.019	0.743	
UN3	0.485	0.022	0.119	-0.117	0.732	
UN8	0.517	0.004	0.249	-0.216	0.628	
UN19	0.545	-0.104	0.063	0.047	0.662	
BE12	0.544	0.041	0.149	-0.079	0.642	
BE18	0.553	0.079	0.070	0.024	0.639	
CO16	0.647	-0.008	-0.273	0.183	0.573	
SEC5	0.565	-0.113	-0.043	0.173	0.621	
SEC14	0.586	0.057	-0.082	0.112	0.643	
PO2	-0.209	0.117	0.291	0.421	0.596	
PO17	0.197	0.015	-0.012	0.508	0.658	
AC4	0.024	-0.059	0.503	0.320	0.559	
AC13	0.063	0.154	0.489	0.203	0.474	
HE10	0.033	0.744	0.021	-0.021	0.434	
HE21	0.024	0.922	-0.155	-0.007	0.313	
ST6	0.081	0.160	0.497	-0.076	0.624	
ST15	-0.125	0.616	0.133	0.074	0.459	
Factors		Correlations be	etween factors			
Conservation	_					
Hedonism	0.016	_				
Openness to change	0.335	0.640	_			
Power	0.230	0.320	0.373	_		

Table A450 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Poland (first half-sample: n = 678)

		Sub	scale	
	Conservation	Hedonism	Openness to change	Power
Number of items	8	3	5	2
Mean (standard error)	2.13 (0.020)	3.78 (0.041)	2.71 (0.029)	3.24 (0.035)
95% Confidence interval	2.09-2.17	3.70-3.86	2.65-2.77	3.17-3.31
Standard deviation	0.606	1.202	0.865	1.038
Skewness (standard error)	0.713 (0.083)	-0.069 (0.083)	0.360 (0.083)	0.273 (0.083)
Kurtosis (standard error)	1.811 (0.165)	-0.778 (0.165)	-0.093 (0.165)	-0.323 (0.165)
Cronbach's alpha reliability coeff.	0.788	0.803	0.740	0.419
Split-half reliability coefficient	0.775	0.735	0.756	0.419
Average inter-item correlations	0.320	0.578	0.361	0.265
Minimum-maximum correlations	0.225-0.443	0.525-0.624	0.232-0.529	0.265-0.265
Range of correlations	0.218	0.099	0.296	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Hedonism	0.200	_		
Openness to change	0.247	0.359		
Power	0.242	0.343	0.305	_

Table A451 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, Poland (first half-sample: n = 678)

Principal a			
Factor I	Factor II	Factor III	Unique
Conservation	Openness to	Self-	variance
	change	enhancement	
0.068	0.078	0.470	0.695
0.223	0.246	0.195	0.747
0.523	0.082	-0.062	0.743
0.559	0.115	-0.050	0.693
0.574	-0.096	0.037	0.655
0.578	0.092	-0.001	0.651
0.585	0.102	0.013	0.630
0.604	-0.131	-0.059	0.647
0.554	-0.187	0.106	0.638
0.581	-0.001	0.010	0.658
-0.231	0.059	0.619	0.638
0.149	-0.109	0.416	0.800
0.001	-0.094	0.741	0.528
0.061	0.173	0.586	0.465
0.031	0.764	-0.016	0.427
-0.010	0.861	-0.099	0.354
0.126	0.289	0.282	0.685
-0.136	0.626	0.174	0.457
Correl	ations between fa	ctors	
_			
0.075	_		
0.421	0.621	_	
	Factor I Conservation 0.068 0.223 0.523 0.559 0.574 0.578 0.585 0.604 0.554 0.581 -0.231 0.149 0.001 0.061 0.031 -0.010 0.126 -0.136 Correl 0.075	Factor I Conservation 0.068 0.078 0.223 0.246 0.523 0.082 0.559 0.115 0.574 -0.096 0.578 0.092 0.585 0.102 0.604 -0.131 0.554 -0.187 0.581 -0.001 -0.231 0.059 0.149 -0.109 0.001 -0.094 0.061 0.173 0.031 0.764 -0.010 0.861 0.126 0.289 -0.136 Correlations between farm	Conservation Openness to change Self-enhancement 0.068 0.078 0.470 0.223 0.246 0.195 0.523 0.082 -0.062 0.559 0.115 -0.050 0.574 -0.096 0.037 0.578 0.092 -0.001 0.585 0.102 0.013 0.604 -0.131 -0.059 0.554 -0.187 0.106 0.581 -0.001 0.010 -0.231 0.059 0.619 0.149 -0.109 0.416 0.001 -0.094 0.741 0.061 0.173 0.586 0.031 0.764 -0.016 -0.010 0.861 -0.099 0.126 0.289 0.282 -0.136 0.626 0.174 Correlations between factors

Table A452 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Poland (first half-sample: n = 678)

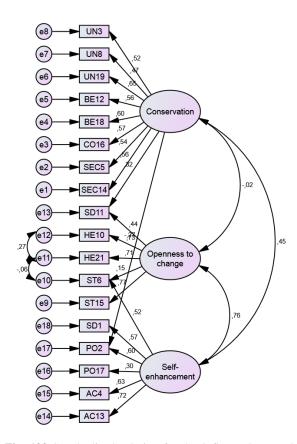

** * * * * * * * * * * * * * * * * * * *	Principal axis factor a	** '		
Variables	Factor I Openness to change	Factor II Conservation	Unique variance	
SD1	0.443	0.208	0.717	
SD11	0.398	0.228	0.746	
UN3	0.034	0.467	0.774	
UN8	0.077	0.493	0.732	
UN19	-0.068	0.594	0.662	
BE12	0.091	0.538	0.679	
BE18	0.112	0.549	0.657	
CO16	-0.177	0.596	0.664	
SEC5	-0.107	0.622	0.633	
SEC14	0.006	0.568	0.676	
PO2	0.525	-0.020	0.729	
PO17	0.213	0.310	0.827	
AC4	0.469	0.264	0.651	
AC13	0.625	0.219	0.496	
HE10	0.731	-0.141	0.495	
HE21	0.754	-0.221	0.463	
ST6	0.509	0.153	0.680	
ST15	0.766	-0.219	0.447	
	Correlations betw	veen factors		
Openness to change	_			
Conservation	0.241	_		

Table A453 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, Poland (second half-sample: n = 679)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.88	.049	.930	.947	.900	.057 (.051064)
2a	2 first-order correlated factors- without cross-loadings	_	_	_	_	_	_
2b	2 first-order correlated factors- with cross-loadings	_	_	_	_	_	_
3a	3 first-order correlated factors- without cross-loadings	6.25	.080	.822	.845	.818	.077 (.072083)
3b	3 first-order correlated factors- with cross-loadings	5.02	.060	.861	.884	.861	.068 (.063073)
4a	4 first-order correlated factors-						,
4b	without cross-loadings 4 first-order correlated factors-	5.08	.066	.858	.882	.859	.068 (.063074)
5	with cross-loadings 4 first-order correlated factors	_	_	.876	.900	.877	.064 (.058069)
	of unified values	5.39	.071	.855	.878	.853	.071 (.065076)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 2 is probably unidentified. In order to achieve identifiability, it will probably be necessary to impose 1 additional constraint. The solution of model 4b is not admissible.

b Lower values indicate better model fit

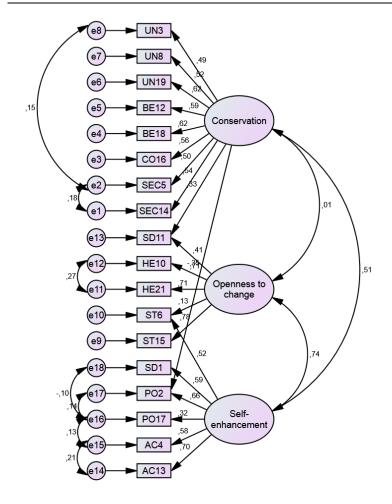


Fig. 133 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Poland (second half-sample: n = 679)

a Higher values indicate better model fit

Table A454 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Poland (N = 1,751)

		Subscale	
	Conservation	Openness to change	Self- enhancement
Number of items	8	5	5
Mean (standard error)	2.14 (0.014)	3.28 (0.023)	3.03 (0.021)
95% Confidence interval	2.11-2.17	3.23-3.32	2.99-3.07
Standard deviation	0.600	0.969	0.863
Skewness (standard error)	0.750 (0.058)	0.070 (0.058)	0.268 (0.058)
Kurtosis (standard error)	1.847 (0.117)	-0.465 (0.117)	-0.155 (0.117)
Cronbach's alpha reliability coeff.	0.785	0.780	0.694
Split-half reliability coefficient	0.756	0.752	0.693
Average inter-item correlations	0.316	0.406	0.313
Minimum-maximum correlations	0.217-0.401	0.268-0.634	0.119-0.524
Range of correlations	0.184	0.366	0.405
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.201	_	
Self-enhancement	0.220	0.322	_

Fig. 134 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Poland (N = 1,751)

Table A455 Item analysis of Schwartz scale values of the European Social Survey, 2012: Poland (first half-sample: n = 949)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.76 (1.242)	2.68-2.84	13.1	35.9	26.2	11.3	9.9	2.3	1.3	0.65	-0.18	0.419
SD11	2.03 (0.943)	1.97-2.09	30.1	45.1	16.4	4.3	2.2	0.3	1.5	1.12	1.65	0.400
UN3	1.88 (0.882)	1.82-1.94	34.8	49.6	9.9	3.3	1.3	0.6	0.5	1.52	3.71	0.329
UN8	2.27 (0.999)	2.21-2.33	19.5	47.8	19.7	8.7	1.6	1.2	1.5	1.05	1.52	0.356
UN19	1.92 (0.831)	1.86-1.97	32.1	49.0	14.0	3.2	0.8	0.2	0.6	1.06	1.98	0.406
BE12	2.23 (0.883)	2.17-2.29	17.8	49.5	23.3	6.2	1.2	0.4	1.6	0.85	1.36	0.492
BE18	1.85 (0.779)	1.80-1.90	33.5	50.9	11.8	2.1	0.6	0.2	0.8	1.12	2.66	0.433
TR9	2.62 (1.146)	2.55-2.69	13.9	38.9	27.1	10.5	7.1	1.4	1.2	0.72	0.17	0.166
TR20	2.09 (1.059)	2.02-2.15	32.0	41.9	15.5	6.2	3.4	0.6	0.3	1.15	1.23	0.305
CO7	2.41 (1.144)	2.34-2.49	19.5	42.7	20.9	9.4	5.0	1.6	1.1	0.95	0.67	0.299
CO16	2.29 (1.023)	2.23-2.36	19.3	47.9	20.2	7.5	3.4	0.8	0.8	1.04	1.24	0.340
SEC5	1.94 (1.006)	1.88-2.00	37.3	42.4	12.2	4.1	2.6	0.7	0.6	1.42	2.40	0.361
SEC14	2.00 (0.957)	1.94-2.06	31.6	46.3	13.9	5.0	1.8	0.6	0.8	1.26	2.16	0.422
PO2	3.80 (1.314)	3.72-3.88	4.2	14.0	23.4	21.0	29.1	7.5	0.8	-0.25	-0.81	0.283
PO17	2.74 (1.329)	2.66-2.83	17.4	33.2	22.2	11.7	11.5	2.5	1.5	0.59	-0.48	0.382
AC4	2.90 (1.251)	2.82-2.98	10.6	33.3	26.6	13.9	11.9	2.2	1.5	0.50	-0.47	0.499
AC13	2.87 (1.246)	2.79-2.95	10.5	34.8	26.0	14.3	10.2	2.7	1.4	0.58	-0.32	0.524
HE10	3.57 (1.457)	3.48-3.66	8.3	19.2	20.1	19.5	22.8	9.0	1.2	-0.08	-1.02	0.446
HE21	3.68 (1.452)	3.59-3.77	6.8	18.2	19.7	19.8	23.1	10.9	1.5	-0.12	-1.00	0.441
ST6	2.88 (1.334)	2.79-2.96	15.5	28.1	25.8	15.3	10.4	3.6	1.3	0.46	-0.51	0.512
ST15	3.90 (1.460)	3.81-4.00	6.6	13.8	17.3	18.9	28.9	13.2	1.4	-0.36	-0.88	0.340

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.159, respectively.

Table A456 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Poland (first half-sample: n = 949)

	Principal axis factor a		
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.434	0.166	0.755
SD11	0.344	0.239	0.792
UN3	0.051	0.429	0.805
UN8	0.099	0.406	0.810
UN19	0.029	0.586	0.649
BE12	0.180	0.537	0.641
BE18	0.109	0.538	0.675
TR20	-0.132	0.581	0.676
CO16	-0.132	0.624	0.626
SEC5	-0.097	0.634	0.614
SEC14	0.050	0.563	0.670
PO17	0.166	0.357	0.821
AC4	0.485	0.210	0.680
AC13	0.581	0.164	0.597
HE10	0.752	-0.109	0.545
HE21	0.798	-0.140	0.388
ST6	0.536	0.181	0.641
ST15	0.791	-0.247	0.392
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.200	_	

Table A457 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Poland (first half-sample: n = 949)

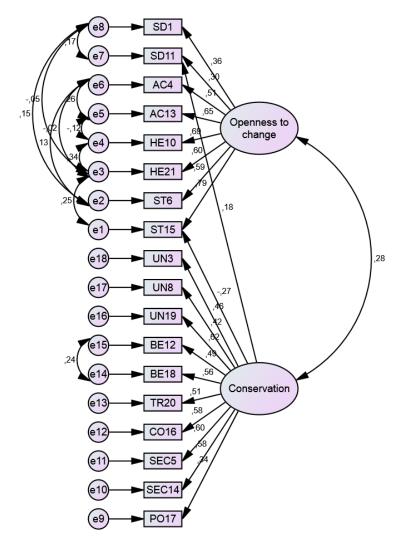

	Su	bscale
	Openness to change	Conservation
Number of items	8	10
Mean (standard error)	3.07 (0.028)	2.12 (0.019)
95% Confidence interval	3.02-3.13	2.08-2.16
Standard deviation	0.874	0.581
Skewness (standard error)	0.292 (0.079)	0.830(0.079)
Kurtosis (standard error)	-0.273 (0.159)	3.040 (0.159)
Cronbach's alpha reliability coeff.	0.823	0.791
Split-half reliability coefficient	0.715	0.756
Average inter-item correlations	0.361	0.289
Minimum-maximum correlations	0.187-0.674	0.060-0.433
Range of correlations	0.487	0.373
	Average inter	-item correlations
	between	n subscales
Openness to change	_	
Conservation	0.208	_

Table A458 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of four models: European Social Survey 2012, Poland (second half-sample: n = 949)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor 2 first-order correlated factors-	5.13	.061	.905	.921	.852	.066 (.060072)
2a	without cross-loadings	5.36	.080	.850	.874	.844	.068 (.063073)
2b	2 first-order correlated factors- with cross-loadings	4.58	.069	.874	.898	.872	.061 (.056067)
3	4 first-order correlated factors of unified values	5.40	.071	.857	.879	.855	.068 (.063073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

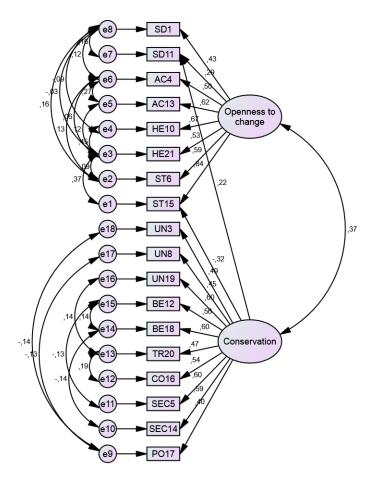


Fig. 135 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Poland (second half-sample: n = 949)

a Higher values indicate better model fit

Table A459 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Poland (N = 1,898)

	Su	bscale
	Openness to change	Conservation
Number of items	8	10
Mean (standard error)	3.06 (0.020)	2.11 (0.013)
95% Confidence interval	3.02-3.10	2.08-2.14
Standard deviation	0.857	0.573
Skewness (standard error)	0.299 (0.056)	0.746 (0.056)
Kurtosis (standard error)	-0.150 (0.112)	2.357 (0.112)
Cronbach's alpha reliability coeff.	0.814	0.783
Split-half reliability coefficient	0.702	0.752
Average inter-item correlations	0.347	0.278
Minimum-maximum correlations	0.170-0.649	0.067-0.439
Range of correlations	0.479	0.372
	Average inter-	-item correlations
	between	n subscales
Openness to change	_	
Conservation	0.19	_

Fig. 136 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Poland (N = 1,898)

Table A460 Item analysis of Schwartz scale values of the European Social Survey, 2014: Poland (first half-sample: n = 807)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.90 (1.340)	2.80-2.99	13.8	31.8	22.8	14.0	12.9	3.1	1.6	0.48	-0.63	0.380
SD11	2.01 (0.934)	1.95-2.08	30.7	44.2	17.3	4.0	1.5	0.6	1.6	1.16	2.08	0.416
UN3	1.92 (0.917)	1.86-1.99	33.6	48.0	10.8	4.0	1.6	0.6	1.5	1.44	3.08	0.367
UN8	2.27 (1.005)	2.20-2.34	19.7	46.8	20.2	7.8	2.6	0.9	2.0	1.02	1.32	0.415
UN19	1.96 (0.900)	1.90-2.02	31.8	46.3	14.3	4.1	0.7	0.7	2.0	1.28	2.79	0.387
BE12	2.23 (0.888)	2.17-2.29	18.8	47.8	24.2	6.2	1.4	0.2	1.4	0.75	0.93	0.448
BE18	1.89 (0.815)	1.83-1.94	32.5	49.8	12.3	2.9	0.6	0.4	1.6	1.21	2.92	0.506
TR9	2.57 (1.248)	2.48-2.65	20.2	34.7	23.9	10.4	7.4	2.1	1.2	0.73	-0.00	0.163
TR20	2.12 (1.059)	2.05-2.19	30.5	40.6	18.1	6.2	2.5	1.1	1.0	1.14	1.47	0.267
CO7	2.45 (1.149)	2.38-2.53	19.0	39.8	22.1	10.8	5.0	1.5	2.0	0.85	0.42	0.317
CO16	2.31 (1.037)	2.24-2.38	18.1	49.6	18.6	7.4	3.8	1.0	1.5	1.12	1.39	0.388
SEC5	1.94 (1.068)	1.87-2.02	38.5	41.1	9.9	5.0	2.2	1.6	1.6	1.60	2.91	0.312
SEC14	2.00 (0.998)	1.93-2.07	32.8	44.6	13.3	4.6	2.4	0.9	1.5	1.37	2.39	0.377
PO2	3.79 (1.323)	3.70-3.89	4.6	13.5	24.3	18.6	29.6	7.4	2.0	-0.25	-0.81	0.336
PO17	2.75 (1.333)	2.66-2.84	18.1	32.1	21.1	12.9	11.9	2.1	1.9	0.53	-0.61	0.302
AC4	3.10 (1.320)	3.01-3.19	10.7	25.8	26.4	15.4	17.2	2.5	2.1	0.24	-0.83	0.461
AC13	2.99 (1.254)	2.90-3.07	10.0	29.1	28.3	15.4	12.5	2.5	2.2	0.40	-0.52	0.535
HE10	3.58 (1.435)	3.48-3.68	7.7	17.3	25.2	17.5	21.7	9.5	1.1	-0.02	-0.95	0.400
HE21	3.67 (1.466)	3.57-3.77	7.6	17.3	20.9	18.2	23.5	10.9	1.5	-0.12	-1.00	0.447
ST6	3.01 (1.393)	2.91-3.10	14.1	28.1	20.6	17.0	14.4	3.8	2.0	0.33	-0.84	0.501
ST15	4.06 (1.436)	3.96-4.16	5.6	11.3	17.5	17.1	31.6	15.5	1.5	-0.47	-0.74	0.411

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.086 and 0.172, respectively.

Table A461 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Poland (first half-sample: n = 807)

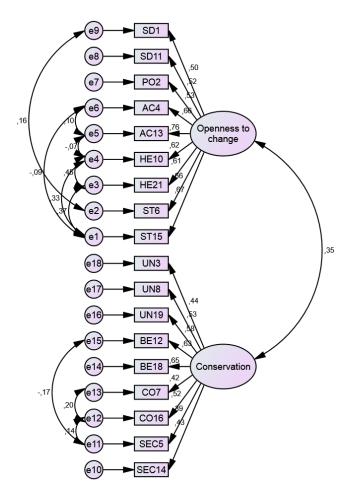
	Principal axis factor a		
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.454	0.091	0.768
SD11	0.402	0.189	0.771
UN3	0.001	0.549	0.699
UN8	0.099	0.500	0.719
UN19	0.007	0.546	0.700
BE12	0.191	0.432	0.743
BE18	0.190	0.519	0.653
CO7	-0.133	0.611	0.643
CO16	-0.109	0.673	0.566
SEC5	-0.053	0.540	0.718
SEC14	-0.010	0.569	0.678
PO2	0.518	-0.026	0.736
PO17	0.126	0.300	0.878
AC4	0.541	0.128	0.662
AC13	0.629	0.145	0.545
HE10	0.702	-0.126	0.528
HE21	0.753	-0.098	0.479
ST6	0.552	0.153	0.637
ST15	0.828	-0.206	0.343
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.208	_	

Table A462 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Poland (first half-sample: n = 807)

	Subscale			
	Openness to change	Conservation		
Number of items	9	10		
Mean (standard error)	3.23 (0.031)	2.17 (0.021)		
95% Confidence interval	3.17-3.30	2.13-2.21		
Standard deviation	0.877	0.600		
Skewness (standard error)	0.150 (0.086)	0.875 (0.086)		
Kurtosis (standard error)	-0.284 (0.172)	2.942 (0.172)		
Cronbach's alpha reliability coeff.	0.837	0.789		
Split-half reliability coefficient	0.772	0.679		
Average inter-item correlations	0.361	0.285		
Minimum-maximum correlations	0.202-0.644	0.051-0.483		
Range of correlations	0.442	0.432		
	Average inter	-item correlations		
	between	n subscales		
Openness to change	_			
Conservation	0.201	_		

Table A463 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-18 items): European Social Survey 2014, Poland (first half-sample: n = 807)

**	Principal axis factor a	** .	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.456	0.104	0.761
SD11	0.403	0.188	0.771
UN3	0.003	0.567	0.678
UN8	0.101	0.526	0.691
UN19	0.009	0.541	0.705
BE12	0.193	0.459	0.715
BE18	0.192	0.509	0.663
CO7	-0.128	0.592	0.665
CO16	-0.105	0.654	0.590
SEC5	-0.050	0.519	0.739
SEC14	-0.007	0.572	0.675
PO2	0.519	-0.053	0.740
AC4	0.540	0.105	0.674
AC13	0.630	0.138	0.547
HE10	0.703	-0.132	0.528
HE21	0.736	-0.104	0.479
ST6	0.557	0.177	0.618
ST15	0.827	-0.212	0.344
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.208	_	


Table A464 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of four models: European Social Survey 2014, Poland (second half-sample: n = 808)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.55	.062	.898	.917	.865	.066 (.060072)
2a	2 first-order correlated factors (19 items)-without	5.01	.075	.849	.875	.847	.071 (.065076)
2b	cross-loadings 2 first-order correlated factors (18 items)-without	5.01	.073	.049	.013	.047	.071 (.003070)
	cross-loadings	4.62	.071	.870	.894	.869	.067 (.061073)
3	4 first-order correlated factors of unified values	5.69	.073	.848	.871	.845	.076 (.071082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

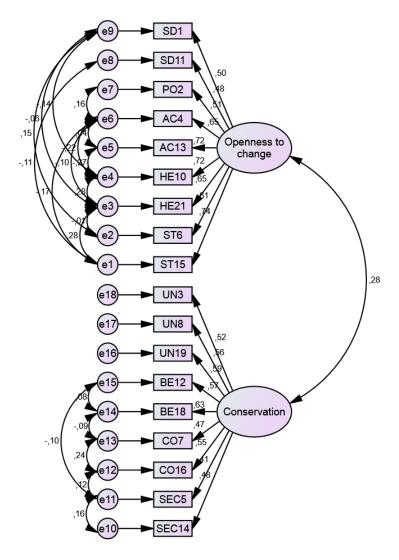

b Lower values indicate better model fit

Fig. 137 Standardized solution for the 2 first-order correlated factors (model 2b-18 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Poland (second half-sample: n = 808)

Table A465 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Poland (N = 1,615)

	Su	bscale
	Openness to change	Conservation
Number of items	9	9
Mean (standard error)	3.26 (0.022)	2.09 (0.014)
95% Confidence interval	3.21-3.30	2.07-2.12
Standard deviation	0.901	0.579
Skewness (standard error)	0.158 (0.061)	0.884 (0.061)
Kurtosis (standard error)	-0.425 (0.122)	3.094 (0.122)
Cronbach's alpha reliability coeff.	0.848	0.784
Split-half reliability coefficient	0.785	0.779
Average inter-item correlations	0.380	0.292
Minimum-maximum correlations	0.216-0.634	0.149-0.439
Range of correlations	0.418	0.290
	Average inter	-item correlations
	between	n subscales
Openness to change	_	
Conservation	0.205	_

Fig. 138 Standardized solution for the 2 first-order correlated factors (model 2b-18 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Poland (N = 1,615)

Table A466 Item analysis of Schwartz scale values of the European Social Survey, 2002: Portugal (first half-sample: n = 755)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.72 (1.120)	2.64-2.80	15.6	26.8	33.1	17.4	4.9	0.8	1.5	0.25	-0.34	0.441
SD11	2.44 (1.069)	2.37-2.52	21.2	32.5	27.5	14.4	3.0	-	1.3	0.36	-0.61	0.571
UN3	2.15 (0.953)	2.08-2.22	29.1	34.0	27.7	7.0	0.7	0.1	1.3	0.46	-0.32	0.415
UN8	2.68 (1.027)	2.61-2.76	12.2	31.7	34.6	15.4	3.7	0.5	2.0	0.31	-0.09	0.545
UN19	2.45 (0.983)	2.38-2.52	17.1	35.5	33.0	10.9	2.1	0.3	1.2	0.39	-0.05	0.537
BE12	2.32 (0.907)	2.26-2.39	19.3	37.7	32.6	8.1	0.9	-	1.3	0.27	-0.36	0.530
BE18	2.12 (0.901)	2.06-2.19	27.5	38.8	26.0	6.8	-	0.1	0.8	0.42	-0.37	0.574
TR9	2.63 (1.129)	2.55-2.71	17.4	29.4	31.5	15.6	4.0	1.2	0.9	0.40	-0.15	0.322
TR20	2.77 (1.187)	2.69-2.86	15.2	27.4	30.1	17.4	7.0	1.3	1.6	0.34	-0.39	0.205
CO7	3.37 (1.261)	3.28-3.46	7.5	17.4	26.9	26.4	15.8	4.0	2.1	-0.01	-0.59	0.237
CO16	3.09 (1.167)	3.00-3.17	7.2	25.2	33.2	19.1	11.5	2.0	1.9	0.30	-0.39	0.313
SEC5	2.23 (0.995)	2.16-2.30	26.1	36.0	27.0	8.1	1.9	0.1	0.8	0.55	-0.08	0.416
SEC14	2.43 (1.084)	2.35-2.51	20.9	31.7	28.9	11.1	3.4	0.7	3.3	0.57	0.04	0.465
PO2	4.37 (1.220)	4.28-4.46	1.5	6.8	15.1	24.5	32.8	18.5	0.8	-0.54	-0.32	0.243
PO17	3.12 (1.204)	3.03-3.20	7.0	26.8	29.3	21.1	12.2	2.4	1.3	0.28	-0.54	0.355
AC4	3.06 (1.202)	2.98-3.15	8.7	25.2	30.2	22.3	8.7	3.0	1.9	0.30	-0.32	0.498
AC13	3.09 (1.191)	3.01-3.18	8.6	22.8	33.2	21.1	10.1	2.6	1.6	0.25	-0.33	0.565
HE10	2.89 (1.127)	2.81-2.97	11.3	24.8	36.2	18.3	7.3	1.2	1.1	0.25	-0.24	0.596
HE21	3.31 (1.380)	3.21-3.40	9.5	20.7	26.1	21.7	13.4	7.3	1.3	0.19	-0.71	0.416
ST6	3.25 (1.278)	3.16-3.34	8.7	19.7	30.1	21.9	14.3	4.0	1.3	0.14	-0.59	0.509
ST15	4.00 (1.391)	3.90-4.10	4.2	11.8	20.0	22.0	24.8	15.8	1.5	-0.29	-0.77	0.403

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A467 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Portugal (first half-sample: n = 755)

	Principal a	xis factor analysis	(factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Conformity	variance
	transcendence	change	·	
SD1	0.409	0.277	-0.295	0.589
SD11	0.302	0.504	-0.139	0.513
UN3	0.685	-0.098	-0.058	0.578
UN8	0.556	0.158	0.053	0.590
UN19	0.564	0.146	0.071	0.585
BE12	0.677	0.037	0.019	0.519
BE18	0.684	0.055	0.102	0.478
TR9	0.567	-0.220	0.241	0.641
CO16	0.199	0.028	0.744	0.380
SEC5	0.664	-0.102	-0.020	0.604
SEC14	0.608	-0.041	0.199	0.588
PO17	0.092	0.294	0.348	0.771
AC4	0.206	0.459	-0.021	0.672
AC13	0.074	0.709	0.015	0.451
HE10	0.146	0.701	-0.089	0.393
HE21	-0.212	0.769	0.113	0.495
ST6	-0.004	0.695	0.017	0.520
ST15	-0.312	0.850	0.174	0.388
Factors	Correl	ations between fa	ctors	
Self-transcendence				
Openness to change	0.395	_		
Conformity	0.083	-0.066	_	

Table A468 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Portugal (first half-sample: n = 755)

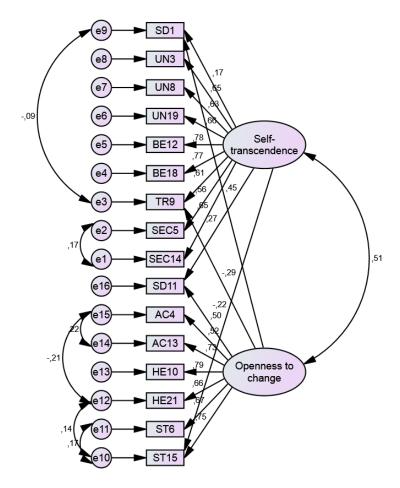
		Subscale	
	Self-	Openness to	Conformity
	transcendence	change	
Number of items	9	7	2
Mean (standard error)	2.42 (0.024)	3.15 (0.033)	3.10 (0.035)
95% Confidence interval	2.37-2.46	3.09-3.21	3.03-3.17
Standard deviation	0.668	0.901	0.967
Skewness (standard error)	0.233 (0.089)	0.104 (0.089)	0.134 (0.089)
Kurtosis (standard error)	-0.219 (0.178)	-0.324 (0.178)	-0.333 (0.178)
Cronbach's alpha reliability coeff.	0.837	0.851	0.498
Split-half reliability coefficient	0.798	0.840	0.498
Average inter-item correlations	0.373	0.454	0.332
Minimum-maximum correlations	0.106-0.548	0.255-0.579	0.332-0.332
Range of correlations	0.441	0.323	0.000
	Average inter-it	em correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.292	_	
Conformity	0.306	0.327	_

Table A469 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Portugal (first half-sample: n = 755)

Variables	Principal axis factor	Unique	
variables	Factor I	Factor II	variance
	Openness to change	Self-transcendence	
SD1	0.333	0.291	0.729
SD11	0.541	0.230	0.557
UN3	-0.059	0.652	0.602
UN8	0.180	0.551	0.587
UN19	0.165	0.566	0.580
BE12	0.066	0.665	0.520
BE18	0.073	0.697	0.470
TR9	-0.225	0.624	0.670
CO16	-0.029	0.331	0.897
SEC5	-0.071	0.647	0.612
SEC14	-0.039	0.650	0.595
PO17	0.255	0.169	0.873
AC4	0.479	0.175	0.675
AC13	0.725	0.045	0.447
HE10	0.730	0.085	0.412
HE21	0.757	-0.209	0.507
ST6	0.708	-0.032	0.516
ST15	0.810	-0.280	0.442
	Correlations bet	ween factors	
Openness to change			
Self-transcendence	0.389	_	

Table A470 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-16 items): European Social Survey 2002, Portugal (first half-sample: n = 755)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Openness to change	
SD1	0.342	0.314	0.700
SD11	0.268	0.524	0.542
UN3	0.673	-0.079	0.583
UN8	0.561	0.164	0.585
UN19	0.572	0.149	0.583
BE12	0.680	0.045	0.511
BE18	0.697	0.051	0.483
TR9	0.587	-0.225	0.710
SEC5	0.665	-0.094	0.599
SEC14	0.629	-0.048	0.626
AC4	0.195	0.457	0.683
AC13	0.066	0.708	0.457
HE10	0.117	0.718	0.405
HE21	-0.210	0.766	0.497
ST6	-0.015	0.705	0.511
ST15	-0.289	0.821	0.430
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.396	_	


Table A471 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Portugal (second half-sample: n = 756)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.53	.067	.903	.918	.864	.077 (.071084)
2a	2 first-order correlated factors (18 items)-without cross-						, , ,
	loadings	6.20	.081	.848	.868	.844	.083 (.078089)
2b	2 first-order correlated factors						
	(18 items)-with cross-loadings	5.09	.066	.881	.901	.877	.074 (.068079)
2c	2 first-order correlated factors						
	(16 items)-without cross-						
	loadings	5.80	.088	.882	.900	.877	.080 (.073086)
2d	2 first-order correlated factors						
	(16 items)-with cross-loadings	3.57	.051	.931	.949	.934	.058 (.052065)
3a	3 first-order correlated factors-						
	without cross-loadings	6.32	.088	.848	.869	.840	.084 (.078090)
3b	3 first-order correlated factors-						
	with cross-loadings	4.03	.052	.909	.929	.909	.063 (.058069)
4	3 first-order correlated factors						
	of unified values	4.83	.057	.910	.927	.907	.071 (.063079)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

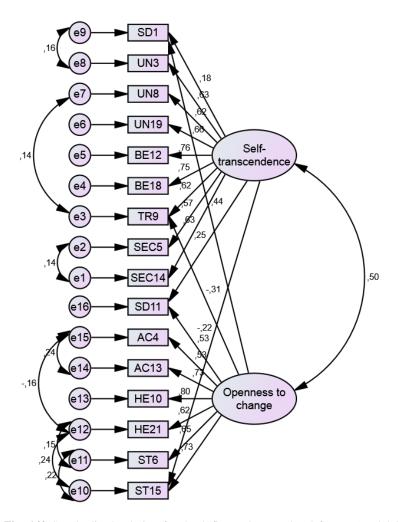

b Lower values indicate better model fit

Fig. 139 Standardized solution for the 2 first-order correlated factors (model 2d-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Portugal (second half-sample: n = 756)

Table A472 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Portugal (N=1,511)

	Sul	bscale
	Self-	Openness to
	transcendence	change
Number of items	9	7
Mean (standard error)	2.44 (0.017)	3.17 (0.023)
95% Confidence interval	2.41-2.47	3.12-3.21
Standard deviation	0.676	0.901
Skewness (standard error)	0.166 (0.063)	0.093 (0.063)
Kurtosis (standard error)	-0.296 (0.126)	-0.206 (0.126)
Cronbach's alpha reliability coeff.	0.839	0.848
Split-half reliability coefficient	0.808	0.840
Average inter-item correlations	0.376	0.448
Minimum-maximum correlations	0.065-0.589	0.228-0.581
Range of correlations	0.524	0.353
	Average inter-	item correlations
	between	ı subscales
Self-transcendence	_	
Openness to change	0.300	_

Fig. 140 Standardized solution for the 2 first-order correlated factors (model 2d-16 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Portugal (N = 1,511)

Table A473 Item analysis of Schwartz scale values of the European Social Survey, 2004: Portugal (first half-sample: n = 1,026)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	3.03 (1.180)	2.96-3.10	10.7	21.2	34.0	22.1	9.1	1.9	1.0	0.15	-0.38	0.614
SD11	2.69 (1.110)	2.62-2.76	16.5	25.8	35.3	16.9	4.1	0.9	0.6	0.25	-0.28	0.631
UN3	2.48 (1.130)	2.41-2.55	23.3	26.6	30.4	14.2	3.6	0.5	1.4	0.37	-0.47	0.513
UN8	2.79 (1.088)	2.72-2.85	13.2	25.3	36.1	18.0	5.2	0.7	1.6	0.18	-0.28	0.600
UN19	2.54 (1.057)	2.47-2.60	19.0	28.6	34.3	13.5	3.0	0.3	1.3	0.25	-0.38	0.598
BE12	2.49 (1.054)	2.42-2.55	18.8	33.4	29.2	15.1	2.2	0.4	0.8	0.36	-0.37	0.556
BE18	2.29 (1.052)	2.23-2.36	25.0	35.6	25.4	10.2	2.0	0.6	1.1	0.65	0.14	0.605
TR9	2.59 (1.135)	2.52-2.66	19.9	28.1	29.1	17.8	4.1	0.4	0.6	0.26	-0.63	0.379
TR20	2.73 (1.218)	2.65-2.80	17.7	27.5	27.8	18.1	6.9	1.3	0.7	0.34	-0.53	0.368
CO7	3.23 (1.232)	3.15-3.30	8.9	17.6	33.1	22.5	13.1	3.2	1.6	0.11	-0.45	0.313
CO16	2.97 (1.166)	2.90-3.04	10.9	23.7	33.2	20.9	9.1	1.3	1.0	0.17	-0.45	0.349
SEC5	2.47 (1.186)	2.40-2.54	26.1	25.8	27.6	14.4	5.2	0.3	0.6	0.40	-0.66	0.530
SEC14	2.55 (1.184)	2.47-2.62	22.4	27.4	29.6	12.1	6.5	0.6	1.4	0.44	-0.42	0.563
PO2	3.88 (1.282)	3.81-3.96	5.0	8.0	24.9	27.3	24.6	9.8	0.5	-0.30	-0.42	0.398
PO17	2.96 (1.168)	2.89-3.03	9.1	28.8	30.9	18.9	9.8	1.5	1.0	0.33	-0.44	0.458
AC4	3.12 (1.212)	3.04-3.19	10.4	20.7	29.0	26.3	10.7	1.9	1.0	0.03	-0.58	0.576
AC13	3.15 (1.255)	3.07-3.22	11.9	18.4	28.3	26.3	12.0	2.1	1.0	-0.01	-0.65	0.602
HE10	2.95 (1.110)	2.88-3.01	9.7	23.5	38.7	19.4	6.6	1.7	0.4	0.26	-0.06	0.610
HE21	3.33 (1.300)	3.25-3.41	7.1	20.5	29.6	22.8	13.5	6.0	0.5	0.20	-0.58	0.358
ST6	3.30 (1.276)	3.22-3.37	9.5	17.1	28.4	27.0	13.2	4.1	0.9	0.01	-0.55	0.482
ST15	3.94 (1.365)	3.85-4.02	4.6	11.7	20.6	24.0	25.0	13.3	1.0	-0.28	-0.71	0.285

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.076 and 0.153, respectively.

Table A474 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Portugal (first half-sample: n = 1,026)

	Pr	incipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Openness to	Conservation	Self-	variance
	transcendence	change		enhancement	
SD1	0.310	0.517	-0.088	0.095	0.446
SD11	0.467	0.332	-0.091	0.105	0.492
UN3	0.871	-0.088	-0.125	-0.087	0.453
UN8	0.549	0.176	0.169	-0.085	0.530
UN19	0.546	0.122	0.034	0.061	0.566
BE12	0.781	-0.095	-0.026	0.010	0.452
BE18	0.790	0.015	0.023	-0.079	0.410
TR9	0.389	0.107	0.397	-0.280	0.609
TR20	0.152	-0.185	0.521	0.166	0.542
CO7	-0.076	0.152	0.585	-0.020	0.690
CO16	-0.040	0.016	0.738	0.021	0.477
SEC5	0.542	-0.137	0.154	0.166	0.521
SEC14	0.367	-0.145	0.192	0.375	0.505
PO2	-0.304	0.301	0.080	0.588	0.562
PO17	-0.005	0.036	0.345	0.371	0.668
AC4	0.152	0.160	-0.114	0.581	0.449
AC13	0.148	0.330	-0.117	0.468	0.422
HE10	0.179	0.618	0.035	0.052	0.447
HE21	-0.257	0.730	0.056	0.095	0.509
ST6	-0.064	0.768	0.084	-0.006	0.447
Factors		Correlations b	etween factors		
Self-transcendence	_				
Openness to change	0.396	_			
Conservation	0.520	0.001	_		
Self-enhancement	0.536	0.477	0.252	_	

Table A475 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Portugal (first half-sample: n = 1,026)

		Sub	scale	
	Self- transcendence	Openness to change	Conservation	Self- enhancement
Number of items	7	4	4	5
Mean (standard error)	2.54 (0.025)	3.15 (0.030)	2.88 (0.027)	3.13 (0.027)
95% Confidence interval	2.49-2.59	3.09-3.21	2.83-2.93	3.08-3.18
Standard deviation	0.805	0.956	0.861	0.855
Skewness (standard error)	0.326 (0.076)	0.340 (0.076)	0.159 (0.076)	-0.029 (0.076)
Kurtosis (standard error)	0.021 (0.153)	-0.033 (0.153)	-0.286 (0.153)	-0.232 (0.153)
Cronbach's alpha reliability coeff.	0.857	0.792	0.698	0.740
Split-half reliability coefficient	0.845	0.792	0.692	0.590
Average inter-item correlations	0.464	0.491	0.367	0.362
Minimum-maximum correlations	0.352-0.565	0.372-0.556	0.306-0.441	0.252-0.577
Range of correlations	0.213	0.184	0.135	0.325
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Openness to change	0.235	_		
Conservation	0.278	0.290	_	
Self-enhancement	0.261	0.346	0.269	_

Table A476 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Portugal (first half-sample: n = 1,026)

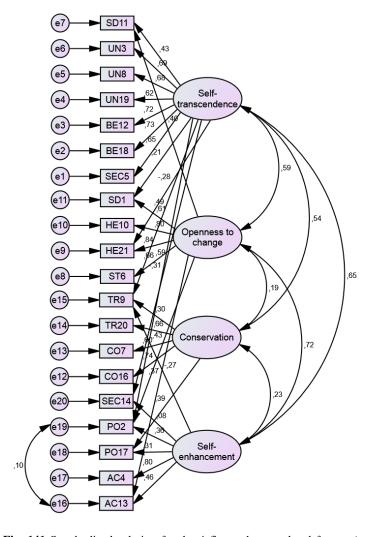
	Principal axis factor analysis (factors)					
	Factor I	Factor II	Factor III	Unique		
Item	Self-	Openness to	Conservation	variance		
	transcendence	change				
SD1	0.289	0.586	-0.127	0.451		
SD11	0.453	0.411	-0.099	0.489		
UN3	0.874	-0.141	-0.129	0.446		
UN8	0.535	0.096	0.129	0.553		
UN19	0.538	0.159	0.046	0.565		
BE12	0.782	-0.088	0.001	0.450		
BE18	0.781	-0.044	0.012	0.413		
TR9	0.370	-0.122	0.297	0.698		
TR20	0.158	-0.121	0.604	0.538		
CO7	-0.066	0.073	0.537	0.731		
CO16	-0.033	-0.046	0.731	0.501		
SEC5	0.542	-0.035	0.232	0.533		
SEC14	0.375	0.097	0.320	0.564		
PO2	-0.269	0.671	0.185	0.637		
PO17	0.004	0.257	0.446	0.688		
AC4	0.157	0.555	0.039	0.560		
AC13	0.142	0.655	-0.019	0.462		
HE10	0.152	0.640	-0.028	0.477		
HE21	-0.269	0.767	-0.022	0.553		
ST6	-0.077	0.719	-0.024	0.539		
Factors	Correl	ations between fa	ctors			
Self-transcendence	_					
Openness to change	0.517	_				
Conservation	0.559	0.196	_			

Table A477 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Portugal (first half-sample: n = 1.026)

	Principal axis factor	analysis (factors)	TT'.
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.074	0.693	0.463
SD11	0.254	0.532	0.517
UN3	0.607	0.055	0.595
UN8	0.568	0.163	0.559
UN19	0.485	0.250	0.581
BE12	0.663	0.054	0.522
BE18	0.669	0.095	0.480
TR9	0.609	-0.138	0.694
TR20	0.702	-0.244	0.618
CO7	0.434	-0.069	0.837
CO16	0.633	-0.219	0.689
SEC5	0.688	-0.002	0.528
SEC14	0.618	0.081	0.561
PO2	-0.100	0.582	0.710
PO17	0.399	0.150	0.759
AC4	0.124	0.593	0.560
AC13	0.045	0.711	0.460
HE10	0.047	0.700	0.475
HE21	-0.312	0.747	0.576
ST6	-0.152	0.740	0.541
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.497	_	

Table A478 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-16 items): European Social Survey 2004, Portugal (first half-sample: n = 1,026)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Openness to change	
SD1	0.183	0.615	0.470
SD11	0.364	0.437	0.510
UN3	0.760	-0.096	0.490
UN8	0.625	0.082	0.548
UN19	0.545	0.174	0.574
BE12	0.773	-0.074	0.457
BE18	0.772	-0.028	0.427
TR9	0.558	-0.147	0.753
SEC5	0.714	-0.074	0.540
SEC14	0.607	0.040	0.604
PO2	-0.128	0.618	0.685
AC4	0.184	0.542	0.568
AC13	0.120	0.662	0.465
HE10	0.115	0.660	0.472
HE21	-0.319	0.798	0.529
ST6	-0.120	0.742	0.528
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.524	_	


Table A479 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of ten models: European Social Survey 2004, Portugal (second half-sample: n = 1,026)

	χ^2/df	SRMR ^b	NFI^a	CFI ^a	TLI^a	RMSEA ^b (90 % CI)
1 first-order uncorrelated factor	5.96	.060	.912	.925	.885	.070 (.065074)
2 first-order correlated factors (20 items)-without cross-						
loadings	6.45	.067	.877	.893	.873	.073 (.069077)
,	5.24	.055	.905	.921	.901	.064 (.060069)
2 first-order correlated factors (16 items)-without cross-						
loadings	5.94	.062	.918	.930	.913	.069 (.064075)
2 first-order correlated factors						
(16 items)-with cross-loadings	4.96	.052	.933	.945	.945	.062 (.057068)
•	6.61	.071	.874	.890	.870	.074 (.070078)
	4.55	0.45	017	024	010	050 (054 062)
_	4.55	.045	.917	.934	.918	.059 (.054063)
	0 66	001	921	017	922	006 (002 001)
	8.00	.081	.831	.647	.822	.086 (.082091)
	1.16	044	018	035	020	.058 (.054063)
	4.40	.044	.510	.933	.920	.030 (.034003)
	6.87	.064	.909	.921	.897	.076 (.069083)
	2 first-order correlated factors (20 items)-without cross-loadings 2 first-order correlated factors (20 items)-with cross-loadings 2 first-order correlated factors (16 items)-without cross-loadings 2 first-order correlated factors	2 first-order correlated factors (20 items)-without cross- loadings 6.45 2 first-order correlated factors (20 items)-with cross-loadings 5.24 2 first-order correlated factors (16 items)-without cross- loadings 5.94 2 first-order correlated factors (16 items)-with cross-loadings 4.96 3 first-order correlated factors- without cross-loadings 6.61 3 first-order correlated factors- with cross-loadings 4.55 4 first-order correlated factors- without cross-loadings 8.66 4 first-order correlated factors- without cross-loadings 4.46 3 first-order correlated factors- with cross-loadings 4.46 3 first-order correlated factors- with cross-loadings 4.46	2 first-order correlated factors (20 items)-without cross- loadings 6.45 .067 2 first-order correlated factors (20 items)-with cross-loadings 5.24 .055 2 first-order correlated factors (16 items)-without cross- loadings 5.94 .062 2 first-order correlated factors (16 items)-with cross-loadings 4.96 .052 3 first-order correlated factors- without cross-loadings 6.61 .071 3 first-order correlated factors- with cross-loadings 4.55 .045 4 first-order correlated factors- without cross-loadings 8.66 .081 4 first-order correlated factors- with cross-loadings 4.46 .044 3 first-order correlated factors	2 first-order correlated factors (20 items)-without cross- loadings 6.45 .067 .877 2 first-order correlated factors (20 items)-with cross-loadings 5.24 .055 .905 2 first-order correlated factors (16 items)-without cross- loadings 5.94 .062 .918 2 first-order correlated factors (16 items)-with cross-loadings 4.96 .052 .933 3 first-order correlated factors- without cross-loadings 6.61 .071 .874 3 first-order correlated factors- with cross-loadings 4.55 .045 .917 4 first-order correlated factors- without cross-loadings 8.66 .081 .831 4 first-order correlated factors- with cross-loadings 4.46 .044 .918 3 first-order correlated factors	2 first-order correlated factors (20 items)-without cross- loadings 2 first-order correlated factors (20 items)-with cross-loadings 5 .24 .055 .905 .921 2 first-order correlated factors (16 items)-without cross- loadings 5 .94 .062 .918 .930 2 first-order correlated factors (16 items)-with cross-loadings 4 .96 .052 .933 .945 3 first-order correlated factors- without cross-loadings 5 .61 .071 .874 .890 3 first-order correlated factors- with cross-loadings 4 .55 .045 .917 .934 4 first-order correlated factors- without cross-loadings 4 .66 .081 .831 .847 4 first-order correlated factors- with cross-loadings 4 .46 .044 .918 .935 3 first-order correlated factors- with cross-loadings 4 .46 .044 .918 .935	2 first-order correlated factors (20 items)-without cross- loadings

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

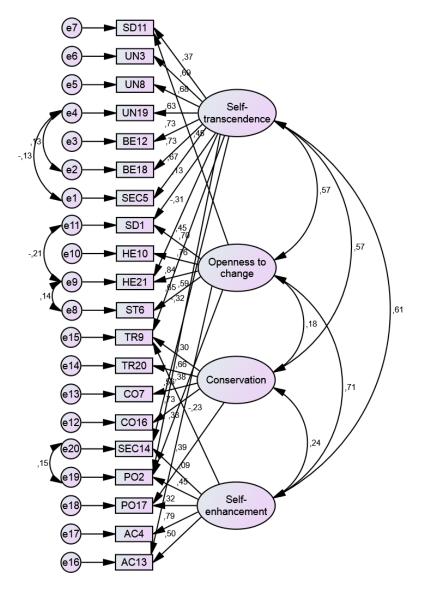

b Lower values indicate better model fit

Fig. 141 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Portugal (second half-sample: n = 1,026)

Table A480 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Portugal (N = 2,052)

		Sub	scale	
	Self- transcendence	Openness to change	Conservation	Self- enhancement
Number of items	7	4	4	5
Mean (standard error)	2.54 (0.018)	3.10 (0.021)	2.87 (0.019)	3.08 (0.019)
95% Confidence interval	2.50-2.57	3.06-3.15	2.83-2.91	3.04-3.12
Standard deviation	0.808	0.963	0.865	0.850
Skewness (standard error)	0.293 (0.054)	0.314 (0.054)	0.106 (0.054)	-0.003 (0.054)
Kurtosis (standard error)	-0.141 (0.108)	-0.137 (0.108)	-0.364 (0.108)	-0.179 (0.108)
Cronbach's alpha reliability coeff.	0.856	0.798	0.709	0.733
Split-half reliability coefficient	0.839	0.787	0.699	0.580
Average inter-item correlations	0.462	0.500	0.379	0.354
Minimum-maximum correlations	0.347-0.552	0.392-0.567	0.322-0.458	0.219-0.580
Range of correlations	0.204	0.176	0.136	0.360
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Openness to change	0.377	_		
Conservation	0.351	0.241	_	
Self-enhancement	0.366	0.366	0.255	_
				188

Fig. 142 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Portugal (N = 2,052)

Table A481 Item analysis of Schwartz scale values of the European Social Survey, 2006: Portugal (first half-sample: n = 1,111)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.90 (1.105)	2.83-2.96	10.9	24.6	34.9	20.9	5.7	1.3	1.8	0.20	-0.20	0.524
SD11	2.65 (1.138)	2.58-2.72	15.9	31.1	31.9	13.7	5.2	1.4	0.8	0.49	-0.02	0.542
UN3	2.25 (1.053)	2.18-2.31	28.5	33.6	24.3	11.6	1.6	0.2	0.2	0.52	-0.42	0.440
UN8	2.60 (1.015)	2.54-2.66	13.0	35.8	32.1	14.4	3.0	0.5	1.2	0.41	-0.01	0.515
UN19	2.35 (1.015)	2.29-2.41	21.2	36.2	25.7	12.4	1.6	0.3	2.7	0.49	-0.21	0.579
BE12	2.37 (0.978)	2.31-2.42	19.6	39.1	27.7	12.2	1.1	0.2	0.1	0.40	-0.32	0.518
BE18	2.18 (1.014)	2.12-2.24	28.8	37.5	21.9	9.6	1.5	0.2	0.5	0.65	-0.08	0.565
TR9	2.58 (1.068)	2.51-2.64	17.7	30.5	31.0	17.0	3.2	0.1	0.5	0.20	-0.65	0.335
TR20	2.72 (1.166)	2.65-2.78	14.8	32.1	28.0	17.6	5.9	1.3	0.4	0.42	-0.32	0.280
CO7	3.23 (1.283)	3.16-3.31	8.6	21.6	28.4	21.5	14.2	4.0	1.8	0.17	-0.63	0.290
CO16	2.99 (1.205)	2.91-3.06	9.3	28.1	29.5	20.2	7.7	3.2	2.1	0.42	-0.21	0.339
SEC5	2.34 (1.031)	2.28-2.40	22.5	37.3	26.2	11.3	1.8	0.5	0.5	0.56	-0.01	0.437
SEC14	2.48 (1.044)	2.42-2.54	17.1	34.7	31.9	11.1	2.3	1.2	1.8	0.62	0.51	0.474
PO2	4.26 (1.187)	4.19-4.33	1.9	6.7	16.4	25.6	35.6	13.0	0.9	-0.56	-0.17	0.316
PO17	2.91 (1.225)	2.84-2.98	10.9	30.2	27.5	16.3	9.7	2.4	2.9	0.45	-0.35	0.451
AC4	3.06 (1.241)	2.99-3.14	9.2	26.0	30.1	19.8	10.3	3.4	1.3	0.35	-0.41	0.512
AC13	3.16 (1.222)	3.08-3.23	7.2	23.3	33.3	20.6	9.6	4.5	1.4	0.37	-0.24	0.490
HE10	3.10 (1.164)	3.03-3.17	7.5	22.1	37.8	19.4	8.9	3.2	1.0	0.36	-0.07	0.459
HE21	3.49 (1.314)	3.42-3.57	5.2	18.3	28.1	26.2	12.1	9.3	0.9	0.20	-0.57	0.278
ST6	3.26 (1.266)	3.19-3.34	6.8	23.4	28.3	23.2	13.4	4.4	0.5	0.22	-0.60	0.453
ST15	4.10 (1.367)	4.02-4.18	3.1	11.3	19.1	23.2	25.0	17.7	0.6	-0.31	-0.77	0.259

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.073 and 0.147, respectively.

Table A482 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Portugal (first half-sample: n = 1,111)

	Principal a	xis factor analysis	(factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conformity	variance
	transcendence	enhancement		
SD1	0.282	0.554	-0.183	0.523
SD11	0.397	0.416	-0.103	0.572
UN3	0.727	-0.048	-0.079	0.524
UN8	0.619	0.058	0.004	0.585
UN19	0.586	0.146	0.059	0.543
BE12	0.762	-0.029	-0.044	0.455
BE18	0.724	0.040	0.030	0.436
TR9	0.623	-0.274	0.148	0.596
CO16	0.130	-0.049	0.637	0.535
SEC5	0.570	-0.058	0.178	0.603
SEC14	0.591	-0.016	0.105	0.608
PO2	-0.156	0.511	0.128	0.754
PO17	0.106	0.199	0.555	0.559
AC4	-0.037	0.651	0.194	0.527
AC13	-0.167	0.750	0.195	0.448
HE10	-0.026	0.731	-0.136	0.485
ST6	0.037	0.593	-0.068	0.638
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.377	_		
Conformity	0.317	0.132	_	

Table A483 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Portugal (first half-sample: n = 1,111)

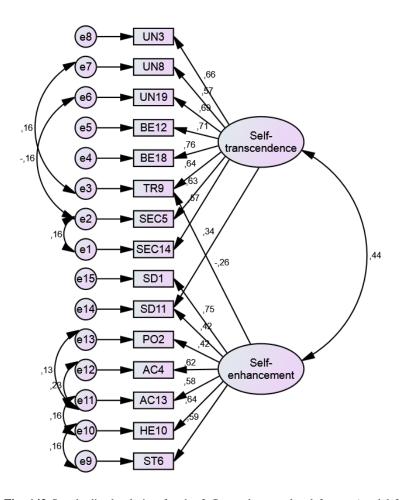
		Subscale	
	Self-	Self-	Conformity
	transcendence	enhancement	
Number of items	8	7	2
Mean (standard error)	2.39 (0.022)	3.20 (0.024)	2.95 (0.031)
95% Confidence interval	2.35-2.44	3.15-3.25	2.89-3.01
Standard deviation	0.729	0.812	1.034
Skewness (standard error)	0.297 (0.073)	0.266 (0.073)	0.485 (0.073)
Kurtosis (standard error)	-0.501 (0.147)	0.132 (0.147)	0.174 (0.147)
Cronbach's alpha reliability coeff.	0.859	0.809	0.618
Split-half reliability coefficient	0.837	0.815	0.618
Average inter-item correlations	0.434	0.377	0.447
Minimum-maximum correlations	0.338-0.574	0.220-0.552	0.447-0.447
Range of correlations	0.236	0.332	0.000
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.281	_	
Conformity	0.366	0.386	_

Table A484 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Portugal (first half-sample: n = 1,111)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	0.170	0.555	0.589
SD11	0.324	0.423	0.608
UN3	0.670	-0.037	0.569
UN8	0.608	0.065	0.594
UN19	0.601	0.154	0.542
BE12	0.723	-0.019	0.487
BE18	0.725	0.049	0.444
TR9	0.696	-0.273	0.590
CO16	0.390	-0.027	0.856
SEC5	0.652	-0.054	0.600
SEC14	0.635	-0.011	0.602
PO2	-0.107	0.515	0.767
PO17	0.343	0.194	0.792
AC4	0.039	0.653	0.552
AC13	-0.087	0.747	0.485
HE10	-0.113	0.735	0.512
ST6	-0.016	0.602	0.645
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.392	_	

Table A485 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-15 items): European Social Survey 2006, Portugal (first half-sample: n = 1,111)

	Principal axis factor			
Variables			Unique	
	Factor I	Factor II	variance	
	Self-transcendence	Self-enhancement		
SD1	0.203	0.551	0.569	
SD11	0.345	0.417	0.595	
UN3	0.699	-0.043	0.533	
UN8	0.620	0.065	0.579	
UN19	0.602	0.154	0.542	
BE12	0.745	-0.025	0.458	
BE18	0.730	0.043	0.441	
TR9	0.668	-0.263	0.621	
SEC5	0.631	-0.048	0.624	
SEC14	0.630	-0.007	0.606	
PO2	-0.123	0.518	0.766	
AC4	0.022	0.651	0.564	
AC13	-0.105	0.750	0.488	
HE10	-0.090	0.730	0.510	
ST6	-0.004	0.603	0.639	
	Correlations bet	ween factors		
Self-transcendence	_			
Self-enhancement	0.388	_		


Table A486 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2006, Portugal (second half-sample: n = 1,111)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.90	.057	.914	.927	.889	.066 (.061072)
2a	2 first-order correlated factors (17 items)-without cross-						
	loadings	5.97	.068	.893	.909	.887	.067 (.062072)
2b	2 first-order correlated factors (17 items)-with cross-loadings	4.44	.049	.922	.938	.922	.056 (.051061)
2c	2 first-order correlated factors (15 items)-without cross-						
	loadings	5.81	.065	.912	.925	.906	.066 (.060072)
2d	2 first-order correlated factors						
	(15 items)-with cross-loadings	3.58	.041	.947	.961	.949	.048 (.042054)
3a	3 first-order correlated factors- without cross-loadings	6.96	.071	.873	.889	.865	.073 (.068078)
3b	3 first-order correlated factors-						` ,
	with cross-loadings	4.88	.049	.914	.930	.912	.059 (.054064)
4	3 first-order correlated factors of unified values	7.56	.067	.895	.907	.883	.077 (.070083)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

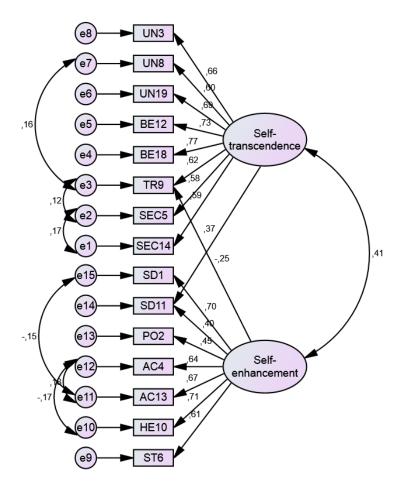

b Lower values indicate better model fit

Fig. 143 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Portugal (second half-sample: n = 1,111)

Table A487 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Portugal (N = 2,222)

	Subscale		
	Self-	Self-enhancement	
	transcendence		
Number of items	8	7	
Mean (standard error)	2.39 (0.015)	3.18 (0.017)	
95% Confidence interval	2.36-2.42	3.15-3.22	
Standard deviation	0.721	0.806	
Skewness (standard error)	0.342 (0.052)	0.293 (0.052)	
Kurtosis (standard error)	-0.073 (0.104)	0.193 (0.104)	
Cronbach's alpha reliability coeff.	0.853	0.808	
Split-half reliability coefficient	0.832	0.816	
Average inter-item correlations	0.423	0.377	
Minimum-maximum correlations	0.330-0.566	0.231-0.531	
Range of correlations	0.236	0.301	
	Average inter	r-item correlations	
	between subscales		
Self-transcendence	_		
Self-enhancement	0.278	_	

Fig. 144 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Portugal (N = 2,222)

Table A488 Item analysis of Schwartz scale values of the European Social Survey, 2008: Portugal (first half-sample: n = 1,183)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.89 (1.109)	2.82-2.95	10.3	26.0	36.2	18.7	5.6	1.8	1.4	0.33	0.01	0.495
SD11	2.65 (1.041)	2.59-2.71	14.2	30.4	34.2	16.4	3.0	0.5	1.2	0.25	-0.25	0.522
UN3	2.32 (1.055)	2.26-2.38	24.5	34.2	28.4	9.4	1.6	1.0	0.9	0.67	0.45	0.507
UN8	2.74 (1.055)	2.68-2.80	11.8	29.7	35.9	16.6	3.5	1.2	1.4	0.35	0.11	0.569
UN19	2.56 (1.028)	2.50-2.62	15.7	33.1	32.9	14.1	2.5	0.5	1.2	0.34	-0.13	0.578
BE12	2.55 (1.030)	2.49-2.61	14.9	35.2	33.2	12.6	2.4	1.0	0.7	0.51	0.34	0.581
BE18	2.36 (1.002)	2.31-2.42	19.4	39.7	27.6	10.1	1.9	0.6	0.7	0.62	0.36	0.600
TR9	2.71 (1.155)	2.65-2.78	16.2	27.7	30.7	17.9	4.9	1.3	1.3	0.33	-0.31	0.419
TR20	2.83 (1.131)	2.76-2.89	12.3	27.6	33.0	19.2	5.9	1.3	0.8	0.29	-0.27	0.444
CO7	3.21 (1.172)	3.15-3.28	6.5	20.6	33.7	23.8	11.2	3.0	1.3	0.20	-0.33	0.393
CO16	2.99 (1.039)	2.93-3.05	6.3	25.9	37.4	21.4	6.6	1.0	1.4	0.25	-0.10	0.352
SEC5	2.54 (1.173)	2.47-2.61	22.9	26.0	30.6	14.7	3.7	1.3	0.8	0.42	-0.27	0.560
SEC14	2.58 (1.128)	2.52-2.65	18.3	30.7	30.1	15.0	3.3	1.4	1.2	0.47	-0.04	0.484
PO2	4.16 (1.251)	4.09-4.23	2.5	7.1	20.4	25.5	28.7	14.6	1.2	-0.38	-0.44	0.275
PO17	3.19 (1.081)	3.13-3.26	5.0	21.0	35.7	25.4	10.3	1.4	1.3	0.14	-0.30	0.474
AC4	2.98 (1.146)	2.91-3.04	9.4	25.1	34.1	21.2	7.1	2.1	1.0	0.29	-0.18	0.622
AC13	3.15 (1.102)	3.09-3.22	5.9	21.0	36.9	24.1	8.8	2.2	1.1	0.22	-0.12	0.608
HE10	3.27 (1.217)	3.20-3.34	7.7	16.7	34.2	25.2	10.1	4.7	1.4	0.17	-0.22	0.535
HE21	3.59 (1.270)	3.52-3.66	4.0	15.6	30.3	25.7	14.4	8.9	1.2	0.15	-0.54	0.410
ST6	3.32 (1.191)	3.25-3.39	6.0	17.7	33.6	25.4	11.7	4.2	1.4	0.17	-0.28	0.391
ST15	4.20 (1.331)	4.12-4.28	2.5	8.3	21.1	21.1	26.5	19.4	1.0	-0.34	-0.71	0.264

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.071 and 0.142, respectively.

Table A489 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Portugal (first half-sample: n = 1.183)

	Principal a						
	Factor I	Factor II	Factor III	Unique			
Item	Self-	Openness to	Conservation	variance			
	transcendence	change					
SD1	0.367	0.410	-0.170	0.641			
SD11	0.436	0.319	-0.107	0.645			
UN3	0.736	-0.034	-0.077	0.538			
UN8	0.646	0.055	0.014	0.537			
UN19	0.612	0.088	0.035	0.543			
BE12	0.755	-0.020	0.002	0.441			
BE18	0.788	-0.043	0.019	0.390			
TR9	0.548	-0.170	0.210	0.592			
TR20	0.227	-0.106	0.569	0.514			
CO7	0.113	0.069	0.395	0.756			
CO16	-0.104	-0.016	0.749	0.521			
SEC5	0.523	-0.013	0.251	0.520			
SEC14	0.382	-0.011	0.301	0.637			
PO17	0.022	0.174	0.519	0.643			
AC4	0.298	0.470	0.037	0.546			
AC13	0.139	0.625	0.055	0.488			
HE10	-0.064	0.725	0.098	0.476			
HE21	-0.305	0.807	0.132	0.450			
ST6	0.025	0.631	-0.136	0.613			
Factors	Correl	Correlations between factors					
Self-transcendence	_						
Openness to change	0.435	_					
Conservation	0.575	0.229	_				

Table A490 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Portugal (first half-sample: n = 1,183)

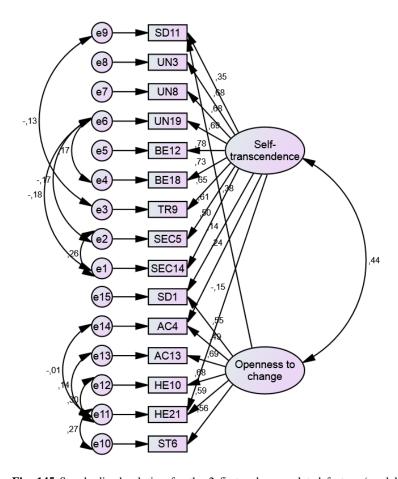
	Subscale				
	Self- transcendence	Openness to change	Conservation		
Number of items	9	6	4		
Mean (standard error)	2.56 (0.022)	3.20 (0.024)	3.06 (0.023)		
95% Confidence interval	2.52-2.60	3.15-3.25	3.01-3.10		
Standard deviation	0.751	0.838	0.801		
Skewness (standard error)	0.221 (0.071)	0.122 (0.071)	0.641 (0.071)		
Kurtosis (standard error)	-0.151 (0.142)	-0.052 (0.142)	0.801 (0.142)		
Cronbach's alpha reliability coeff.	0.868	0.808	0.697		
Split-half reliability coefficient	0.869	0.757	0.714		
Average inter-item correlations	0.427	0.413	0.368		
Minimum-maximum correlations	0.195-0.635	0.273-0.582	0.311-0.452		
Range of correlations	0.441	0.310	0.141		
	Average inter-it	em correlations be	etween subscales		
Self-transcendence	_				
Openness to change	0.325	_			
Conservation	0.357	0.265	_		

Table A491 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Portugal (first half-sample: n = 1,183)

	Principal axis factor		
Variables	Factor I Self-transcendence	Factor II Openness to change	Unique variance
SD1	0.152	0.478	0.679
SD11	0.278	0.381	0.676
UN3	0.608	0.037	0.607
UN8	0.600	0.108	0.566
UN19	0.585	0.136	0.563
BE12	0.695	0.041	0.488
BE18	0.742	0.018	0.437
TR9	0.706	-0.166	0.586
TR20	0.686	-0.159	0.608
CO7	0.427	0.030	0.804
CO16	0.508	-0.105	0.781
SEC5	0.702	-0.009	0.513
SEC14	0.611	-0.023	0.640
PO17	0.434	0.113	0.752
AC4	0.256	0.514	0.544
AC13	0.109	0.661	0.483
HE10	-0.048	0.736	0.490
HE21	-0.236	0.774	0.520
ST6	-0.159	0.683	0.611
	Correlations be	tween factors	
Self-transcendence Openness to change	0.478	_	

Table A492 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-15 items): European Social Survey 2008, Portugal (first half-sample: n = 1,183)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-transcendence	Openness to change	
SD1	0.221	0.431	0.676
SD11	0.344	0.334	0.662
UN3	0.682	-0.023	0.549
UN8	0.640	0.063	0.549
UN19	0.614	0.107	0.549
BE12	0.745	-0.006	0.450
BE18	0.793	-0.032	0.394
TR9	0.688	-0.177	0.610
SEC5	0.698	-0.026	0.529
SEC14	0.583	-0.024	0.672
AC4	0.291	0.479	0.554
AC13	0.143	0.638	0.487
HE10	-0.033	0.738	0.477
HE21	-0.259	0.817	0.465
ST6	-0.102	0.649	0.631
	Correlations be	tween factors	
Self-transcendence	_		
Openness to change	0.471	_	


Table A493 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Portugal (second half-sample: n = 1,184)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	7.00	.057	.904	.916	.876	.071 (.067076)
2a	2 first-order correlated factors (19 items)-without cross-						
	loadings	7.18	.068	.882	.896	.872	.072 (.068077)
2b	2 first-order correlated factors						
_	(19 items)-with cross-loadings	6.51	.057	.895	.909	.886	.068 (.064073)
2c	2 first-order correlated factors						
	(15 items)-without cross-	0.10	072	002	012	006	070 (070 004)
0.1	loadings	8.19	.073	.902	.913	.886	.078 (.072084)
2d	2 first-order correlated factors	C 05	040	022	0.42	020	065 (060, 071)
3a	(15 items)-with cross-loadings 3 first-order correlated factors-	6.05	.049	.932	.942	.920	.065 (.060071)
3a		7.88	.073	.869	.883	.857	.076 (.072080)
3b	without cross-loadings 3 first-order correlated factors-	7.00	.073	.009	.003	.637	.070 (.072080)
30	with cross-loadings	6.20	.054	.902	.916	.892	.066 (.062071)
4	3 first-order correlated factors	0.20	.034	.702	.710	.072	.000 (.002071)
1	of unified values	8.16	.068	.913	.923	.898	.078 (.071084)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

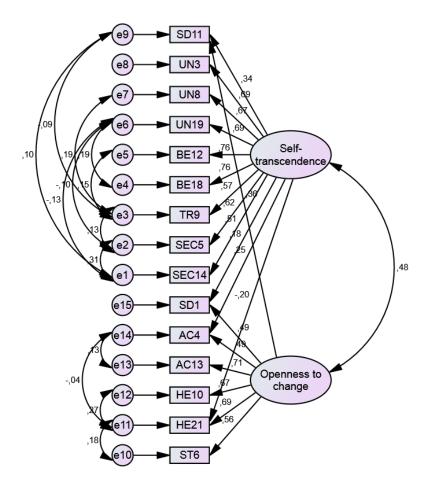

b Lower values indicate better model fit

Fig. 145 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Portugal (second half-sample: n = 1,184)

Table A494 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Portugal (N = 2,367)

	Subscale					
	Self-	Openness to				
	transcendence	change				
Number of items	9	6				
Mean (standard error)	2.56 (0.015)	3.22 (0.017)				
95% Confidence interval	2.53-2.59	3.18-3.25				
Standard deviation	0.746	0.835				
Skewness (standard error)	0.210 (0.050)	0.137 (0.050)				
Kurtosis (standard error)	-0.213 (0.101)	-0.127 (0.101)				
Cronbach's alpha reliability coeff.	0.867	0.803				
Split-half reliability coefficient	0.869	0.763				
Average inter-item correlations	0.422	0.406				
Minimum-maximum correlations	0.199-0.613	0.285-0.563				
Range of correlations	0.414	0.279				
	Average inter-	item correlations				
	between	subscales				
Self-transcendence	_					
Openness to change	0.316	_				

Fig. 146 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Portugal (N = 2,367)

Table A495 Item analysis of Schwartz scale values of the European Social Survey, 2010: Portugal (first half-sample: n = 1,075)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.78 (1.046)	2.72-2.84	10.7	28.8	38.0	15.9	5.6	0.5	0.6	0.27	-0.16	0.539
SD11	2.56 (1.007)	2.50-2.62	16.6	30.7	34.8	15.1	2.2	0.7	1.2	0.13	-0.60	0.586
UN3	2.32 (1.034)	2.26-2.38	25.0	32.8	29.2	10.8	1.9	0.2	0.1	0.42	-0.38	0.501
UN8	2.83 (1.046)	2.77-2.90	9.7	28.5	36.9	18.0	6.3	0.2	0.5	0.20	-0.36	0.641
UN19	2.48 (0.940)	2.42-2.53	16.9	32.0	37.3	12.5	0.7	-	0.6	0.04	-0.65	0.595
BE12	2.42 (0.971)	2.37-2.48	17.7	37.4	31.3	11.6	1.7	0.1	0.2	0.34	-0.31	0.600
BE18	2.32 (0.964)	2.26-2.37	22.4	35.6	30.4	10.7	0.5	0.2	0.2	0.30	-0.46	0.549
TR9	2.64 (1.099)	2.57-2.70	17.9	26.6	33.8	17.2	3.8	0.4	0.4	0.19	-0.53	0.461
TR20	2.81 (1.059)	2.75-2.88	10.0	28.7	38.3	16.3	5.3	1.0	0.4	0.35	0.04	0.414
CO7	3.20 (1.093)	3.13-3.27	5.6	19.4	37.9	23.7	11.3	1.4	0.7	0.12	-0.29	0.404
CO16	2.99 (1.036)	2.93-3.05	7.1	24.1	39.4	21.9	6.1	0.9	0.5	0.18	-0.09	0.464
SEC5	2.40 (1.036)	2.34-2.46	22.3	31.2	32.6	11.4	1.7	0.5	0.4	0.38	-0.20	0.573
SEC14	2.48 (1.033)	2.41-2.54	20.0	30.2	32.7	14.7	1.5	0.3	0.7	0.23	-0.52	0.505
PO2	4.12 (1.239)	4.05-4.20	2.1	9.1	19.3	24.7	32.7	11.8	0.2	-0.42	-0.51	0.272
PO17	2.98 (1.056)	2.91-3.04	7.4	24.7	38.8	20.7	6.8	1.0	0.7	0.22	-0.11	0.542
AC4	2.90 (1.066)	2.83-2.96	9.6	25.1	38.8	18.6	7.1	0.5	0.4	0.17	-0.28	0.615
AC13	3.03 (1.138)	2.96-3.10	9.2	21.7	37.8	19.7	9.7	1.4	0.6	0.18	-0.29	0.601
HE10	3.00 (1.127)	2.94-3.07	8.1	26.6	32.7	22.4	8.5	1.3	0.5	0.22	-0.40	0.567
HE21	3.37 (1.196)	3.29-3.44	4.6	19.1	34.0	23.0	14.8	4.1	0.5	0.20	-0.47	0.445
ST6	3.18 (1.160)	3.11-3.25	6.1	22.8	33.9	22.7	11.9	2.2	0.4	0.21	-0.43	0.565
ST15	4.06 (1.315)	3.98-4.14	2.2	10.8	22.0	24.1	24.5	15.8	0.6	-0.21	-0.78	0.303

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.075 and 0.149, respectively.

Table A496 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Portugal (first half-sample: n = 1.075)

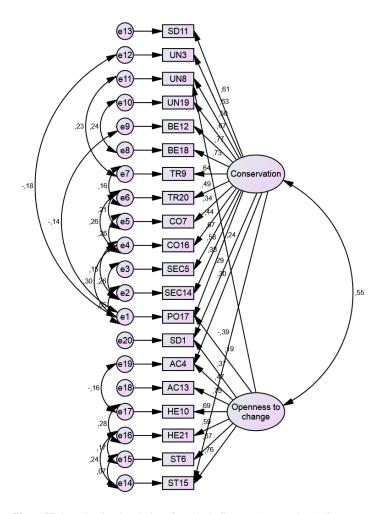
-	Principal axis factor analysis (factors)								
	Factor I	Factor II	Factor III	Unique					
Item	Self-	Openness to	Conservation	variance					
	transcendence	change							
SD1	0.475	0.399	-0.217	0.579					
SD11	0.683	0.147	-0.123	0.518					
UN3	0.641	-0.008	-0.023	0.610					
UN8	0.419	0.227	0.185	0.537					
UN19	0.599	0.133	0.013	0.543					
BE12	0.752	-0.033	0.027	0.432					
BE18	0.785	-0.085	-0.029	0.459					
TR9	0.531	-0.159	0.241	0.586					
TR20	0.211	-0.090	0.466	0.661					
CO7	-0.056	0.084	0.572	0.671					
CO16	0.077	-0.019	0.632	0.548					
SEC5	0.672	-0.100	0.147	0.472					
SEC14	0.544	-0.106	0.210	0.582					
PO17	0.034	0.205	0.537	0.566					
AC4	0.301	0.430	0.058	0.569					
AC13	0.146	0.612	0.039	0.501					
HE10	0.152	0.631	-0.028	0.510					
HE21	-0.111	0.747	0.001	0.502					
ST6	0.105	0.673	-0.022	0.486					
ST15	-0.415	0.779	0.143	0.479					
Factors	Correl	ations between fa	ctors						
Self-transcendence	_								
Openness to change	0.441	_							
Conservation	0.580	0.340	_						

Table A497 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Portugal (first half-sample: n = 1,075)

		Subscale	
	Self- transcendence	Openness to change	Conservation
Number of items	10	6	4
Mean (standard error)	2.48 (0.022)	3.26 (0.026)	2.99 (0.024)
95% Confidence interval	2.48-2.56	3.21-3.31	2.95-3.04
Standard deviation	0.706	0.853	0.771
Skewness (standard error)	0.118 (0.075)	0.092 (0.075)	0.118 (0.075)
Kurtosis (standard error)	-0.512 (0.149)	-0.254 (0.149)	0.052 (0.149)
Cronbach's alpha reliability coeff.	0.880	0.824	0.703
Split-half reliability coefficient	0.873	0.808	0.711
Average inter-item correlations	0.427	0.441	0.372
Minimum-maximum correlations	0.211-0.608	0.276-0.526	0.305-0.471
Range of correlations	0.397	0.250	0.166
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.336	_	
Conservation	0.360	0.304	_

Table A498 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Portugal (first half-sample: n = 1,075)

Variables	Principal axis factor	II.	
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.287	0.390	0.657
SD11	0.566	0.145	0.580
UN3	0.609	-0.009	0.634
UN8	0.531	0.242	0.535
UN19	0.587	0.138	0.558
BE12	0.755	-0.032	0.453
BE18	0.747	-0.086	0.497
TR9	0.703	-0.151	0.586
TR20	0.534	-0.060	0.742
CO7	0.340	0.118	0.832
CO16	0.507	0.024	0.730
SEC5	0.771	-0.097	0.468
SEC14	0.692	-0.100	0.578
PO17	0.399	0.236	0.693
AC4	0.313	0.444	0.570
AC13	0.136	0.631	0.500
HE10	0.093	0.646	0.515
HE21	-0.151	0.771	0.496
ST6	0.051	0.689	0.489
ST15	-0.333	0.789	0.521
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.484	_	


Table A499 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2010, Portugal (second half-sample: n = 1,075)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.61	.053	.918	.931	.899	.066 (.061070)
2a	2 first-order correlated factors- without cross-loadings	7.51	.074	.872	.886	.858	.078 (.074082)
2b	2 first-order correlated factors- with cross-loadings	5.95	.055	.902	.916	.892	.068 (.064072)
3a	3 first-order correlated factors- without cross-loadings	8.10	.076	.858	.873	.845	.081 (.077085)
3b	3 first-order correlated factors- with cross-loadings	6.39	.058	.892	.906	.882	.071 (.067075)
4	3 first-order correlated factors of unified values	8.71	.073	.899	.909	.878	.085 (.078092)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

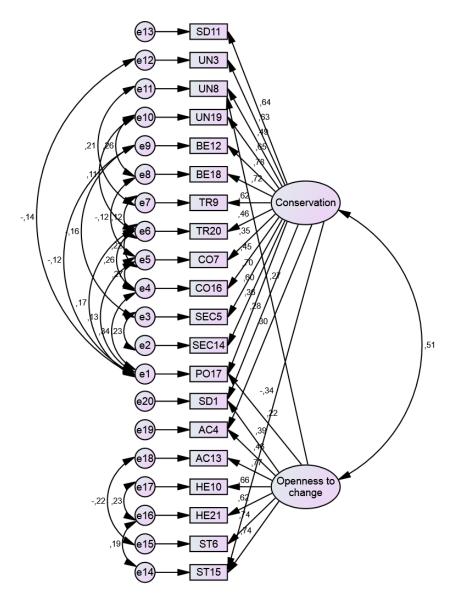

b Lower values indicate better model fit

Fig. 147 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Portugal (second half-sample: n = 1,705)

Table A500 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Portugal (N=2,150)

	Su	bscale
	Conservation	Openness to change
Number of items	13	7
Mean (standard error)	2.63 (0.014)	3.18 (0.017)
95% Confidence interval	2.60-2.66	3.14-3.21
Standard deviation	0.667	0.808
Skewness (standard error)	0.051 (0.053)	0.015 (0.053)
Kurtosis (standard error)	-0.591 (0.106)	-0.193 (0.106)
Cronbach's alpha reliability coeff.	0.883	0.831
Split-half reliability coefficient	0.852	0.796
Average inter-item correlations	0.371	0.414
Minimum-maximum correlations	0.160-0.611	0.200-0.551
Range of correlations	0.451	0.351
	Average inter-	item correlations
	between	n subscales
Conservation	_	
Openness to change	0.305	_

Fig. 148 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Portugal (N = 2,150)

Table A501 Item analysis of Schwartz scale values of the European Social Survey, 2012: Portugal (first half-sample: n = 1,075)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.77 (1.024)	2.71-2.83	10.4	29.0	38.3	16.2	4.7	0.5	0.8	0.25	-0.11	0.536
SD11	2.49 (0.946)	2.44-2.55	14.4	36.8	34.0	12.2	1.9	-	0.7	0.27	-0.34	0.590
UN3	2.18 (0.928)	2.13-2.24	25.3	39.4	27.7	6.0	1.0	0.2	0.3	0.53	0.14	0.470
UN8	2.85 (1.007)	2.79-2.91	8.4	28.1	38.7	19.2	4.5	0.6	0.7	0.21	-0.11	0.562
UN19	2.38 (0.901)	2.33-2.44	17.6	36.2	36.9	7.8	0.9	0.1	0.5	0.20	-0.20	0.543
BE12	2.48 (0.924)	2.42-2.53	14.2	37.3	35.5	10.9	1.5	0.1	0.5	0.27	-0.17	0.525
BE18	2.27 (0.912)	2.22-2.33	21.8	37.6	32.8	6.0	1.3	-	0.5	0.33	-0.21	0.543
TR9	2.69 (1.049)	2.62-2.75	13.6	30.0	34.4	17.8	3.3	0.5	0.5	0.21	-0.33	0.374
TR20	2.79 (1.113)	2.73-2.86	12.3	28.8	32.8	18.2	6.0	0.8	0.9	0.29	-0.32	0.320
CO7	3.16 (1.163)	3.09-3.23	6.4	22.6	35.4	20.1	12.3	2.2	0.9	0.25	-0.38	0.310
CO16	2.90 (1.077)	2.84-2.97	9.0	27.1	35.8	19.3	6.7	0.8	1.2	0.25	-0.23	0.457
SEC5	2.39 (1.000)	2.33-2.45	19.9	35.1	33.7	8.1	2.0	0.7	0.6	0.54	0.42	0.575
SEC14	2.37 (1.006)	2.31-2.43	22.0	33.0	31.1	11.3	1.3	0.3	0.9	0.36	-0.32	0.510
PO2	4.21 (1.206)	4.13-4.28	2.8	7.0	15.7	26.0	36.6	11.1	0.8	-0.64	-0.04	0.277
PO17	2.88 (1.164)	2.81-2.95	11.4	27.6	32.4	17.9	8.8	1.1	0.7	0.30	-0.42	0.526
AC4	2.81 (1.064)	2.74-2.87	10.9	28.1	36.4	18.0	5.1	0.7	0.7	0.25	-0.18	0.598
AC13	3.08 (1.086)	3.02-3.15	7.1	21.3	38.0	23.5	7.8	1.6	0.7	0.16	-0.12	0.578
HE10	2.95 (1.076)	2.88-3.01	8.9	25.1	35.3	22.2	7.0	0.6	0.8	0.11	-0.40	0.545
HE21	3.43 (1.236)	3.35-3.50	6.0	16.8	29.1	28.0	14.0	5.1	0.9	0.06	-0.46	0.425
ST6	3.17 (1.197)	3.09-3.24	7.3	23.4	31.0	22.0	13.6	1.9	0.8	0.16	-0.61	0.533
ST15	4.22 (1.257)	4.14-4.29	2.0	8.3	18.1	23.3	32.5	15.2	0.6	-0.46	-0.49	0.301

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.075 and 0.149, respectively.

Table A502 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Portugal (first half-sample: n = 1.075)

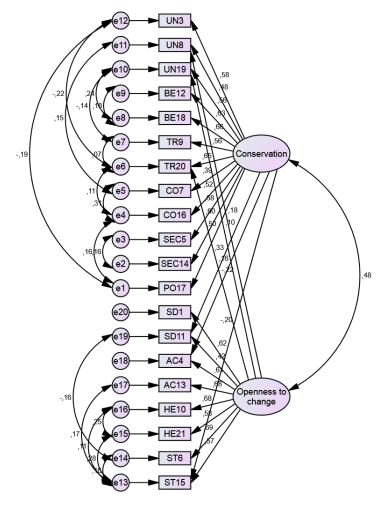
-	Principal axis factor analysis (factors)									
	Factor I	Factor II	Factor III	Unique						
Item	Self-	Openness to	Conservation	variance						
	transcendence	change								
SD1	0.215	0.479	-0.009	0.626						
SD11	0.533	0.281	-0.087	0.547						
UN3	0.738	-0.073	-0.107	0.586						
UN8	0.285	0.231	0.241	0.635						
UN19	0.615	0.074	-0.023	0.589						
BE12	0.750	-0.084	-0.028	0.518						
BE18	0.812	-0.126	-0.023	0.447						
TR9	0.324	-0.180	0.413	0.617						
TR20	0.032	-0.122	0.631	0.597						
CO7	-0.152	0.022	0.679	0.640						
CO16	-0.047	0.005	0.810	0.387						
SEC5	0.498	0.042	0.215	0.547						
SEC14	0.517	0.032	0.105	0.636						
PO17	0.108	0.179	0.467	0.622						
AC4	0.301	0.450	0.018	0.562						
AC13	0.154	0.610	-0.005	0.513						
HE10	0.133	0.660	-0.077	0.488						
HE21	-0.088	0.755	-0.077	0.499						
ST6	-0.107	0.734	0.127	0.490						
ST15	-0.277	0.765	-0.035	0.546						
Factors	Correl	ations between fa	ctors							
Self-transcendence	_									
Openness to change	0.496	_								
Conservation	0.615	0.290	_							

Table A503 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Portugal (first half-sample: n = 1,075)

		Subscale	
	Self- transcendence	Openness to change	Conservation
Number of items	8	7	5
Mean (standard error)	2.43 (0.020)	3.20 (0.025)	2.89 (0.024)
95% Confidence interval	2.39-2.47	3.15-3.25	2.84-2.93
Standard deviation	0.659	0.810	0.794
Skewness (standard error)	0.174 (0.075)	0.084 (0.075)	0.150 (0.075)
Kurtosis (standard error)	0.141 (0.149)	-0.204 (0.149)	-0.197 (0.149)
Cronbach's alpha reliability coeff.	0.844	0.838	0.758
Split-half reliability coefficient	0.839	0.810	0.715
Average inter-item correlations	0.406	0.428	0.387
Minimum-maximum correlations	0.296-0.590	0.263-0.544	0.269-0.504
Range of correlations	0.294	0.281	0.235
	Average inter-it	em correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.327	_	
Conservation	0.338	0.246	_

Table A504 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Portugal (first half-sample: n = 1,075)

Variables	Principal axis factor	analysis (factors)	Unique
v arrabies	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	0.129	0.544	0.625
SD11	0.320	0.428	0.593
UN3	0.483	0.120	0.701
UN8	0.454	0.249	0.631
UN19	0.463	0.222	0.645
BE12	0.572	0.094	0.616
BE18	0.627	0.066	0.566
TR9	0.689	-0.203	0.608
TR20	0.651	-0.247	0.658
CO7	0.528	-0.147	0.769
CO16	0.734	-0.163	0.541
SEC5	0.614	0.110	0.551
SEC14	0.518	0.128	0.656
PO17	0.535	0.108	0.651
AC4	0.228	0.527	0.564
AC13	0.073	0.664	0.510
HE10	-0.019	0.726	0.485
HE21	-0.204	0.771	0.503
ST6	-0.010	0.692	0.527
ST15	-0.307	0.717	0.587
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.445	_	


Table A505 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2012, Portugal (second half-sample: n = 1,076)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.41	.062	.900	.913	.865	.071 (.066076)
2a	2 first-order correlated factors- without cross-loadings	6.96	.073	.864	.881	.851	.074 (.070079)
2b	2 first-order correlated factors- with cross-loadings	5.90	.055	.890	.906	.878	.068 (.063072)
3a	3 first-order correlated factors- without cross-loadings	7.30	.073	.853	.870	.843	.077 (.072081)
3b	3 first-order correlated factors- with cross-loadings	6.18	.059	.880	.897	.871	.069 (.065074)
4	3 first-order correlated factors of unified values	8.70	.064	.875	.887	.855	.085 (.078091)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

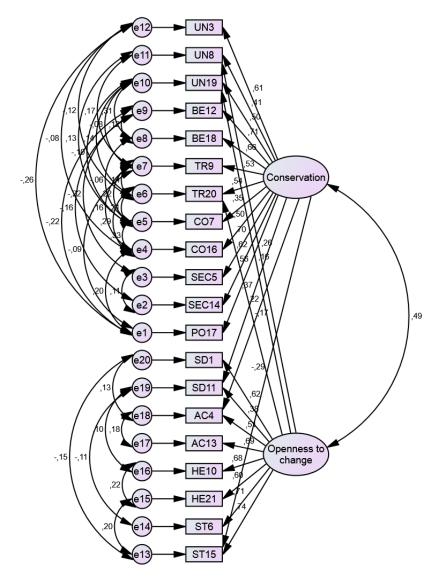

b Lower values indicate better model fit

Fig. 149 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Portugal (second half-sample: n = 1,076)

Table A506 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Portugal (N = 2,151)

	Su	bscale
	Conservation	Openness to change
Number of items	12	8
Mean (standard error)	2.63 (0.014)	3.12 (0.017)
95% Confidence interval	2.60-2.66	3.09-3.15
Standard deviation	0.640	0.768
Skewness (standard error)	0.121 (0.053)	0.030 (0.053)
Kurtosis (standard error)	-0.259 (0.106)	-0.251 (0.106)
Cronbach's alpha reliability coeff.	0.856	0.845
Split-half reliability coefficient	0.819	0.842
Average inter-item correlations	0.338	0.408
Minimum-maximum correlations	0.126-0.569	0.215-0.539
Range of correlations	0.443	0.324
	_	item correlations subscales
Conservation	_	
Openness to change	0.272	_

Fig. 150 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Portugal (N = 2,151)

Table A507 Item analysis of Schwartz scale values of the European Social Survey, 2014: Portugal (first half-sample: n = 632)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.66 (1.201)	2.56-2.75	18.4	26.6	34.8	11.1	4.7	2.8	1.6	0.60	0.28	0.388
SD11	2.24 (1.128)	2.15-2.33	32.6	27.5	24.2	11.9	1.7	0.8	1.3	0.65	-0.14	0.549
UN3	2.10 (1.082)	2.02-2.19	35.8	30.4	23.9	5.7	2.5	0.8	0.9	0.92	0.70	0.425
UN8	2.70 (1.133)	2.62-2.79	14.7	28.6	35.3	13.3	4.7	1.9	1.4	0.50	0.21	0.498
UN19	2.19 (1.006)	2.12-2.27	28.6	33.2	28.8	6.5	1.3	0.6	0.9	0.66	0.44	0.506
BE12	2.16 (0.950)	2.09-2.24	28.3	34.7	29.1	5.7	1.1	0.2	0.9	0.50	-0.07	0.547
BE18	1.98 (0.961)	1.90-2.05	37.8	33.1	22.8	3.8	1.3	0.3	0.9	0.86	0.68	0.556
TR9	2.31 (1.096)	2.23-2.40	26.6	30.7	29.4	8.9	1.7	1.4	1.3	0.73	0.56	0.401
TR20	2.92 (1.371)	2.81-3.03	19.3	18.5	29.4	17.2	10.3	3.8	1.4	0.29	-0.63	0.302
CO7	3.47 (1.390)	3.36-3.58	8.4	16.1	27.5	20.7	16.1	8.9	2.2	0.09	-0.73	0.284
CO16	3.05 (1.333)	2.94-3.15	14.6	18.7	32.8	16.0	12.7	3.8	1.6	0.25	-0.57	0.350
SEC5	2.39 (1.133)	2.30-2.48	25.6	28.6	29.6	9.5	4.4	0.6	1.6	0.59	-0.08	0.388
SEC14	2.42 (1.159)	2.33-2.51	25.0	26.9	32.0	8.5	3.3	1.9	2.4	0.72	0.46	0.490
PO2	4.74 (1.105)	4.66-4.83	1.3	3.8	7.9	17.9	43.4	24.5	1.3	-1.08	1.08	0.090
PO17	3.20 (1.363)	3.09-3.30	12.2	19.1	28.3	19.6	14.4	4.9	1.4	0.16	-0.71	0.398
AC4	3.20 (1.354)	3.09-3.30	11.7	19.0	28.8	19.9	12.8	5.5	2.2	0.20	-0.61	0.442
AC13	3.01 (1.253)	2.91-3.11	11.7	23.6	31.3	18.4	10.9	2.7	1.4	0.28	-0.47	0.530
HE10	2.67 (1.184)	2.57-2.76	18.2	26.3	34.2	13.1	4.7	2.2	1.3	0.50	0.08	0.541
HE21	3.16 (1.399)	3.05-3.26	13.6	18.8	29.1	19.0	11.1	6.8	1.6	0.27	-0.61	0.454
ST6	3.29 (1.349)	3.18-3.39	10.6	17.9	27.4	23.4	13.8	5.7	1.3	0.10	-0.65	0.401
ST15	4.31 (1.388)	4.21-4.42	4.9	7.4	12.7	20.9	31.6	21.0	1.4	-0.71	-0.24	0.294

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.097 and 0.194, respectively.

Table A508 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Portugal (first half-sample: n = 632)

	Pr	incipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Openness to	Conservation	Achievement	variance
	transcendence	change			
SD1	0.185	0.294	-0.116	0.169	0.764
SD11	0.384	0.364	-0.084	0.051	0.574
UN3	0.744	-0.124	-0.241	0.211	0.564
UN8	0.458	0.144	-0.010	0.089	0.667
UN19	0.572	0.050	0.132	-0.067	0.559
BE12	0.598	0.162	0.070	-0.119	0.484
BE18	0.639	0.080	0.024	-0.012	0.514
TR9	0.588	-0.094	0.166	-0.150	0.599
TR20	0.181	-0.008	0.456	-0.176	0.680
CO16	0.078	-0.128	0.689	0.067	0.502
SEC5	0.290	-0.097	0.285	0.171	0.753
SEC14	0.447	-0.019	0.248	0.039	0.638
PO17	-0.110	0.048	0.594	0.222	0.609
AC4	-0.018	0.143	0.127	0.663	0.427
AC13	-0.074	0.387	0.229	0.388	0.510
HE10	0.014	0.787	0.011	-0.118	0.429
HE21	-0.028	0.668	-0.059	0.009	0.585
ST6	-0.008	0.459	-0.089	0.213	0.682
Factors		Correlations b	etween factors		
Self-transcendence	_				
Openness to change	0.572	_			
Conservation	0.467	0.261	_		
Achievement	0.171	0.420	0.097	_	

Table A509 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Portugal (first half-sample: n = 632)

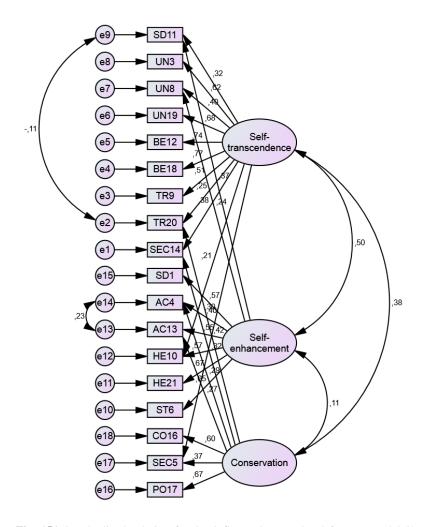
		Sub	scale	
	Self- transcendence	Openness to change	Conservation	Achievement
Number of items	9	4	3	2
Mean (standard error)	2.28 (0.027)	2.94 (0.037)	3.06 (0.040)	3.11 (0.045)
95% Confidence interval	2.22-2.33	2.87-3.01	2.98-3.13	3.02-3.19
Standard deviation	0.691	0.918	1.018	1.132
Skewness (standard error)	0.377 (0.097)	0.195 (0.097)	-0.006 (0.097)	0.221 (0.097)
Kurtosis (standard error)	0.037 (0.194)	0.036 (0.194)	-0.404 (0.194)	-0.491 (0.194)
Cronbach's alpha reliability coeff.	0.823	0.679	0.613	0.673
Split-half reliability coefficient	0.797	0.638	0.493	0.673
Average inter-item correlations	0.347	0.346	0.347	0.509
Minimum-maximum correlations	0.185-0.500	0.261-0.480	0.240-0.416	0.509-0.509
Range of correlations	0.315	0.219	0.176	0.000
	Averag	ge inter-item corre	elations between su	ıbscales
Self-transcendence	_			
Openness to change	0.289	_		
Conservation	0.291	0.194	_	
Achievement	0.305	0.336	0.261	_

Table A510 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2014, Portugal (first half-sample: n = 632)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Self-	Conservation	variance
	transcendence	enhancement		
SD1	0.139	0.429	-0.085	0.762
SD11	0.415	0.391	-0.097	0.568
UN3	0.474	0.178	-0.107	0.702
UN8	0.423	0.235	0.009	0.673
UN19	0.622	0.006	0.100	0.555
BE12	0.687	0.064	0.014	0.477
BE18	0.634	0.102	0.019	0.520
TR9	0.649	-0.194	0.122	0.593
TR20	0.364	-0.204	0.351	0.712
CO16	0.171	-0.126	0.656	0.503
SEC5	0.231	0.061	0.320	0.766
SEC14	0.457	0.024	0.242	0.641
PO17	-0.062	0.158	0.600	0.602
AC4	-0.218	0.645	0.257	0.557
AC13	-0.109	0.644	0.280	0.494
HE10	0.271	0.524	-0.092	0.558
HE21	0.131	0.550	-0.114	0.643
ST6	-0.015	0.590	-0.069	0.674
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Self-enhancement	0.446	_		
Conservation	0.357	0.237	_	

Table A511 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Portugal (first half-sample: n = 632)

	Principal axis factor		
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	-0.060	0.520	0.761
SD11	0.154	0.526	0.609
UN3	0.232	0.307	0.772
UN8	0.284	0.340	0.696
UN19	0.562	0.110	0.603
BE12	0.518	0.206	0.570
BE18	0.478	0.234	0.592
TR9	0.632	-0.100	0.661
TR20	0.640	-0.230	0.701
CO16	0.680	-0.203	0.650
SEC5	0.455	0.041	0.701
SEC14	0.570	0.060	0.633
PO17	0.409	0.050	0.808
AC4	-0.040	0.556	0.714
AC13	0.051	0.590	0.616
HE10	0.015	0.653	0.562
HE21	-0.118	0.661	0.636
ST6	-0.198	0.665	0.666
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.557	_	


Table A512 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2014, Portugal (second half-sample: n = 633)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.15	.061	.872	.899	.859	.071 (.064077)
2a	2 first-order correlated factors- without cross-loadings	4.82	.069	.831	.860	.829	.078 (.072084)
2b	2 first-order correlated factors- with cross-loadings	4.04	.058	.863	.892	.863	.069 (.063076)
3a	3 first-order correlated factors- without cross-loadings	5.31	.073	.806	.836	.807	.083 (.077089)
3b	3 first-order correlated factors- with cross-loadings	3.49	.049	.881	.911	.888	.063 (.056069)
4a	4 first-order correlated factors- without cross-loadings	4.59	.065	.835	.865	.839	.075 (.069082)
4b	4 first-order correlated factors- with cross-loadings	3.60	.052	.878	.908	.883	.064 (.058071)
5	3 first-order correlated factors of unified values	4.65	.066	.875	.898	.872	.076 (.067085)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

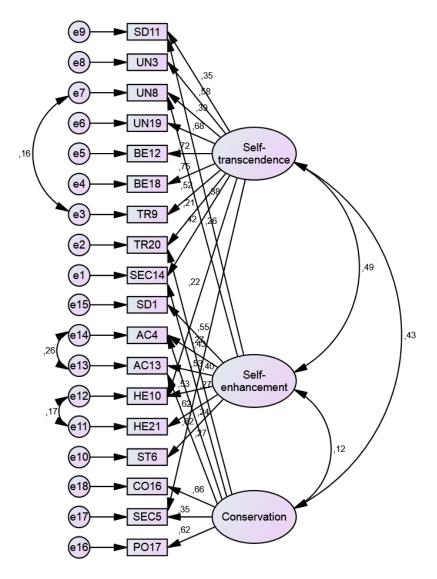

b Lower values indicate better model fit

Fig. 151 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Portugal (second half-sample: n = 633)

Table A513 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Portugal (N = 1,265)

		Subscale	
	Self-	Self-	Conservation
	transcendence	enhancement	
Number of items	9	6	3
Mean (standard error)	2.36 (0.020)	3.01 (0.025)	2.91 (0.027)
95% Confidence interval	2.32-2.40	2.96-3.06	2.86-2.96
Standard deviation	0.698	0.891	0.957
Skewness (standard error)	0.198 (0.069)	0.233 (0.069)	0.084 (0.069)
Kurtosis (standard error)	0.020 (0.137)	-0.007 (0.137)	-0.266 (0.137)
Cronbach's alpha reliability coeff.	0.813	0.768	0.597
Split-half reliability coefficient	0.755	0.751	0.565
Average inter-item correlations	0.340	0.357	0.330
Minimum-maximum correlations	0.098-0.527	0.268-0.499	0.276-0.401
Range of correlations	0.429	0.231	0.125
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Self-enhancement	0.278	_	
Conservation	0.291	0.250	_

Fig. 152 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Portugal (N = 1,265)

Table A514 Item analysis of Schwartz scale values of the European Social Survey, 2002: Slovenia (first half-sample: n = 759)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.52 (1.119)	2.44-2.60	14.8	40.7	25.8	8.0	7.0	1.1	2.6	0.86	0.46	0.380
SD11	2.06 (1.025)	1.99-2.13	30.6	44.1	13.4	5.3	3.3	0.7	2.6	1.28	1.82	0.447
UN3	2.01 (0.954)	1.95-2.08	28.6	50.1	11.5	3.6	2.9	0.7	2.8	1.48	3.00	0.300
UN8	2.44 (1.071)	2.37-2.52	13.3	48.7	21.1	7.9	5.0	1.4	2.5	1.12	1.24	0.345
UN19	2.09 (0.941)	2.02-2.16	26.7	44.8	18.4	5.4	1.3	0.7	2.6	1.07	1.76	0.393
BE12	2.30 (0.955)	2.23-2.37	18.1	44.8	24.8	7.1	2.5	0.4	2.4	0.83	0.92	0.463
BE18	2.35 (1.044)	2.28-2.43	16.7	46.5	22.1	7.2	2.9	1.7	2.8	1.16	1.74	0.453
TR9	2.28 (1.038)	2.21-2.36	19.6	47.8	17.1	8.2	4.0	0.7	2.6	1.06	1.08	0.280
TR20	2.62 (1.212)	2.53-2.70	14.8	39.0	22.0	12.0	7.4	2.1	2.8	0.80	0.10	0.265
CO7	3.11 (1.389)	3.01-3.21	9.4	31.6	21.7	13.8	15.3	5.5	2.6	0.44	-0.78	0.250
CO16	2.52 (1.165)	2.43-2.60	15.2	43.6	20.7	8.6	7.9	1.3	2.8	0.94	0.38	0.414
SEC5	2.21 (1.058)	2.13-2.28	23.3	47.0	15.8	6.1	4.2	0.9	2.6	1.21	1.54	0.354
SEC14	2.21 (1.084)	2.14-2.29	24.2	46.2	15.5	5.5	5.3	0.8	2.4	1.20	1.33	0.402
PO2	4.08 (1.304)	3.99-4.18	2.0	11.3	20.0	17.3	34.3	12.6	2.5	-0.34	-0.85	0.231
PO17	2.84 (1.214)	2.75-2.93	9.4	35.2	26.9	12.9	10.9	2.0	2.8	0.63	-0.30	0.455
AC4	2.82 (1.276)	2.73-2.91	12.1	33.5	26.5	10.4	12.4	2.4	2.8	0.63	-0.38	0.481
AC13	2.69 (1.184)	2.61-2.78	12.3	39.4	24.9	10.8	8.4	1.8	2.4	0.74	0.07	0.552
HE10	2.90 (1.298)	2.80-2.99	10.3	34.4	24.5	12.0	13.3	2.9	2.6	0.59	-0.51	0.398
HE21	2.64 (1.353)	2.54-2.73	20.4	33.9	18.2	11.6	10.9	2.5	2.5	0.69	-0.44	0.437
ST6	2.51 (1.198)	2.42-2.59	17.8	41.4	18.2	10.9	8.3	0.9	2.5	0.81	-0.04	0.479
ST15	3.81 (1.455)	3.71-3.91	6.5	15.3	18.6	14.8	31.0	10.8	3.2	-0.26	-1.02	0.256

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.177, respectively.

Table A515 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Slovenia (first half-sample: n = 759)

	Principal axis factor analysis (factors)						
•	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Self-	Self-	variance			
	change	transcendence	enhancement				
SD1	0.479	0.117	-0.035	0.729			
SD11	0.452	0.207	0.003	0.683			
UN3	0.233	0.442	-0.246	0.726			
UN8	0.221	0.359	-0.108	0.794			
UN19	0.085	0.538	-0.077	0.695			
BE12	0.027	0.606	0.031	0.607			
BE18	0.239	0.383	0.020	0.721			
CO16	-0.230	0.572	0.257	0.600			
SEC5	-0.145	0.501	0.176	0.713			
SEC14	-0.075	0.496	0.180	0.697			
PO17	0.055	0.089	0.540	0.641			
AC4	0.380	-0.028	0.417	0.581			
AC13	0.383	0.013	0.501	0.455			
HE10	0.561	-0.140	0.162	0.646			
HE21	0.708	-0.145	0.073	0.517			
ST6	0.556	0.123	0.015	0.618			
Factors	Corre	lations between fa	ctors				
Openness to change	_						
Self-transcendence	0.367	_					
Self-enhancement	0.364	0.318	_				

Table A516 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Slovenia (first half-sample: n = 759)

		Subscale	
	Openness to	Self-	Self-
	change	transcendence	enhancement
Number of items	5	8	3
Mean (standard error)	2.53 (0.030)	2.27 (0.022)	2.78 (0.035)
95% Confidence interval	2.47-2.58	2.22-2.31	2.72-2.85
Standard deviation	0.822	0.615	0.958
Skewness (standard error)	0.623 (0.089)	0.671 (0.089)	0.577 (0.089)
Kurtosis (standard error)	0.301 (0.177)	1.222 (0.177)	0.035 (0.177)
Cronbach's alpha reliability coeff.	0.742	0.737	0.682
Split-half reliability coefficient	0.860	0.716	0.651
Average inter-item correlations	0.333	0.261	0.418
Minimum-maximum correlations	0.198-0.501	0.140-0.391	0.345-0.521
Range of correlations	0.304	0.250	0.176
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.216	_	
Self-enhancement	0.318	0.230	_

Table A517 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Slovenia (first half-sample: n = 759)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.455	0.061	0.764
SD11	0.447	0.161	0.709
UN3	0.097	0.336	0.847
UN8	0.154	0.302	0.842
UN19	0.026	0.504	0.733
BE12	0.015	0.613	0.616
BE18	0.235	0.362	0.736
CO16	-0.124	0.654	0.631
SEC5	-0.082	0.567	0.715
SEC14	-0.010	0.556	0.695
PO17	0.310	0.215	0.797
AC4	0.575	0.052	0.640
AC13	0.611	0.115	0.549
HE10	0.659	-0.159	0.637
HE21	0.756	-0.198	0.526
ST6	0.555	0.074	0.648
	Correlations betw	veen factors	
Self-enhancement			
Conservation	0.457	_	

Table A518 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-13 items): European Social Survey 2002, Slovenia (first half-sample: n = 759)

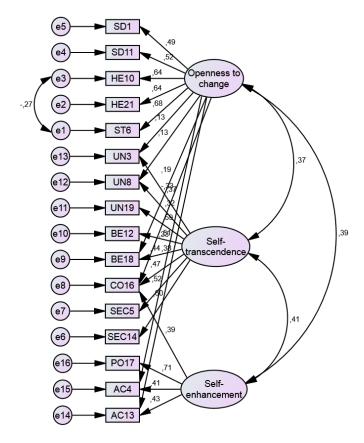

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	0.102	0.433	0.766
SD11	0.196	0.456	0.681
UN3	0.362	0.145	0.805
UN8	0.323	0.179	0.817
UN19	0.514	0.067	0.704
BE12	0.615	0.023	0.610
BE18	0.370	0.255	0.721
CO16	0.613	-0.128	0.672
SEC5	0.568	-0.106	0.715
SEC14	0.558	-0.029	0.700
HE10	-0.121	0.638	0.641
HE21	-0.176	0.799	0.446
ST6	0.124	0.519	0.663
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.408	_	

Table A519 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Slovenia (second half-sample: n = 759)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.12	.063	.832	.859	.810	.074 (.067080)
2a	2 first-order correlated factors (16 items)-without cross-						
21	loadings	4.84	.059	.829	.858	.822	.071 (.065078)
2b	2 first-order correlated factors (16 items)-with cross-loadings	4.78	.057	.833	.862	.825	.071 (.064077)
2c	2 first-order correlated factors (13 items)-without cross-						
	loadings	4.74	.057	.845	.873	.837	.070 (.062078)
2d	2 first-order correlated factors (13 items)-with cross-loadings	4.62	.055	.851	.878	.842	.069 (.061077)
3a	3 first-order correlated factors- without cross-loadings	5.54	.066	.796	.825	.790	.077 (.071084)
3b	3 first-order correlated factors- with cross-loadings	4.48	.051	.847	.876	.839	.068 (.061074)
4	5 first-order correlated factors of unified values	5.45	.072	.777	.808	.769	.077 (.071082)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. a Higher values indicate better model fit

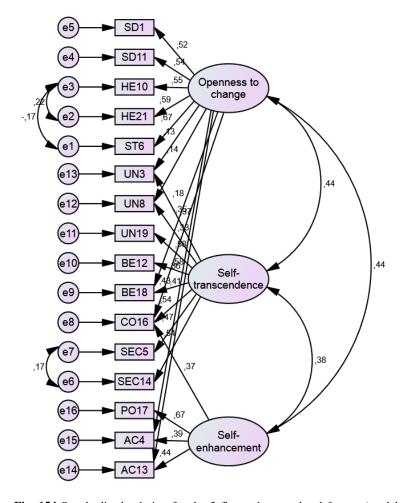

b Lower values indicate better model fit

Fig. 153 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Slovenia (second half-sample: n = 759)

Table A520 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Slovenia (N = 1,519)

		Subscale	
	Openness to	Self-	Self-
	change	transcendence	enhancement
Number of items	5	8	3
Mean (standard error)	2.57 (0.021)	2.27 (0.015)	2.80 (0.024)
95% Confidence interval	2.53-2.62	2.24-2.30	2.75-2.84
Standard deviation	0.821	0.602	0.945
Skewness (standard error)	0.585 (0.063)	0.485 (0.063)	0.515 (0.063)
Kurtosis (standard error)	0.330 (0.125)	0.856 (0.125)	0.076 (0.125)
Cronbach's alpha reliability coeff.	0.713	0.729	0.683
Split-half reliability coefficient	0.726	0.684	0.547
Average inter-item correlations	0.332	0.255	0.419
Minimum-maximum correlations	0.214-0.467	0.137-0.375	0.356-0.501
Range of correlations	0.253	0.238	0.145
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.207	_	
Self-enhancement	0.310	0.227	_

Fig. 154 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Slovenia (N = 1,519)

Table A521 Item analysis of Schwartz scale values of the European Social Survey, 2004: Slovenia (first half-sample: n = 721)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.63 (1.188)	2.55-2.72	14.1	39.3	25.8	8.5	8.7	1.7	1.9	0.78	0.16	0.448
SD11	2.10 (1.015)	2.02-2.17	27.3	47.7	13.7	6.0	2.4	1.1	1.8	1.33	2.23	0.467
UN3	2.09 (0.977)	2.01-2.16	26.2	49.8	13.5	5.0	3.1	0.6	1.9	1.30	2.13	0.436
UN8	2.51 (1.102)	2.43-2.59	13.6	43.7	25.2	7.5	6.2	1.4	2.4	0.98	0.81	0.383
UN19	2.05 (0.920)	1.99-2.12	27.0	47.9	15.7	4.7	2.1	0.3	2.4	1.12	1.75	0.410
BE12	2.27 (0.913)	2.21-2.34	17.5	46.5	25.9	5.4	2.4	0.3	2.1	0.83	1.14	0.466
BE18	2.36 (1.060)	2.28-2.43	18.6	44.2	21.6	8.6	3.6	1.1	2.2	0.98	1.00	0.496
TR9	2.32 (1.063)	2.25-2.40	18.7	47.7	18.7	8.0	3.7	1.2	1.8	1.11	1.30	0.353
TR20	2.72 (1.256)	2.63-2.81	14.3	36.5	24.0	12.3	7.6	3.2	2.1	0.72	0.01	0.261
CO7	3.23 (1.405)	3.12-3.33	7.8	29.5	22.6	15.3	15.4	7.2	2.2	0.38	-0.83	0.313
CO16	2.56 (1.182)	2.47-2.64	16.6	39.8	22.6	10.0	6.7	1.8	2.5	0.81	0.28	0.393
SEC5	2.24 (1.060)	2.17-2.32	21.9	47.3	18.0	5.0	5.0	0.8	1.9	1.18	1.46	0.435
SEC14	2.30 (1.142)	2.22-2.38	22.5	45.5	15.3	8.5	4.6	1.7	2.1	1.15	1.10	0.429
PO2	4.18 (1.282)	4.09-4.28	2.8	7.6	21.4	16.8	35.8	13.7	1.9	-0.49	-0.53	0.213
PO17	2.91 (1.200)	2.83-3.00	9.2	31.2	31.1	13.0	10.0	2.6	2.9	0.56	-0.13	0.472
AC4	2.88 (1.277)	2.78-2.97	10.3	36.6	24.5	10.8	13.3	2.5	1.9	0.61	-0.45	0.484
AC13	2.85 (1.195)	2.77-2.94	9.3	35.1	28.8	12.9	9.3	2.5	2.1	0.64	-0.08	0.556
HE10	2.82 (1.277)	2.73-2.92	12.5	35.4	23.4	13.3	10.3	2.9	2.2	0.61	-0.32	0.484
HE21	2.73 (1.370)	2.63-2.83	17.5	35.6	19.7	11.4	9.2	4.6	2.1	0.73	-0.25	0.440
ST6	2.64 (1.264)	2.54-2.73	17.3	36.5	23.0	9.3	9.4	2.2	2.2	0.74	-0.08	0.508
ST15	3.85 (1.474)	3.74-3.96	6.2	16.2	18.4	13.7	31.1	11.9	2.1	-0.29	-1.04	0.265

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.091 and 0.182, respectively.

Table A522 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Slovenia (first half-sample: n = 721)

	Pr				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Openness to	Self-	Self-	variance
		change	transcendence	enhancement	
SD1	-0.084	0.182	0.344	0.233	0.683
SD11	0.041	0.673	0.063	-0.106	0.572
UN3	0.131	-0.012	0.499	0.131	0.646
UN8	0.154	0.085	0.524	-0.100	0.626
UN19	0.402	0.011	0.375	-0.080	0.615
BE12	0.299	-0.016	0.397	0.087	0.651
BE18	0.275	0.377	0.050	0.022	0.684
TR9	0.575	0.021	0.278	-0.249	0.515
CO7	0.539	-0.208	0.055	0.156	0.688
CO16	0.701	-0.059	0.002	0.017	0.522
SEC5	0.502	0.127	0.034	0.022	0.672
SEC14	0.471	0.003	0.158	0.068	0.679
PO17	0.439	0.101	-0.285	0.474	0.474
AC4	0.020	0.209	-0.068	0.559	0.515
AC13	-0.056	-0.069	0.247	0.784	0.345
HE10	-0.013	0.784	-0.139	0.013	0.451
HE21	-0.190	0.526	0.180	0.082	0.591
ST15	-0.105	0.393	0.269	0.205	0.557
Factors		Correlations b	etween factors		
Conservation	_				
Openness to change	0.273	_			
Self-transcendence	0.327	0.427	_		
Self-enhancement	0.232	0.625	0.210	_	

Table A523 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Slovenia (first half-sample: n = 721)

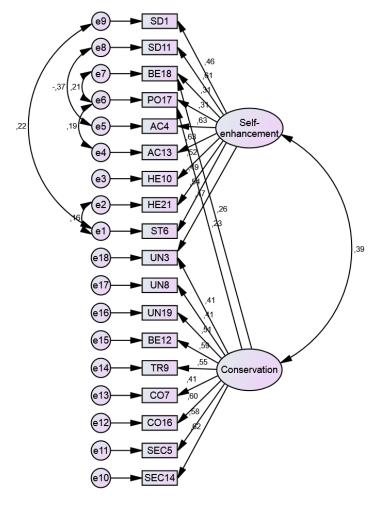
		Sub	scale	
	Conservation	Openness to change	Self- transcendence	Self- enhancement
Number of items	6	5	4	3
Mean (standard error)	2.45 (0.028)	2.53 (0.032)	2.38 (0.027)	2.88 (0.036)
95% Confidence interval	2.40-2.51	2.47-2.59	2.32-2.43	2.81-2.95
Standard deviation	0.761	0.848	0.726	0.972
Skewness (standard error)	0.591 (0.091)	0.673 (0.091)	0.650 (0.091)	0.524 (0.091)
Kurtosis (standard error)	0.850 (0.182)	0.532 (0.182)	0.789 (0.182)	0.260 (0.182)
Cronbach's alpha reliability coeff.	0.753	0.745	0.637	0.706
Split-half reliability coefficient	0.741	0.693	0.681	0.644
Average inter-item correlations	0.345	0.370	0.313	0.445
Minimum-maximum correlations	0.251-0.454	0.235-0.479	0.254-0.391	0.400-0.521
Range of correlations	0.203	0.244	0.138	0.121
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Openness to change	0.235	_		
Self-transcendence	0.278	0.290	_	
Self-enhancement	0.261	0.346	0.269	_

Table A524 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Slovenia (first half-sample: n = 721)

X7	Principal axis factor a	TT	
Variables	Factor I Self-enhancement	Factor II Conservation	Unique variance
SD1	0.505	0.040	0.726
SD11	0.564	0.048	0.657
UN3	0.258	0.333	0.751
UN8	0.163	0.361	0.794
UN19	0.021	0.569	0.665
BE12	0.158	0.469	0.693
BE18	0.361	0.283	0.704
TR9	-0.169	0.706	0.573
CO7	-0.118	0.566	0.722
CO16	-0.137	0.712	0.555
SEC5	0.080	0.525	0.683
SEC14	0.048	0.552	0.671
PO17	0.323	0.277	0.744
AC4	0.626	-0.034	0.625
AC13	0.655	0.025	0.556
HE10	0.685	-0.089	0.574
HE21	0.662	-0.143	0.620
ST6	0.665	-0.022	0.569
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.419	_	

Table A525 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-17 items): European Social Survey 2004, Slovenia (first half-sample: n = 721)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Conservation	
SD1	0.507	0.053	0.718
SD11	0.563	0.059	0.652
UN3	0.266	0.354	0.727
UN8	0.175	0.384	0.768
UN19	0.027	0.582	0.648
BE12	0.164	0.483	0.676
BE18	0.350	0.276	0.723
TR9	-0.162	0.721	0.548
CO7	-0.119	0.544	0.742
CO16	-0.136	0.688	0.583
SEC5	0.082	0.526	0.682
SEC14	0.050	0.552	0.671
AC4	0.604	-0.039	0.653
AC13	0.639	0.024	0.578
HE10	0.678	-0.083	0.579
HE21	0.668	-0.129	0.606
ST6	0.673	-0.007	0.551
	Correlations betw	veen factors	
Self-enhancement	_		
Conservation	0.404	_	


Table A526 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Slovenia (second half-sample: n = 721)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.59	.073	.794	.821	.756	.080 (.074086)
2a	2 first-order correlated factors- without cross-loadings	4.56	.074	.806	.840	.811	.070 (.065076)
2b	2 first-order correlated factors- with cross-loadings	4.17	.065	.827	.861	.832	.066 (.061072)
2c	2 first-order correlated factors (17 items)-without cross-						
2d	loadings 2 first-order correlated factors	4.54	.072	.811	.845	.817	.070 (.064076)
	(17 items)-with cross-loadings	4.18	.066	.829	.863	.835	.067 (.060073)
3a	4 first-order correlated factors- without cross-loadings	_	.075	.779	.812	.776	.076 (.071082)
3b	4 first-order correlated factors- with cross-loadings	_	.059	.837	.870	.835	.066 (.060072)
4	5 first-order correlated factors of unified values	4.54	.070	.805	.840	.807	.070 (.065076)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrix of the 4 first-order correlated factors was not positive definite.

a Higher values indicate better model fit

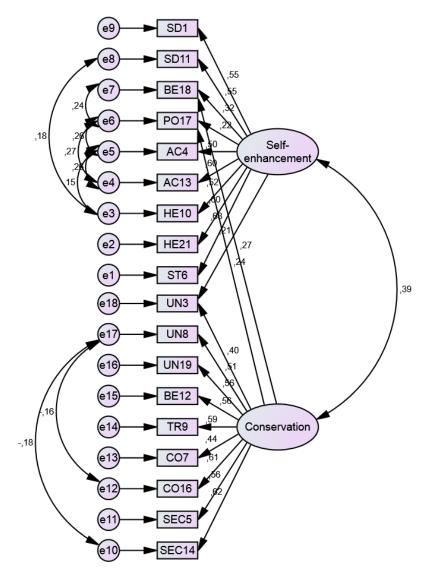

b Lower values indicate better model fit

Fig. 155 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Slovenia (second half-sample: n = 721)

Table A527 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Slovenia (N = 1,442)

	Sub	scale		
	Self-enhancement	Conservation		
Number of items	9	9		
Mean (standard error)	2.64 (0.020)	2.38 (0.017)		
95% Confidence interval	2.60-2.67	2.35-2.42		
Standard deviation	0.744	0.659		
Skewness (standard error)	0.478 (0.064)	0.578 (0.064)		
Kurtosis (standard error)	0.424 (0.129)	1.263 (0.129)		
Cronbach's alpha reliability coeff.	0.801	0.781		
Split-half reliability coefficient	0.780	0.783		
Average inter-item correlations	0.310	0.293		
Minimum-maximum correlations	0.146-0.481	0.141-0.414		
Range of correlations	0.335	0.273		
	Average inter-i	tem correlations		
	between subscales			
Self-enhancement	_			
Conservation	0.221	_		

Fig. 156 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Slovenia (N = 1,442)

Table A528 Item analysis of Schwartz scale values of the European Social Survey, 2006: Slovenia (first half-sample: n = 738)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.51 (1.151)	2.43-2.59	16.0	41.7	26.0	6.8	6.8	1.8	0.9	0.95	0.69	0.338
SD11	2.01 (0.947)	1.94-2.08	30.2	48.9	11.9	5.3	2.4	0.3	0.9	1.25	1.89	0.391
UN3	1.94 (0.894)	1.88-2.01	29.0	56.1	8.1	2.8	2.3	0.7	0.9	1.70	4.39	0.464
UN8	2.33 (1.000)	2.26-2.40	14.2	55.3	18.0	6.4	4.2	0.9	0.9	1.27	1.88	0.380
UN19	2.02 (0.867)	1.96-2.08	27.4	49.9	15.9	4.7	0.9	0.3	0.9	1.00	1.64	0.406
BE12	2.16 (0.869)	2.10-2.23	18.0	56.1	18.6	3.9	1.9	0.5	0.9	1.23	2.78	0.410
BE18	2.11 (0.904)	2.04-2.18	21.5	55.7	14.5	4.2	2.8	0.3	0.9	1.27	2.37	0.454
TR9	2.18 (0.957)	2.12-2.25	19.8	54.7	15.4	4.6	4.3	0.1	0.9	1.23	1.77	0.290
TR20	2.65 (1.245)	2.56-2.74	13.3	43.9	20.7	9.6	8.7	2.8	0.9	0.90	0.19	0.245
CO7	3.05 (1.352)	2.95-3.15	9.2	33.1	23.7	14.1	14.4	4.6	0.9	0.48	-0.69	0.269
CO16	2.38 (1.097)	2.30-2.46	16.9	49.3	18.3	7.7	5.7	1.1	0.9	1.09	0.98	0.348
SEC5	2.22 (1.074)	2.14-2.29	22.4	51.1	14.8	4.5	5.3	1.1	0.9	1.33	1.84	0.392
SEC14	2.26 (1.092)	2.19-2.34	21.5	49.1	16.5	5.6	5.1	1.2	0.9	1.23	1.50	0.415
PO2	4.29 (1.243)	4.20-4.38	1.6	8.4	18.4	15.4	41.6	13.6	0.9	-0.60	-0.49	0.138
PO17	2.67 (1.175)	2.59-2.76	11.5	42.4	24.8	9.8	8.9	1.6	0.9	0.81	0.13	0.426
AC4	2.74 (1.265)	2.65-2.83	12.3	40.9	22.1	9.6	12.1	2.0	0.9	0.73	-0.28	0.438
AC13	2.67 (1.167)	2.58-2.75	11.5	42.7	24.4	9.6	9.8	1.1	0.9	0.77	-0.01	0.548
HE10	2.70 (1.249)	2.61-2.79	14.4	39.3	21.4	11.9	10.4	1.6	0.9	0.67	-0.32	0.426
HE21	2.59 (1.257)	2.50-2.68	18.0	38.9	20.6	10.6	9.2	1.8	0.9	0.75	-0.14	0.432
ST6	2.59 (1.228)	2.50-2.68	15.9	42.7	20.1	8.7	10.7	1.1	0.9	0.79	-0.12	0.491
ST15	3.68 (1.475)	3.57-3.78	6.8	19.0	22.2	13.0	27.9	10.2	0.9	-0.11	-1.13	0.295

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.180, respectively. The same seven cases (0.9%) did not respond to any of the items.

Table A529 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Slovenia (first half-sample: n = 738)

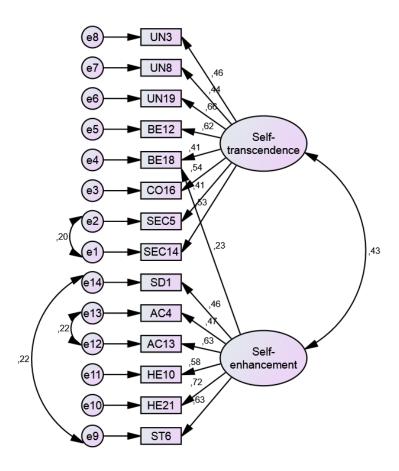
	Principal axis factor a	nalysis (factors)		
Variables			Unique	
	Factor I	Factor II	variance	
	Self-enhancement	Conservation		
SD1	0.412	0.032	0.816	
SD11	0.407	0.126	0.767	
UN3	0.130	0.511	0.656	
UN8	0.087	0.401	0.797	
UN19	-0.064	0.610	0.663	
BE12	0.100	0.484	0.708	
BE18	0.292	0.317	0.722	
CO16	-0.168	0.618	0.693	
SEC5	0.010	0.515	0.730	
SEC14	-0.017	0.561	0.695	
PO17	0.331	0.184	0.796	
AC4	0.484	0.056	0.735	
AC13	0.619	0.075	0.565	
HE10	0.748	-0.194	0.547	
HE21	0.645	-0.117	0.646	
ST6	0.553	0.039	0.671	
	Correlations betw	veen factors		
Self-enhancement	_			
Conservation	0.498	_		

Table A530 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Slovenia (first half-sample: n = 738)

	Sub	scale
	Self-enhancement	Conservation
Number of items	8	8
Mean (standard error)	2.56 (0.027)	2.18 (0.022)
95% Confidence interval	2.51-2.61	2.14-2.22
Standard deviation	0.726	0.592
Skewness (standard error)	0.544 (0.090)	0.863 (0.090)
Kurtosis (standard error)	0.211 (0.180)	2.163 (0.180)
Cronbach's alpha reliability coeff.	0.763	0.752
Split-half reliability coefficient	0.775	0.734
Average inter-item correlations	0.286	0.280
Minimum-maximum correlations	0.123-0.496	0.140-0.421
Range of correlations	0.373	0.281
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Conservation	0.222	_

Table A531 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2006, Slovenia (first half-sample: n = 738)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Self-transcendence	Self-enhancement	
SD1	0.050	0.408	0.811
UN3	0.524	0.115	0.654
UN8	0.419	0.083	0.785
UN19	0.621	-0.074	0.653
BE12	0.494	0.106	0.695
BE18	0.326	0.270	0.737
CO16	0.602	-0.170	0.706
SEC5	0.512	0.006	0.735
SEC14	0.560	-0.019	0.696
AC4	0.062	0.476	0.741
AC13	0.086	0.609	0.572
HE10	-0.159	0.710	0.578
HE21	-0.092	0.640	0.639
ST6	0.062	0.566	0.642
	Correlations bet	ween factors	
Self-transcendence	_		
Self-enhancement	0.477	_	


Table A532 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2006, Slovenia (second half-sample: n = 738)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.75	.069	.819	.844	.791	.080 (.074087)
2a	2 first-order correlated factors- without cross-loadings	4.48	.064	.848	.877	.847	.069 (.062075)
2b	2 first-order correlated factors- with cross-loadings	4.25	.062	.857	.886	.857	.066 (.060073)
2c	2 first-order correlated factors (14 items)-with cross-loadings	3.78	.051	.882	.910	.896	.061 (.054069)
3	5 first-order correlated factors of unified values	4.25	.067	.828	.862	.834	.066 (.061072)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

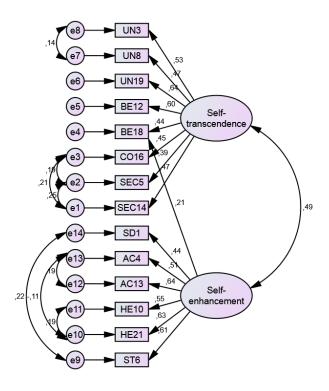

b Lower values indicate better model fit

Fig. 157 Standardized solution for the 2 first-order correlated factors (model 2c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Slovenia (second half-sample: n = 738)

Table A533 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Slovenia (N = 1,476)

	Subscale				
	Self- transcendence	Self-enhancement			
Number of items	8	6			
Mean (standard error)	2.21 (0.016)	2.63 (0.021)			
95% Confidence interval	2.18-2.24	2.59-2.67			
Standard deviation	0.600	0.814			
Skewness (standard error)	0.684 (0.064)	0.583 (0.064)			
Kurtosis (standard error)	1.774 (0.127)	0.177 (0.127)			
Cronbach's alpha reliability coeff.	0.750	0.754			
Split-half reliability coefficient	0.687	0.716			
Average inter-item correlations	0.277	0.339			
Minimum-maximum correlations	0.144-0.380	0.221-0.465			
Range of correlations	0.236	0.244			
	Average inte	r-item correlations			
	between subscales				
Self-transcendence	_				
Self-enhancement	0.224	_			

Fig. 158 Standardized solution for the 2 first-order correlated factors (model 2c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Slovenia (N = 1,476)

Table A534 Item analysis of Schwartz scale values of the European Social Survey, 2008: Slovenia (first half-sample: n = 643)

_			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.53 (1.145)	2.44-2.62	16.2	40.3	24.3	7.5	7.6	1.1	3.1	0.81	0.32	0.320
SD11	1.98 (0.942)	1.91-2.06	32.2	44.6	13.7	5.0	1.7	0.5	2.3	1.22	1.99	0.380
UN3	1.95 (0.864)	1.88-2.02	29.2	52.6	10.4	3.3	2.2	0.2	2.2	1.36	2.88	0.331
UN8	2.33 (0.977)	2.25-2.40	17.1	46.0	22.7	7.9	3.3	0.3	2.6	0.87	0.80	0.373
UN19	2.02 (0.929)	1.95-2.09	28.9	47.9	14.6	3.9	2.2	0.5	2.0	1.26	2.34	0.357
BE12	2.04 (0.811)	1.97-2.10	22.7	55.1	15.9	2.3	1.7	0.2	2.2	1.15	2.71	0.514
BE18	2.12 (0.901)	2.05-2.18	21.5	53.8	15.6	3.7	3.1	0.2	2.2	1.23	2.21	0.432
TR9	2.19 (0.984)	2.12-2.27	22.6	46.5	18.8	5.9	3.1	0.5	2.6	1.06	1.38	0.330
TR20	2.60 (1.175)	2.50-2.69	13.8	41.8	24.4	8.6	6.5	2.5	2.3	0.92	0.60	0.247
CO7	3.09 (1.346)	2.99-3.19	9.3	30.3	22.2	16.5	13.5	4.8	3.3	0.42	-0.68	0.259
CO16	2.30 (1.021)	2.22-2.38	20.2	43.7	21.2	8.2	4.0	0.2	2.5	0.84	0.48	0.397
SEC5	2.12 (1.029)	2.04-2.19	26.1	49.5	11.4	6.2	3.6	0.8	2.5	1.33	1.96	0.412
SEC14	2.22 (1.027)	2.14-2.30	22.2	47.1	17.6	6.4	3.9	0.6	2.2	1.11	1.33	0.419
PO2	4.07 (1.257)	3.97-4.16	1.7	10.9	22.6	16.6	35.6	10.3	2.3	-0.35	-0.79	0.118
PO17	2.67 (1.155)	2.58-2.76	12.9	38.3	27.1	9.0	10.0	0.6	2.2	0.66	-0.13	0.467
AC4	2.55 (1.120)	2.46-2.64	14.2	42.1	25.0	7.2	7.8	0.9	2.8	0.84	0.40	0.454
AC13	2.63 (1.132)	2.54-2.71	12.9	38.3	27.1	9.0	10.0	0.6	2.2	0.65	-0.15	0.564
HE10	2.58 (1.220)	2.48-2.67	18.8	36.2	21.3	11.0	9.2	0.8	2.6	0.63	-0.32	0.374
HE21	2.61 (1.231)	2.51-2.70	17.4	37.9	19.6	12.8	8.1	1.6	2.6	0.68	-0.20	0.352
ST6	2.45 (1.191)	2.35-2.54	19.9	40.4	18.2	10.6	6.5	1.4	3.0	0.90	0.27	0.489
ST15	3.61 (1.432)	3.50-3.72	7.5	17.6	22.7	17.6	23.0	9.2	2.5	-0.08	-0.96	0.185

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.096 and 0.192, respectively.

Table A535 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Slovenia (first half-sample: n = 643)

	Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Self-	Openness to	Self-	Hedonism	variance		
	transcendence	change	enhancement				
SD1	0.070	0.633	-0.031	-0.115	0.666		
SD11	0.161	0.186	-0.094	0.414	0.680		
UN3	0.562	0.067	-0.106	0.057	0.702		
UN8	0.479	0.238	-0.134	-0.015	0.746		
UN19	0.683	0.139	-0.125	-0.098	0.591		
BE12	0.515	-0.027	0.165	0.167	0.547		
BE18	0.145	-0.028	0.318	0.228	0.727		
TR9	0.714	-0.226	0.023	0.061	0.477		
CO16	0.351	-0.001	0.419	-0.190	0.601		
SEC5	0.397	-0.057	0.310	0.009	0.634		
SEC14	0.483	0.054	0.147	-0.075	0.678		
PO17	-0.076	0.008	0.736	-0.006	0.509		
AC4	-0.081	0.324	0.344	0.110	0.657		
AC13	-0.084	0.509	0.402	0.006	0.481		
HE10	-0.053	-0.109	0.083	0.775	0.462		
HE21	-0.079	0.330	-0.100	0.443	0.575		
ST6	0.103	0.568	-0.023	0.120	0.556		
Factors		Correlations b	etween factors				
Self-transcendence	_						
Openness to change	0.273	_					
Self-enhancement	0.327	0.427	_				
Hedonism	0.232	0.625	0.210	_			

Table A536 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Slovenia (first half-sample: n = 643)

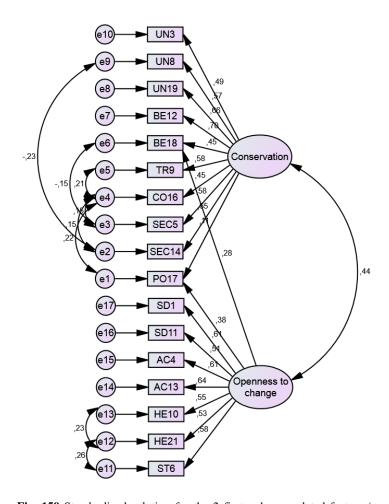
		Sub	scale	
	Self- transcendence	Openness to change	Self- enhancement	Hedonism
Number of items	7	3	4	3
Mean (standard error)	2.12 (0.024)	2.54 (0.035)	2.41 (0.028)	2.39 (0.034)
95% Confidence interval	2.07-2.17	2.47-2.60	2.35-2.46	2.32-2.46
Standard deviation	0.616	0.881	0.709	0.866
Skewness (standard error)	0.866 (0.096)	0.670 (0.096)	0.337 (0.096)	0.426 (0.096)
Kurtosis (standard error)	2.678 (0.192)	0.362 (0.192)	0.137 (0.192)	-0.129 (0.192)
Cronbach's alpha reliability coeff.	0.771	0.639	0.596	0.635
Split-half reliability coefficient	0.767	0.588	0.619	0.591
Average inter-item correlations	0.329	0.371	0.268	0.370
Minimum-maximum correlations	0.144-0.479	0.356-0.380	0.151-0.403	0.322-0.415
Range of correlations	0.335	0.025	0.252	0.092
	Averag	e inter-item corre	elations between su	ıbscales
Self-transcendence	_			
Openness to change	0.246	_		
Self-enhancement	0.266	0.259	_	
Hedonism	0.227	0.319	0.222	_

Table A537 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, Slovenia (first half-sample: n = 643)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Self-	Openness to	Self-	variance			
_	transcendence	change	enhancement				
SD1	0.033	0.451	0.015	0.783			
SD11	0.170	0.538	-0.105	0.692			
UN3	0.564	0.111	-0.108	0.701			
UN8	0.469	0.211	-0.132	0.758			
UN19	0.670	0.039	-0.115	0.607			
BE12	0.527	0.119	0.151	0.559			
BE18	0.161	0.171	0.301	0.750			
TR9	0.721	-0.156	0.012	0.501			
CO16	0.346	-0.179	0.425	0.607			
SEC5	0.403	-0.056	0.309	0.636			
SEC14	0.484	-0.020	0.145	0.679			
PO17	-0.075	-0.019	0.743	0.510			
AC4	-0.092	0.383	0.360	0.653			
AC13	-0.092	0.416	0.406	0.520			
HE10	-0.002	0.508	0.063	0.712			
HE21	-0.071	0.710	-0.118	0.560			
ST6	0.082	0.623	-0.005	0.585			
Factors	Correl	ations between fa	ctors				
Self-transcendence	_						
Openness to change	0.235	_					
Self-enhancement	0.516	0.408	_				

Table A538 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Slovenia (first half-sample: n = 643)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	-0.011	0.467	0.785
SD11	0.042	0.502	0.731
UN3	0.470	0.036	0.765
UN8	0.349	0.137	0.823
UN19	0.569	-0.044	0.693
BE12	0.604	0.130	0.559
BE18	0.328	0.263	0.759
TR9	0.725	-0.207	0.544
CO16	0.621	-0.069	0.642
SEC5	0.602	0.011	0.632
SEC14	0.575	-0.012	0.675
PO17	0.356	0.223	0.763
AC4	0.093	0.514	0.691
AC13	0.113	0.605	0.570
HE10	-0.021	0.546	0.710
HE21	-0.218	0.686	0.595
ST6	0.008	0.630	0.599
	Correlations be	tween factors	
Conservation			
Openness to change	0.378	_	


Table A539 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Slovenia (second half-sample: n = 643)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.62	.075	.832	.856	.791	.085 (.078092)
2a	2 first-order correlated factors- without cross-loadings	4.64	.070	.838	.835	.867	.075 (.069082)
2b	2 first-order correlated factors- with cross-loadings	3.89	.058	.867	.896	.870	.067 (.060074)
3a	3 first-order correlated factors- without cross-loadings	_	.075	.791	.820	.789	.085 (.079092)
3b	3 first-order correlated factors- with cross-loadings	4.09	.061	.861	.890	.860	.069 (.063076)
4a	4 first-order correlated factors- without cross-loadings	_	.080	.779	.807	.767	.090 (.083096)
4b	4 first-order correlated factors- with cross-loadings	4.19	_	.863	.891	.856	.071 (.064077)
5	5 first-order correlated factors of unified values	_	.076	.805	.839	.807	.075 (.069081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrices of the models 3a, 4a and 5 were not positive definite.

a Higher values indicate better model fit

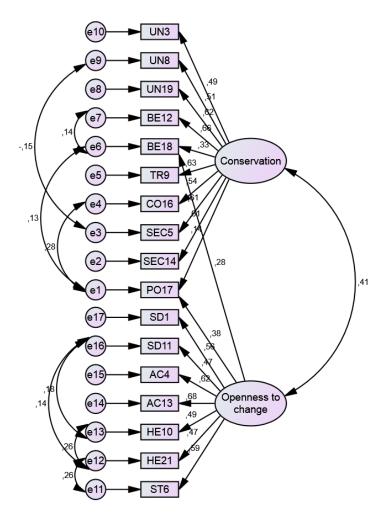

b Lower values indicate better model fit

Fig. 159 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Slovenia (second half-sample: n = 643)

Table A540 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Slovenia (N = 1,286)

	Sul	bscale
	Conservation	Openness to change
Number of items	10	7
Mean (standard error)	2.21 (0.017)	2.51 (0.022)
95% Confidence interval	2.18-2.24	2.47-2.56
Standard deviation	0.603	0.773
Skewness (standard error)	0.541 (0.068)	0.477 (0.068)
Kurtosis (standard error)	1.236 (0.136)	0.130 (0.136)
Cronbach's alpha reliability coeff.	0.806	0.780
Split-half reliability coefficient	0.783	0.783
Average inter-item correlations	0.300	0.336
Minimum-maximum correlations	0.075-0.450	0.214-0.472
Range of correlations	0.375	0.258
	Average inter-	item correlations
	between	n subscales
Conservation	_	
Openness to change	0.230	_

Fig. 160 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Slovenia (N = 1,286)

Table A541 Item analysis of Schwartz scale values of the European Social Survey, 2010: Slovenia (first half-sample: n = 701)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.39 (1.109)	2.30-2.47	19.5	41.7	22.7	7.3	5.8	0.9	2.1	0.93	0.63	0.348
SD11	1.93 (0.936)	1.86-2.00	34.0	46.4	12.3	2.3	2.9	0.4	1.9	1.45	2.97	0.396
UN3	1.83 (0.792)	1.77-1.88	34.0	52.6	8.0	1.6	1.4	0.3	2.1	1.55	4.63	0.307
UN8	2.28 (0.939)	2.21-2.35	14.0	55.6	18.5	5.0	3.3	0.9	2.7	1.36	2.59	0.373
UN19	1.91 (0.819)	1.85-1.97	30.8	51.5	11.6	3.3	0.9	0.3	1.7	1.22	2.78	0.359
BE12	1.94 (0.761)	1.88-1.99	27.1	54.2	14.3	1.7	0.9	0.1	1.7	1.00	2.54	0.484
BE18	2.06 (0.860)	2.00-2.13	23.0	53.8	16.0	2.9	2.1	0.3	2.0	1.23	2.71	0.377
TR9	2.13 (0.938)	2.06-2.20	22.3	51.9	15.5	5.1	2.7	0.4	2.0	1.21	2.03	0.188
TR20	2.37 (1.087)	2.29-2.45	16.7	48.9	19.5	6.7	4.9	1.6	1.7	1.18	1.42	0.258
CO7	3.00 (1.284)	2.90-3.09	7.3	35.0	27.2	10.3	13.3	4.1	2.9	0.65	-0.37	0.275
CO16	2.23 (1.035)	2.15-2.31	20.3	51.2	16.1	5.1	4.1	1.1	2.0	1.32	2.05	0.323
SEC5	2.04 (0.963)	1.97-2.11	28.2	49.4	12.6	4.0	4.0	-	1.9	1.26	1.79	0.381
SEC14	2.05 (0.922)	1.98-2.12	24.7	54.1	12.0	3.4	2.9	0.6	2.4	1.48	3.19	0.340
PO2	3.94 (1.268)	3.85-4.04	1.0	12.4	29.1	15.4	29.1	11.0	2.0	-0.05	-1.03	0.300
PO17	2.62 (1.172)	2.53-2.70	12.3	44.4	22.5	8.1	8.7	1.7	2.3	0.90	0.33	0.394
AC4	2.46 (1.144)	2.37-2.54	15.7	46.6	19.1	6.8	8.4	0.9	2.4	1.01	0.52	0.511
AC13	2.48 (1.083)	2.40-2.56	12.3	50.1	20.3	7.7	7.0	0.9	1.9	1.06	0.80	0.564
HE10	2.48 (1.183)	2.40-2.57	15.5	46.5	19.3	7.1	7.3	2.1	2.1	1.09	0.79	0.469
HE21	2.58 (1.317)	2.48-2.68	20.7	37.1	17.8	12.3	6.7	3.6	1.9	0.82	0.01	0.435
ST6	2.38 (1.122)	2.30-2.47	19.7	42.7	20.8	7.8	5.8	1.0	2.1	0.96	0.64	0.449
ST15	3.56 (1.521)	3.45-3.68	10.1	17.8	21.7	14.6	22.4	10.8	2.6	-0.05	-1.08	0.309

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.092 and 0.184, respectively.

Table A542 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Slovenia (first half-sample: n = 701)

	Principal a	Principal axis factor analysis (factors)				
	Factor I	Factor II	Factor III	Unique		
Item	Openness to	Conservation	Self-	variance		
	change		enhancement			
SD1	0.443	0.107	-0.020	0.784		
SD11	0.582	0.189	-0.174	0.655		
UN3	0.175	0.488	-0.167	0.728		
UN8	0.184	0.354	-0.003	0.820		
UN19	0.122	0.591	-0.155	0.635		
BE12	0.117	0.603	0.030	0.589		
BE18	0.181	0.301	0.099	0.823		
CO16	-0.272	0.526	0.280	0.633		
SEC5	-0.103	0.566	0.186	0.634		
SEC14	-0.001	0.561	0.014	0.683		
PO2	0.244	-0.248	0.541	0.541		
PO17	-0.138	0.145	0.714	0.505		
AC4	0.305	0.124	0.390	0.609		
AC13	0.457	0.071	0.365	0.491		
HE10	0.591	0.067	0.080	0.585		
HE21	0.732	-0.043	-0.027	0.488		
ST6	0.588	0.139	-0.063	0.638		
ST15	0.611	-0.267	0.157	0.519		
Factors	Correl	ations between fa	ctors			
Openness to change	_					
Conservation	0.169	_				
Self-enhancement	0.424	0.174	_			

Table A543 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Slovenia (first half-sample: n = 701)

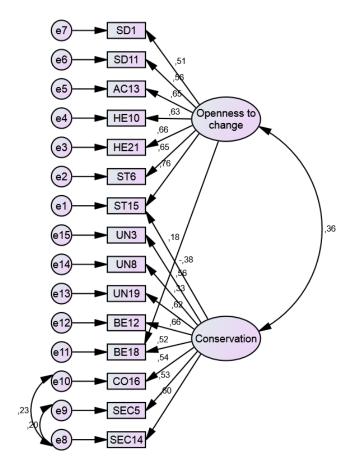
		Subscale	_
	Openness to	Conservation	Self-
	change		enhancement
Number of items	7	8	3
Mean (standard error)	2.54 (0.030)	2.04 (0.020)	3.01 (0.034)
95% Confidence interval	2.48-2.60	2.00-2.08	2.94-3.07
Standard deviation	0.794	0.531	0.900
Skewness (standard error)	0.760 (0.092)	0.688 (0.092)	0.603 (0.092)
Kurtosis (standard error)	1.020 (0.184)	1.762 (0.184)	-0.016 (0.184)
Cronbach's alpha reliability coeff.	0.789	0.741	0.617
Split-half reliability coefficient	0.790	0.677	0.537
Average inter-item correlations	0.353	0.269	0.351
Minimum-maximum correlations	0.214-0.499	0.132-0.440	0.348-0.353
Range of correlations	0.286	0.308	0.005
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.201	_	
Self-enhancement	0.304	0.200	_

Table A544 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Slovenia (first half-sample: n = 701)

	Principal axis factor a		
Variables	- Instant	Fastan II	Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.413	0.078	0.806
SD11	0.443	0.121	0.760
UN3	0.033	0.446	0.792
UN8	0.152	0.344	0.831
UN19	-0.019	0.553	0.699
BE12	0.088	0.607	0.595
BE18	0.217	0.309	0.822
CO16	-0.131	0.581	0.686
SEC5	-0.032	0.616	0.630
SEC14	-0.037	0.576	0.678
PO2	0.555	-0.147	0.714
PO17	0.277	0.231	0.836
AC4	0.526	0.174	0.645
AC13	0.666	0.108	0.506
HE10	0.623	0.047	0.594
HE21	0.692	-0.086	0.546
ST6	0.521	0.092	0.694
ST15	0.725	-0.286	0.504
	Correlations betw	veen factors	
Openness to change			
Conservation	0.267	_	
Conscivation	0.207		

Table A545 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-15 items): European Social Survey 2010, Slovenia (first half-sample: n = 701)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.415	0.088	0.801
SD11	0.500	0.135	0.697
UN3	0.068	0.458	0.769
UN8	0.171	0.337	0.827
UN19	0.024	0.579	0.658
BE12	0.111	0.614	0.576
BE18	0.228	0.293	0.827
CO16	-0.151	0.562	0.705
SEC5	-0.051	0.600	0.653
SEC14	-0.026	0.593	0.655
AC13	0.610	0.083	0.596
HE10	0.631	0.044	0.586
HE21	0.751	-0.090	0.462
ST6	0.551	0.093	0.662
ST15	0.690	-0.263	0.548
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.256	_	


Table A546 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, Slovenia (second half-sample: n = 701)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.60	.067	.873	.896	.838	.072 (.065078)
2a	2 first-order correlated factors- without cross-loadings	4.83	.080	.824	.854	.827	.074 (.068080)
2b	2 first-order correlated factors- with cross-loadings	4.04	.062	.857	.887	.863	.066 (.060072)
2c	2 first-order correlated factors (15 items)-without cross-						,
	loadings	4.31	.072	.864	.892	.869	.069 (.062076)
2d	2 first-order correlated factors (15 items)-with cross-loadings	2.10	.052	.905	.933	.917	.055 (.047062)
3a	3 first-order correlated factors- without cross-loadings	5.32	.081	.805	.835	.805	.079 (.073084)
3b	3 first-order correlated factors- with cross-loadings	3.59	.054	.875	.906	.883	.061 (.055067)
4	5 first-order correlated factors of unified values	_	.067	.831	.866	.838	.067 (.061073)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrix of the 5 first-order correlated factors of unified values was not positive definite.

a Higher values indicate better model fit

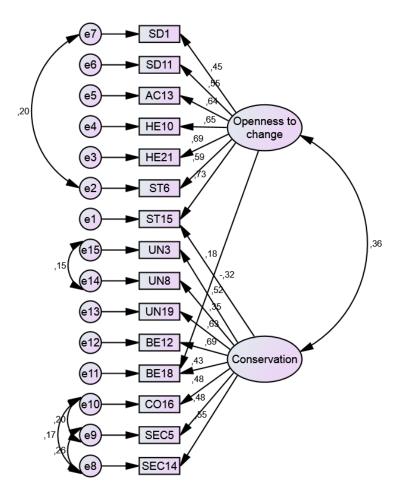

b Lower values indicate better model fit

Fig. 161 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Slovenia (second half-sample: n = 701)

Table A547 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Slovenia (N = 1,403)

	Subscale			
	Openness to change	Conservation		
Number of items	7	8		
Mean (standard error)	2.56 (0.022)	2.04 (0.015)		
95% Confidence interval	2.52-2.61	2.01-2.07		
Standard deviation	0.809	0.550		
Skewness (standard error)	0.732 (0.065)	0.693 (0.065)		
Kurtosis (standard error)	0.824 (0.131)	1.636 (0.131)		
Cronbach's alpha reliability coeff.	0.796	0.763		
Split-half reliability coefficient	0.780	0.762		
Average inter-item correlations	0.362	0.292		
Minimum-maximum correlations	0.236-0.481	0.122-0.452		
Range of correlations	0.244	0.330		
	Average inter	-item correlations		
	between	n subscales		
Openness to change	_			
Conservation	0.209	_		

Fig. 162 Standardized solution for the 2 first-order correlated factors (model 2d-15 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Slovenia (N = 1,403)

Table A548 Item analysis of Schwartz scale values of the European Social Survey, 2012: Slovenia (first half-sample: n = 628)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.40 (1.189)	2.30-2.49	20.7	41.7	19.6	6.8	6.5	1.9	2.7	1.06	0.77	0.482
SD11	1.87 (0.936)	1.80-1.94	39.6	41.4	12.3	3.8	1.6	0.5	0.8	1.36	2.43	0.384
UN3	1.65 (0.805)	1.59-1.72	48.4	41.6	5.7	1.6	1.0	0.5	1.3	1.89	5.83	0.182
UN8	2.16 (0.972)	2.08-2.24	23.2	48.4	18.2	5.3	2.7	0.6	1.6	1.15	1.80	0.398
UN19	1.62 (0.766)	1.56-1.68	51.8	36.5	8.9	1.6	0.6	-	0.6	1.31	2.12	0.280
BE12	1.79 (0.750)	1.74-1.85	36.6	49.7	9.7	2.9	-	0.2	1.0	0.99	1.87	0.452
BE18	1.98 (0.877)	1.91-2.05	29.3	50.2	12.7	4.9	1.1	0.3	1.4	1.16	2.09	0.534
TR9	1.86 (0.861)	1.79-1.93	35.8	47.6	11.1	2.5	1.0	0.6	1.3	1.48	3.85	0.162
TR20	2.49 (1.263)	2.39-2.59	23.1	35.4	20.9	10.7	7.3	1.9	0.8	0.79	-0.02	0.218
CO7	3.10 (1.388)	2.99-3.21	9.4	32.8	21.7	10.7	20.2	3.5	1.8	0.38	-0.98	0.114
CO16	2.08 (1.048)	1.99-2.16	30.3	45.9	13.4	4.8	4.1	0.6	1.0	1.30	1.76	0.327
SEC5	1.76 (0.908)	1.69-1.83	44.7	41.6	7.8	2.2	2.4	0.3	1.0	1.70	3.78	0.265
SEC14	1.74 (0.859)	1.67-1.81	44.9	41.1	8.9	1.8	1.9	0.2	1.3	1.57	3.48	0.293
PO2	4.35 (1.279)	4.25-4.45	1.0	9.9	17.5	12.3	40.4	17.4	1.6	-0.57	-0.68	0.265
PO17	2.29 (1.088)	2.21-2.38	21.7	45.4	19.4	6.5	4.6	1.1	1.3	1.10	1.18	0.422
AC4	2.45 (1.204)	2.36-2.55	19.3	43.0	20.1	6.4	8.9	1.3	1.1	0.96	0.36	0.479
AC13	2.55 (1.208)	2.46-2.65	18.5	36.5	26.3	8.1	7.2	2.1	1.4	0.81	0.29	0.554
HE10	2.48 (1.189)	2.39-2.58	20.5	36.9	23.9	9.9	6.7	1.3	0.8	0.77	0.11	0.471
HE21	2.63 (1.304)	2.53-2.73	17.4	39.8	19.3	11.5	8.1	3.3	0.6	0.82	-0.02	0.420
ST6	2.49 (1.252)	2.39-2.58	21.5	37.9	20.2	9.4	7.8	1.9	1.3	0.86	0.12	0.559
ST15	3.86 (1.460)	3.75-3.98	6.5	13.5	22.3	13.1	31.1	12.1	1.4	-0.29	-0.97	0.299

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.098 and 0.195, respectively.

Table A549 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Slovenia (first half-sample: n = 628)

	Principal axis factor analysis (factors)						
Item	Factor I Self-	Factor II Self-	Factor III Power	Unique variance			
	enhancement	transcendence					
SD1	0.433	0.321	-0.115	0.591			
SD11	0.320	0.239	-0.001	0.760			
UN8	-0.042	0.593	0.050	0.661			
BE12	-0.021	0.506	0.282	0.622			
BE18	0.210	0.392	0.177	0.635			
CO16	-0.197	0.288	0.539	0.646			
PO17	0.253	-0.057	0.554	0.575			
AC4	0.673	-0.179	0.190	0.549			
AC13	0.685	-0.068	0.145	0.503			
HE10	0.538	0.021	0.051	0.680			
HE21	0.572	0.115	-0.235	0.621			
ST6	0.531	0.326	-0.096	0.459			
Factors	Correlations between factors						
Self-enhancement	_						
Self-transcendence	0.532	_					
Power	0.281	0.198	_				

Table A550 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Slovenia (first half-sample: n = 628)

		Subscale	
	Self-	Self-	Power
	enhancement	transcendence	
Number of items	7	3	2
Mean (standard error)	2.41 (0.032)	1.98 (0.026)	2.18 (0.035)
95% Confidence interval	2.35-2.47	1.93-2.03	2.12-2.25
Standard deviation	0.793	0.644	0.867
Skewness (standard error)	0.806 (0.098)	0.643 (0.098)	0.895 (0.098)
Kurtosis (standard error)	0.971 (0.195)	0.526 (0.195)	0.939 (0.195)
Cronbach's alpha reliability coeff.	0.793	0.584	0.482
Split-half reliability coefficient	0.765	0.541	0.482
Average inter-item correlations	0.352	0.327	0.318
Minimum-maximum correlations	0.251-0.505	0.304-0.372	0.318-0.318
Range of correlations	0.255	0.068	0.000
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Self-transcendence	0.305	_	
Power	0.272	0.266	_

Table A551 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Slovenia (first half-sample: n = 628)

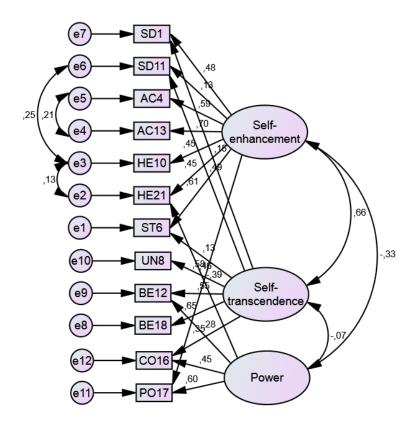

Variables	Principal axis factor a	Unique	
v arrables	Factor I Openness to change	Factor II Conformity	variance
SD1	0.655	-0.073	0.615
SD11	0.462	0.038	0.767
UN8	0.312	0.126	0.846
BE12	0.210	0.375	0.733
BE18	0.393	0.256	0.676
CO16	-0.171	0.615	0.703
PO17	0.029	0.607	0.612
AC4	0.462	0.185	0.663
AC13	0.563	0.159	0.565
HE10	0.517	0.069	0.691
HE21	0.717	-0.253	0.611
ST6	0.750	-0.052	0.475
	Correlations betw	reen factors	
Openness to change	_		
Conformity	0.522	_	

Table A552 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2012, Slovenia (second half-sample: n = 629)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.89	.057	.874	.896	.850	.079 (.069089)
2a	2 first-order correlated factors- without cross-loadings	6.69	.070	.831	.853	.802	.091 (.081100)
2b	2 first-order correlated factors- with cross-loadings	4.80	.059	.873	.896	.854	.078 (.068088)
3a	3 first-order correlated factors- without cross-loadings	5.72	.068	.846	.868	.818	.087 (.077097)
3b	3 first-order correlated factors- with cross-loadings	3.17	.041	.927	.948	.916	.059 (.048070)
4	5 first-order correlated factors of unified values	_	.076	.785	.821	.784	.077 (.071083)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. The covariance matrix of the 5 first-order correlated factors of unified values was not positive definite.

b Lower values indicate better model fit

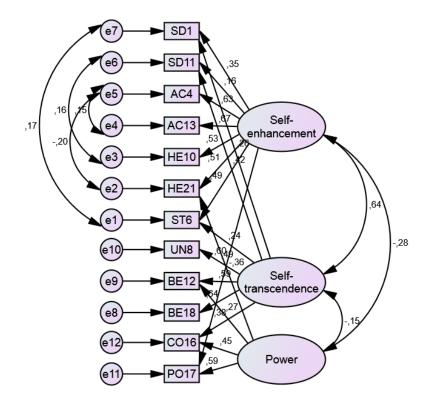


Fig. 163 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Slovenia (second half-sample: n = 629)

a Higher values indicate better model fit

Table A553 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Slovenia (N = 1,257)

		Subscale	
	Self-	Self-	Power
	enhancement	transcendence	
Number of items	7	3	2
Mean (standard error)	2.40 (0.022)	2.00 (0.018)	2.20 (0.024)
95% Confidence interval	2.35-2.44	1.96-2.03	2.15-2.24
Standard deviation	0.772	0.636	0.856
Skewness (standard error)	0.819 (0.069)	0.720 (0.069)	0.836 (0.069)
Kurtosis (standard error)	0.927 (0.138)	0.882 (0.138)	0.738 (0.138)
Cronbach's alpha reliability coeff.	0.789	0.569	0.492
Split-half reliability coefficient	0.787	0.541	0.492
Average inter-item correlations	0.348	0.312	0.327
Minimum-maximum correlations	0.231-0.513	0.283-0.354	0.327-0.327
Range of correlations	0.282	0.070	0.000
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Self-transcendence	0.292	_	
Power	0.268	0.259	_

Fig. 164 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Slovenia (N = 1,257)

Table A554 Item analysis of Schwartz scale values of the European Social Survey, 2014: Slovenia (first half-sample: n = 612)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.25 (1.074)	2.16-2.33	21.7	46.2	17.0	4.4	6.0	0.7	3.9	1.20	1.37	0.327
SD11	1.86 (0.859)	1.79-1.93	36.9	42.8	12.3	2.9	1.6	-	3.4	1.17	1.83	0.286
UN3	1.74 (0.844)	1.67-1.80	43.0	44.0	6.0	1.5	2.3	0.2	3.1	1.76	4.58	0.283
UN8	2.17 (0.938)	2.09-2.24	18.8	55.2	14.4	3.4	4.6	0.2	3.4	1.37	2.34	0.300
UN19	1.62 (0.690)	1.56-1.67	48.2	40.8	7.0	1.0	0.3	-	2.6	1.09	1.81	0.245
BE12	1.79 (0.652)	1.74-1.84	31.7	56.4	7.8	0.8	0.2	0.2	2.9	0.92	3.56	0.363
BE18	1.95 (0.805)	1.88-2.01	27.5	52.1	12.1	2.8	1.3	0.2	4.1	1.21	2.85	0.424
TR9	1.83 (0.773)	1.77-1.89	34.2	50.8	10.0	1.3	1.5	-	2.3	1.24	3.02	0.151
TR20	2.34 (1.120)	2.26-2.43	19.1	46.1	17.6	5.7	6.9	1.0	3.6	1.14	1.01	0.151
CO7	3.04 (1.391)	2.93-3.15	10.5	32.8	21.2	8.8	18.6	3.9	4.1	0.46	-0.85	0.172
CO16	2.08 (0.960)	2.00-2.16	25.0	51.6	12.1	4.6	3.3	0.5	2.9	1.38	2.44	0.266
SEC5	1.87 (0.927)	1.80-1.94	37.7	43.5	10.6	2.8	2.0	0.7	2.8	1.56	3.48	0.361
SEC14	1.85 (0.929)	1.78-1.93	38.2	44.4	7.0	3.9	2.5	0.3	3.6	1.58	3.15	0.360
PO2	4.23 (1.222)	4.13-4.33	1.5	8.0	21.1	13.9	41.0	11.8	2.8	-0.52	-0.58	0.255
PO17	2.45 (1.084)	2.36-2.54	14.4	45.8	21.4	6.9	7.7	0.3	3.6	0.97	0.53	0.413
AC4	2.45 (1.174)	2.36-2.54	17.2	44.3	17.8	6.9	9.2	0.8	3.9	0.99	0.37	0.454
AC13	2.46 (1.079)	2.37-2.54	14.9	43.1	22.5	7.8	7.0	0.3	4.2	0.89	0.42	0.548
HE10	2.45 (1.152)	2.36-2.54	17.0	43.6	20.3	6.5	8.5	0.8	3.3	0.98	0.45	0.436
HE21	2.66 (1.257)	2.56-2.76	15.7	38.7	19.9	10.3	10.3	1.8	3.3	0.71	-0.21	0.403
ST6	2.37 (1.169)	2.28-2.46	21.1	41.7	18.6	6.0	7.8	1.0	3.8	1.03	0.59	0.429
ST15	3.72 (1.437)	3.61-3.84	5.4	19.4	20.3	13.6	28.1	9.8	3.4	-0.14	-1.09	0.280

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.099 and 0.197, respectively.

Table A555 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Slovenia (first half-sample: n = 612)

Item Factor I Conservation Factor II Openness to change Factor III Hedonism SD1 -0.159 0.799 -0.116 UN8 0.031 0.235 0.045 BE12 0.272 0.084 0.065 BE18 0.373 -0.005 0.139 SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	
change SD1 -0.159 0.799 -0.116 UN8 0.031 0.235 0.045 BE12 0.272 0.084 0.065 BE18 0.373 -0.005 0.139 SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	Unique
SD1 -0.159 0.799 -0.116 UN8 0.031 0.235 0.045 BE12 0.272 0.084 0.065 BE18 0.373 -0.005 0.139 SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	variance
UN8 0.031 0.235 0.045 BE12 0.272 0.084 0.065 BE18 0.373 -0.005 0.139 SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	
BE12 0.272 0.084 0.065 BE18 0.373 -0.005 0.139 SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	0.541
BE18	0.920
SEC5 0.692 -0.037 -0.218 SEC14 0.523 -0.193 0.060	0.870
SEC14 0.523 -0.193 0.060	0.795
****	0.629
	0.761
PO17 0.577 0.026 -0.062	0.685
AC4 0.371 0.289 0.053	0.641
AC13 0.348 0.185 0.288	0.538
HE10 0.212 0.023 0.411	0.686
HE21 -0.175 -0.022 0.876	0.370
ST6 -0.010 0.583 0.122	0.558
Factors Correlations between factors	
Conservation —	
Openness to change 0.446 —	
Hedonism 0.478 0.662 —	

Table A556 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Slovenia (first half-sample: n = 612)

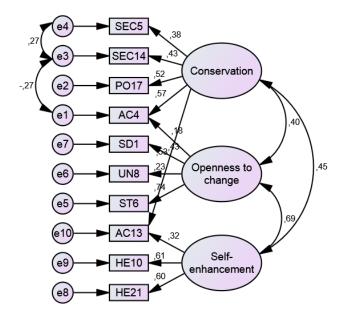
		Subscale	
	Conservation	Openness to change	Hedonism
Number of items	7	3	2
Mean (standard error)	2.12 (0.023)	2.26 (0.031)	2.56 (0.040)
95% Confidence interval	2.07-2.16	2.20-2.32	2.48-2.64
Standard deviation	0.573	0.766	1.002
Skewness (standard error)	0.660 (0.099)	1.081 (0.099)	0.808 (0.099)
Kurtosis (standard error)	1.161 (0.197)	1.837 (0.197)	0.373 (0.197)
Cronbach's alpha reliability coeff.	0.695	0.533	0.552
Split-half reliability coefficient	0.599	0.306	0.552
Average inter-item correlations	0.247	0.271	0.382
Minimum-maximum correlations	0.118-0.461	0.141-0.426	0.382-0.382
Range of correlations	0.343	0.284	0.000
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.216	_	
Hedonism	0.318	0.230	_

Table A557 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Slovenia (first half-sample: n = 612)

X7	Principal axis factor a	***	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.593	-0.177	0.721
UN8	0.267	0.014	0.925
BE12	0.157	0.259	0.868
BE18	0.147	0.363	0.794
SEC5	-0.211	0.699	0.612
SEC14	-0.103	0.531	0.761
PO17	0.017	0.543	0.696
AC4	0.369	0.312	0.653
AC13	0.488	0.301	0.528
HE10	0.427	0.183	0.707
HE21	0.651	-0.098	0.629
ST6	0.687	-0.079	0.576
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.492	_	

Table A558 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-10 items): European Social Survey 2014, Slovenia (first half-sample: n = 612)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Conservation	Openness to	Self-	variance			
		change	enhancement				
SD1	-0.148	0.839	-0.121	0.471			
UN8	0.001	0.249	0.047	0.920			
SEC5	0.689	-0.030	-0.206	0.628			
SEC14	0.484	-0.171	0.066	0.781			
PO17	0.552	0.010	-0.021	0.702			
AC4	0.399	0.233	0.114	0.621			
AC13	0.339	0.135	0.353	0.528			
HE10	0.180	0.002	0.449	0.686			
HE21	-0.216	-0.027	0.876	0.395			
ST6	0.018	0.500	0.196	0.575			
Factors	Correl	ations between fa	ectors				
Conservation	_						
Openness to change	0.397	_					
Self-enhancement	0.488	0.640	_				


Table A559 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2014, Slovenia (second half-sample: n = 612)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.00	.060	.806	.836	.779	.081 (.071091)
2a	2 first-order correlated factors- without cross-loadings	5.57	.064	.775	.805	.747	.086 (.077096)
2b	2 first-order correlated factors- with cross-loadings	5.40	.063	.790	.819	.757	.085 (.075095)
3a	3 first-order correlated factors- without cross-loadings	5.10	.061	.806	.835	.774	.082 (.072092)
3b	3 first-order correlated factors- with cross-loadings	5.16	.060	.812	.840	.770	.083 (.072093)
3c	3 first-order correlated factors (10 items)-with cross-loadings	4.04	.048	.889	.913	.860	.071 (.057084)
4	5 first-order correlated factors of unified values	3.66	.063	.759	.810	.769	.066 (.060072)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

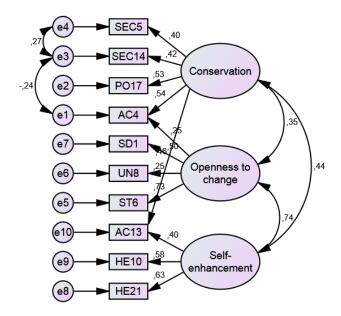

b Lower values indicate better model fit

Fig. 165 Standardized solution for the 3 first-order correlated factors (model 3c-10 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Slovenia (second half-sample: n = 612)

Table A560 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Slovenia (first half-sample: n = 1,224)

		Subscale	
	Conservation	Openness to change	Self- enhancement
Number of items	4	3	3
Mean (standard error)	2.15 (0.019)	2.25 (0.021)	2.50 (0.025)
95% Confidence interval	2.11-2.19	2.21-2.29	2.45-2.55
Standard deviation	0.682	0.738	0.883
Skewness (standard error)	0.897 (0.070)	0.952 (0.070)	0.841 (0.070)
Kurtosis (standard error)	1.248 (0.140)	1.445 (0.140)	0.720 (0.140)
Cronbach's alpha reliability coeff.	0.573	0.494	0.627
Split-half reliability coefficient	0.481	0.286	0.595
Average inter-item correlations	0.258	0.241	0.360
Minimum-maximum correlations	0.104-0.380	0.150-0.372	0.341-0.390
Range of correlations	0.276	0.222	0.049
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.166	_	
Self-enhancement	0.246	0.253	_

Fig. 166 Standardized solution for the 3 first-order correlated factors (model 3c-10 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Slovenia (N = 1,224)

Table A561 Item analysis of Schwartz scale values of the European Social Survey, 2002: Spain (first half-sample: n = 864)

_				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.44 (1.274)	2.36-2.53	25.5	34.3	21.9	8.6	7.4	2.1	0.3	0.85	0.11	0.457
SD11	2.09 (1.107)	2.01-2.16	35.1	36.3	17.7	5.9	3.4	1.0	0.6	1.15	1.19	0.495
UN3	1.84 (0.986)	1.77-1.90	44.6	36.0	11.9	4.6	1.5	0.7	0.7	1.43	2.36	0.375
UN8	2.22 (1.064)	2.15-2.29	26.7	39.5	22.3	7.6	2.4	1.0	0.3	0.93	0.92	0.464
UN19	2.08 (1.040)	2.01-2.15	32.4	39.8	17.5	6.7	2.3	0.7	0.6	1.06	1.12	0.476
BE12	2.04 (0.955)	1.97-2.10	31.9	40.6	20.1	5.2	0.8	0.7	0.6	0.99	1.40	0.497
BE18	1.92 (0.956)	1.85-1.98	37.4	41.9	13.1	4.7	1.3	0.7	0.9	1.32	2.31	0.548
TR9	2.24 (1.157)	2.17-2.32	29.9	35.9	20.1	9.0	3.5	1.4	0.2	0.95	0.60	0.307
TR20	2.61 (1.331)	2.52-2.70	21.4	32.5	24.7	10.3	6.6	4.2	0.3	0.79	0.06	0.216
CO7	3.08 (1.389)	2.98-3.17	12.4	26.7	24.8	17.0	13.3	5.2	0.6	0.35	-0.73	0.172
CO16	2.28 (1.121)	2.20-2.35	26.6	37.8	22.1	8.4	3.4	1.3	0.3	0.92	0.70	0.404
SEC5	1.95 (1.091)	1.87-2.02	41.6	35.5	14.0	4.7	2.1	1.6	0.5	1.46	2.35	0.427
SEC14	2.14 (1.162)	2.06-2.22	33.4	36.7	17.8	6.0	3.1	2.1	0.8	1.23	1.47	0.444
PO2	3.94 (1.407)	3.84-4.03	5.7	11.8	20.1	19.8	29.6	12.5	0.5	-0.37	-0.77	0.251
PO17	2.79 (1.394)	2.70-2.88	19.0	30.1	21.6	13.9	10.5	4.1	0.8	0.55	-0.56	0.377
AC4	3.17 (1.408)	3.08-3.27	11.2	24.9	25.7	14.4	17.2	5.3	1.3	0.28	-0.87	0.456
AC13	3.29 (1.390)	3.20-3.38	9.3	23.3	25.2	18.6	17.1	6.0	0.5	0.18	-0.87	0.515
HE10	2.90 (1.426)	2.80-2.99	17.1	28.4	23.5	14.6	10.4	5.7	0.3	0.51	-0.60	0.502
HE21	3.15 (1.406)	3.06-3.24	12.0	24.4	25.1	18.5	13.1	6.3	0.6	0.30	-0.75	0.469
ST6	3.02 (1.470)	2.92-3.11	17.4	24.5	22.5	14.9	15.3	5.1	0.3	0.32	-0.92	0.440
ST15	3.93 (1.474)	3.83-4.03	5.6	14.4	19.3	19.1	24.1	16.7	0.9	-0.25	-0.96	0.253

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.083 and 0.166, respectively.

Table A562 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Spain (first half-sample: n = 864)

	s (factors)			
	Factor I	Factor II	Factor III	Unique
Item	Conservation	Openness to	Self-	variance
		change	enhancement	
SD1	0.290	0.557	-0.111	0.546
SD11	0.328	0.437	0.051	0.610
UN3	0.594	0.174	-0.177	0.587
UN8	0.609	0.266	-0.141	0.505
UN19	0.642	0.203	-0.115	0.505
BE12	0.598	0.189	-0.024	0.556
BE18	0.589	0.231	0.039	0.516
TR9	0.757	-0.159	-0.107	0.479
CO16	0.664	-0.285	0.281	0.449
SEC5	0.606	-0.158	0.242	0.552
SEC14	0.626	-0.163	0.260	0.515
PO17	0.118	-0.095	0.776	0.370
AC4	-0.061	0.223	0.730	0.379
AC13	-0.117	0.448	0.610	0.370
HE10	-0.051	0.786	0.138	0.345
HE21	-0.091	0.774	0.144	0.373
ST6	-0.011	0.792	-0.019	0.383
Factors	Correl	ations between fa	actors	
Conservation	_			
Openness to change	0.257	_		
Self-enhancement	0.205	0.183		

Table A563 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Spain (first half-sample: n = 864)

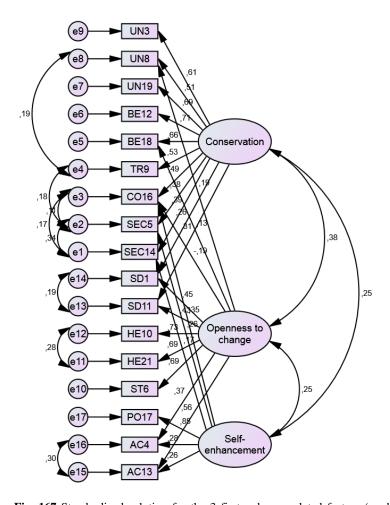
		Subscale	
	Conservation	Openness to change	Self- enhancement
Number of items	9	5	3
Mean (standard error)	2.08 (0.024)	2.72 (0.033)	3.09 (0.037)
95% Confidence interval	2.03-2.12	2.65-2.78	3.01-3.16
Standard deviation	0.693	0.978	1.084
Skewness (standard error)	1.194 (0.083)	0.553 (0.083)	0.370 (0.083)
Kurtosis (standard error)	3.452 (0.166)	0.113 (0.166)	-0.305 (0.166)
Cronbach's alpha reliability coeff.	0.832	0.778	0.669
Split-half reliability coefficient	0.690	0.794	0.534
Average inter-item correlations	0.358	0.411	0.403
Minimum-maximum correlations	0.229-0.541	0.329-0.634	0.339-0.485
Range of correlations	0.312	0.305	0.145
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.279	_	
Self-enhancement	0.271	0.323	_

Table A564 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Spain (first half-sample: n = 864)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	0.214	0.482	0.652
SD11	0.299	0.433	0.635
UN3	0.537	0.070	0.682
UN8	0.551	0.174	0.601
UN19	0.596	0.124	0.580
BE12	0.573	0.150	0.591
BE18	0.575	0.219	0.537
TR9	0.745	-0.230	0.507
CO16	0.751	-0.182	0.494
SEC5	0.673	-0.074	0.575
SEC14	0.698	-0.071	0.541
PO17	0.302	0.237	0.805
AC4	0.084	0.533	0.679
AC13	-0.019	0.701	0.517
HE10	-0.091	0.824	0.317
HE21	-0.128	0.817	0.387
ST6	-0.087	0.761	0.457
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.337	_	

Table A565 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2002, Spain (first half-sample: n = 864)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	0.209	0.537	0.590
SD11	0.283	0.464	0.613
UN3	0.535	0.138	0.644
UN8	0.539	0.247	0.555
UN19	0.595	0.183	0.536
BE12	0.563	0.196	0.568
BE18	0.552	0.265	0.523
TR9	0.748	-0.181	0.502
CO16	0.755	-0.232	0.498
SEC5	0.682	-0.110	0.575
SEC14	0.715	-0.118	0.534
HE10	-0.108	0.848	0.332
HE21	-0.150	0.848	0.347
ST6	-0.112	0.819	0.381
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.347	_	


Table A566 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Spain (second half-sample: n = 864)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.37	.066	.901	.917	.878	.071 (.065077)
2a	2 first-order correlated factors- without cross-loadings	6.00	.073	.866	.886	.860	.076 (.071082)
2b	2 first-order correlated factors- with cross-loadings	4.85	.059	.895	.914	.892	.067 (.061073)
2c	2 first-order correlated factors (14 items)-without cross-						
	loadings	4.80	.063	.915	.931	.911	.066 (.059074)
2d	2 first-order correlated factors (14 items)-with cross-loadings	3.64	.050	.940	.956	.938	.055 (.048063)
3a	3 first-order correlated factors- without cross-loadings	5.49	.070	.879	.898	.874	.072 (.067078)
3b	3 first-order correlated factors-	3.47	.070	.077	.070	.074	.072 (.007070)
	with cross-loadings	3.35	.044	.934	.952	.934	.052 (.046058)
4	2 first-order correlated factors of unified values	8.43	.073	.872	.884	.830	.093 (.080106)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

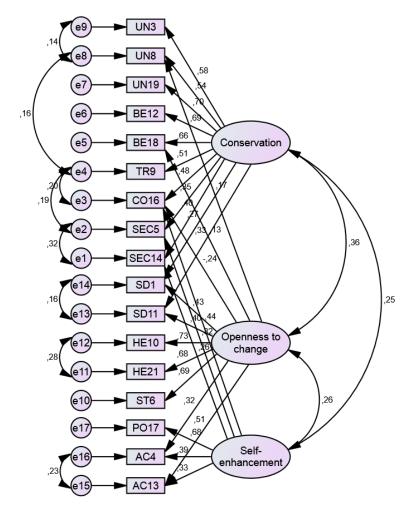

b Lower values indicate better model fit

Fig. 167 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Spain (second half-sample: n = 864)

Table A567 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Spain (N = 1,729)

		Subscale	
	Conservation	Openness to	Self-
		change	enhancement
Number of items	9	5	3
Mean (standard error)	2.07 (0.016)	2.75 (0.023)	3.07 (0.026)
95% Confidence interval	2.04-2.10	2.70-2.79	3.02-3.12
Standard deviation	0.682	0.970	1.077
Skewness (standard error)	1.022 (0.059)	0.514 (0.059)	0.317 (0.059)
Kurtosis (standard error)	2.431 (0.118)	-0.030 (0.118)	-0.420 (0.118)
Cronbach's alpha reliability coeff.	0.833	0.786	0.668
Split-half reliability coefficient	0.821	0.765	0.513
Average inter-item correlations	0.360	0.422	0.402
Minimum-maximum correlations	0.240-0.527	0.331-0.637	0.346-0.510
Range of correlations	0.287	0.306	0.165
	Average inter-i	tem correlations be	etween subscales
Conservation	_		
Openness to change	0.284	_	
Self-enhancement	0.276	0.338	_

Fig. 168 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Spain (N = 1,729)

Table A568 Item analysis of Schwartz scale values of the European Social Survey, 2004: Spain (first half-sample: n = 831)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.67 (1.263)	2.58-2.75	17.1	34.7	23.9	10.7	8.5	2.5	2.5	0.69	-0.09	0.327
SD11	2.31 (1.217)	2.22-2.39	27.2	39.1	16.0	9.0	5.7	1.7	1.3	1.02	0.53	0.484
UN3	1.96 (1.038)	1.89-2.03	38.1	39.4	11.9	6.5	1.8	1.0	1.3	1.34	1.94	0.401
UN8	2.24 (1.068)	2.17-2.31	23.7	45.4	16.1	8.7	3.7	0.7	1.7	1.04	0.91	0.412
UN19	2.22 (1.105)	2.14-2.29	26.0	42.7	17.3	7.0	3.4	1.6	2.0	1.18	1.44	0.431
BE12	2.11 (0.989)	2.04-2.18	27.0	46.2	16.4	5.8	2.5	0.6	1.6	1.14	1.63	0.477
BE18	1.92 (0.994)	1.85-1.98	37.8	43.0	10.6	4.6	1.9	1.0	1.2	1.51	2.87	0.444
TR9	2.36 (1.230)	2.28-2.45	25.9	36.8	19.5	8.9	5.4	2.2	1.3	0.97	0.50	0.310
TR20	2.66 (1.398)	2.57-2.76	21.5	33.5	18.8	11.1	9.7	4.1	1.3	0.72	-0.36	0.210
CO7	3.27 (1.430)	3.17-3.36	9.1	27.3	19.6	18.1	16.6	7.0	2.3	0.25	-0.94	0.143
CO16	2.48 (1.280)	2.39-2.57	20.9	41.6	16.0	10.1	7.2	2.8	1.3	0.96	0.27	0.356
SEC5	2.22 (1.188)	2.14-2.30	29.5	39.6	15.0	7.2	4.8	1.8	2.0	1.17	1.05	0.443
SEC14	2.20 (1.172)	2.12-2.28	29.4	39.8	14.2	7.7	4.5	1.7	2.8	1.18	1.10	0.384
PO2	4.00 (1.376)	3.91-4.10	3.6	14.4	16.8	18.9	31.5	12.6	2.0	-0.38	-0.83	0.187
PO17	3.11 (1.526)	3.01-3.21	14.0	30.2	17.6	11.0	19.0	6.7	1.6	0.36	-1.07	0.359
AC4	3.31 (1.412)	3.21-3.41	9.0	25.2	20.6	17.7	20.0	5.5	2.0	0.15	-1.01	0.453
AC13	3.42 (1.437)	3.33-3.52	8.8	21.5	21.5	17.4	21.1	7.3	2.3	0.07	-1.01	0.453
HE10	3.07 (1.464)	2.97-3.17	13.4	29.5	20.7	12.5	17.1	5.7	1.2	0.38	-0.94	0.446
HE21	3.28 (1.451)	3.18-3.37	9.4	27.8	19.0	17.3	17.6	7.2	1.7	0.24	-1.00	0.400
ST6	2.96 (1.465)	2.86-3.06	16.2	29.4	19.1	13.4	13.7	5.8	2.4	0.46	-0.80	0.415
ST15	4.12 (1.473)	4.02-4.22	4.9	11.7	18.3	14.7	28.4	20.1	1.9	-0.42	-0.86	0.251

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.169, respectively.

Table A569 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Spain (first half-sample: n = 831)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Self-	variance
	transcendence	change	enhancement	
SD1	0.052	0.569	-0.091	0.672
SD11	0.227	0.501	0.074	0.612
UN3	0.563	0.214	-0.142	0.611
UN8	0.575	0.220	-0.164	0.594
UN19	0.466	0.229	-0.008	0.680
BE12	0.598	0.224	-0.082	0.552
BE18	0.604	0.076	0.018	0.599
TR9	0.647	-0.179	-0.012	0.610
CO16	0.551	-0.242	0.190	0.629
SEC5	0.481	-0.076	0.283	0.636
SEC14	0.497	-0.173	0.232	0.665
PO17	0.226	-0.155	0.554	0.600
AC4	-0.042	0.194	0.648	0.514
AC13	-0.144	0.317	0.638	0.470
HE10	0.004	0.659	0.121	0.520
HE21	-0.082	0.624	0.123	0.591
ST6	-0.032	0.689	0.052	0.521
Factors	Correl	ations between fa	ctors	
Self-transcendence	_			
Openness to change	0.250	_		
Self-enhancement	0.267	0.181	_	

Table A570 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Spain (first half-sample: n = 831)

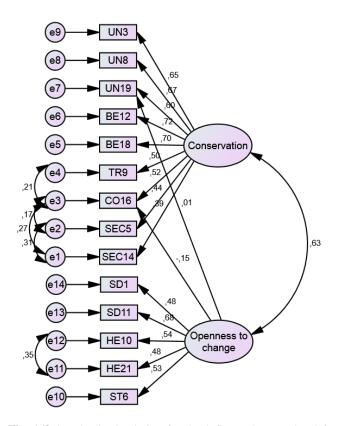
		Subscale	
	Self- transcendence	Openness to change	Self- enhancement
Number of items	9	5	3
Mean (standard error)	2.19 (0.024)	2.86 (0.034)	3.28 (0.039)
95% Confidence interval	2.14-2.24	2.79-2.92	3.20-3.36
Standard deviation	0.704	0.459	1.131
Skewness (standard error)	0.940 (0.085)	0.459 (0.085)	0.182 (0.085)
Kurtosis (standard error)	1.556 (0.169)	-0.163 (0.169)	-0.613 (0.169)
Cronbach's alpha reliability coeff.	0.807	0.766	0.668
Split-half reliability coefficient	0.690	0.745	0.534
Average inter-item correlations	0.323	0.394	0.404
Minimum-maximum correlations	0.177-0.435	0.311-0.542	0.308-0.505
Range of correlations	0.258	0.231	0.197
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.239	_	
Self-enhancement	0.253	0.282	_

Table A571 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Spain (first half-sample: n = 831)

	Principal axis factor		
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
SD1	-0.080	0.547	0.724
SD11	0.169	0.534	0.624
UN3	0.419	0.178	0.741
UN8	0.416	0.179	0.744
UN19	0.398	0.230	0.726
BE12	0.482	0.205	0.657
BE18	0.564	0.084	0.642
TR9	0.625	-0.181	0.654
CO16	0.660	-0.201	0.615
SEC5	0.610	-0.004	0.630
SEC14	0.618	-0.119	0.654
PO17	0.451	0.009	0.794
AC4	0.221	0.346	0.779
AC13	0.120	0.449	0.747
HE10	-0.046	0.717	0.507
HE21	-0.120	0.679	0.581
ST6	-0.113	0.716	0.530
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.344	_	

Table A572 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2004, Spain (first half-sample: n = 831)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	-0.038	0.564	0.696
SD11	0.171	0.539	0.614
UN3	0.486	0.194	0.658
UN8	0.487	0.198	0.653
UN19	0.436	0.228	0.686
BE12	0.543	0.216	0.574
BE18	0.591	0.082	0.609
TR9	0.646	-0.176	0.634
CO16	0.646	-0.228	0.637
SEC5	0.580	-0.048	0.682
SEC14	0.606	-0.158	0.678
HE10	-0.053	0.725	0.499
HE21	-0.114	0.668	0.596
ST6	-0.086	0.699	0.548
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.347	_	


Table A573 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Spain (second half-sample: n = 831)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.84	.069	.865	.889	.857	.068 (.062074)
2a	2 first-order correlated factors- without cross-loadings	4.61	.063	.864	.890	.866	.066 (.060072)
2b	2 first-order correlated factors- with cross-loadings	4.68	.063	.865	.890	.863	.067 (.061072)
2c	2 first-order correlated factors (14 items)-without cross-						
2d	loadings 2 first-order correlated factors	2.91	.046	.933	.955	.942	.048 (.040056)
	(14 items)-with cross-loadings	2.88	.043	.935	.956	.943	.048 (.040055)
3a	3 first-order correlated factors- without cross-loadings	4.01	.058	.883	.909	.888	.060 (.054066)
3b	3 first-order correlated factors- with cross-loadings	3.46	.046	.907	.932	.909	.054 (.048061)
4	2 first-order correlated factors						, , ,
	of unified values	8.13	.075	.846	.861	.795	.093 (.079106)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

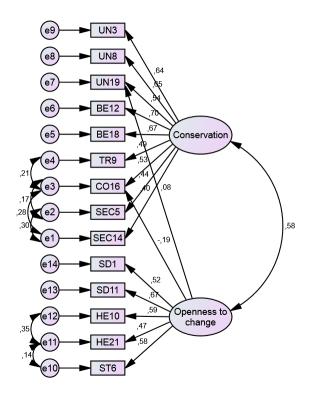

b Lower values indicate better model fit

Fig. 169 Standardized solution for the 2 first-order correlated factors (model 2d-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Spain (second half-sample: n = 831)

Table A574 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Spain (N = 1,663)

	Sul	bscale
	Conservation	Openness to change
Number of items	9	5
Mean (standard error)	2.18 (0.017)	2.84 (0.023)
95% Confidence interval	2.14-2.21	2.80-2.89
Standard deviation	0.711	0.951
Skewness (standard error)	0.875 (0.060)	0.413 (0.060)
Kurtosis (standard error)	1.116 (0.120)	-0.150 (0.120)
Cronbach's alpha reliability coeff.	0.815	0.741
Split-half reliability coefficient	0.704	0.733
Average inter-item correlations	0.334	0.362
Minimum-maximum correlations	0.207-0.489	0.260-0.530
Range of correlations	0.282	0.270
	Average inter-	item correlations
	between	n subscales
Conservation	_	
Openness to change	0.247	_

Fig. 170 Standardized solution for the 2 first-order correlated factors (model 2d-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Spain (N = 1,663)

Table A575 Item analysis of Schwartz scale values of the European Social Survey, 2006: Spain (first half-sample: n = 938)

		Frequency percent of response categories										
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.50 (1.169)	2.43-2.58	16.4	42.3	22.5	8.0	7.5	1.5	1.8	0.93	0.45	0.363
SD11	2.04 (0.913)	1.99-2.10	27.6	48.5	15.6	4.9	1.9	0.2	1.3	1.08	1.58	0.509
UN3	1.82 (0.830)	1.77-1.87	38.1	46.8	10.4	2.9	1.0	0.2	0.6	1.28	2.64	0.377
UN8	2.10 (0.926)	2.04-2.16	24.6	49.8	17.4	4.3	2.9	0.1	1.0	1.07	1.52	0.493
UN19	1.85 (0.831)	1.80-1.91	35.9	47.3	11.1	3.5	0.7	0.2	1.2	1.18	2.25	0.465
BE12	1.90 (0.821)	1.84-1.95	33.0	48.7	13.4	3.4	0.5	0.2	0.6	1.03	1.83	0.432
BE18	1.77 (0.725)	1.73-1.82	36.8	51.1	8.4	2.5	0.1	0.1	1.1	1.00	2.03	0.418
TR9	2.31 (1.041)	2.24-2.38	20.6	45.4	18.7	10.1	4.1	0.1	1.1	0.82	0.24	0.293
TR20	2.64 (1.338)	2.55-2.73	20.1	35.5	18.6	12.4	9.4	2.9	1.2	0.70	-0.33	0.218
CO7	3.04 (1.352)	2.96-3.13	11.4	28.8	24.1	17.0	13.0	4.4	1.4	0.38	-0.68	0.208
CO16	2.29 (1.040)	2.22-2.35	21.1	45.5	19.8	8.0	4.1	0.4	1.1	0.93	0.72	0.372
SEC5	2.02 (0.983)	1.96-2.08	31.1	46.4	14.1	4.6	2.3	0.7	0.7	1.31	2.26	0.389
SEC14	1.99 (0.965)	1.93-2.05	31.7	47.0	11.9	3.9	3.0	0.4	2.0	1.37	2.37	0.350
PO2	4.20 (1.206)	4.12-4.28	2.9	7.9	15.5	21.3	43.1	8.3	1.1	-0.77	-0.04	0.196
PO17	3.19 (1.367)	3.10-3.28	9.7	27.5	21.0	19.1	17.6	3.8	1.3	0.20	-0.95	0.412
AC4	3.34 (1.361)	3.26-3.43	7.7	24.2	21.5	22.4	17.4	5.5	1.3	0.13	-0.89	0.466
AC13	3.49 (1.311)	3.41-3.57	7.1	17.9	23.6	22.4	24.7	3.1	1.2	-0.16	-0.90	0.564
HE10	2.95 (1.331)	2.87-3.04	12.6	31.8	21.4	16.8	14.1	2.5	0.9	0.37	-0.80	0.497
HE21	3.04 (1.346)	2.96-3.13	11.6	28.7	22.8	19.7	11.5	4.5	1.2	0.36	-0.67	0.484
ST6	3.00 (1.359)	2.91-3.09	12.5	30.2	22.6	15.9	14.7	3.3	0.9	0.37	-0.80	0.482
ST15	4.06 (1.381)	3.97-4.15	5.3	11.5	14.5	19.6	36.7	11.4	1.0	-0.60	-0.56	0.346

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.160, respectively.

Table A576 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Spain (first half-sample: n = 938)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	transcendence	enhancement	
SD1	0.388	0.147	0.047	0.785
SD11	0.466	0.312	0.022	0.605
UN3	0.150	0.633	-0.179	0.578
UN8	0.290	0.569	-0.102	0.552
UN19	0.155	0.583	-0.035	0.606
BE12	0.010	0.663	-0.019	0.564
BE18	0.157	0.606	-0.123	0.600
CO16	-0.246	0.528	0.241	0.622
SEC5	-0.277	0.563	0.310	0.529
SEC14	-0.183	0.483	0.212	0.691
PO17	0.108	0.052	0.468	0.723
AC4	0.261	-0.072	0.599	0.521
AC13	0.407	-0.064	0.587	0.395
HE10	0.668	-0.005	0.165	0.472
HE21	0.724	0.013	0.045	0.452
ST6	0.636	0.044	0.083	0.544
ST15	0.667	-0.163	0.082	0.553
Factors	Corre	lations between fa	ectors	
Openness to change	_			
Self-transcendence	0.240	_		
Self-enhancement	0.260	0.289	_	

Table A577 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Spain (first half-sample: n = 938)

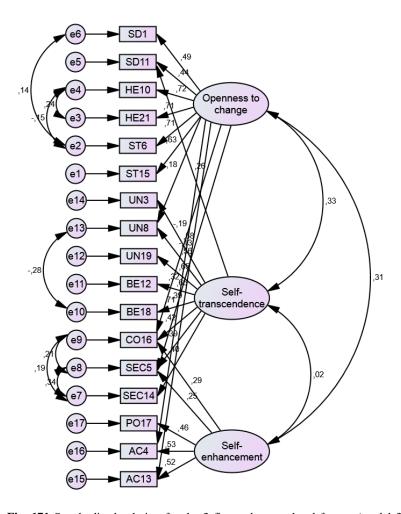
		Subscale	
	Openness to	Self-	Self-
	change	transcendence	enhancement
Number of items	6	8	3
Mean (standard error)	2.93 (0.029)	1.97 (0.019)	3.34 (0.035)
95% Confidence interval	2.88-2.99	1.93-2.00	3.27-3.41
Standard deviation	0.889	0.579	1.058
Skewness (standard error)	0.358 (0.080)	0.722 (0.080)	0.063 (0.080)
Kurtosis (standard error)	0.06 5(0.160)	1.558 (0.160)	-0.572 (0.160)
Cronbach's alpha reliability coeff.	0.798	0.801	0.691
Split-half reliability coefficient	0.824	0.808	0.513
Average inter-item correlations	0.396	0.343	0.428
Minimum-maximum correlations	0.248-0.620	0.191-0.505	0.353-0.576
Range of correlations	0.372	0.314	0.223
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.246	_	
Self-enhancement	0.346	0.259	_

Table A578 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Spain (first half-sample: n = 938)

	Principal axis factor a		
Variables		Unique	
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.411	0.093	0.797
SD11	0.482	0.227	0.644
UN3	0.083	0.499	0.717
UN8	0.254	0.443	0.664
UN19	0.148	0.516	0.662
BE12	0.011	0.624	0.606
BE18	0.112	0.502	0.698
CO16	-0.134	0.639	0.630
SEC5	-0.132	0.697	0.557
SEC14	-0.085	0.578	0.692
PO17	0.312	0.191	0.827
AC4	0.499	0.100	0.708
AC13	0.641	0.084	0.546
HE10	0.748	-0.060	0.466
HE21	0.740	-0.089	0.488
ST6	0.674	-0.033	0.559
ST15	0.707	-0.231	0.555
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.331	_	

Table A579 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-14 items): European Social Survey 2006, Spain (first half-sample: n = 938)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD1	0.124	0.397	0.794
SD11	0.256	0.485	0.616
UN3	0.551	0.104	0.647
UN8	0.495	0.268	0.594
UN19	0.553	0.149	0.618
BE12	0.651	0.008	0.573
BE18	0.547	0.129	0.637
CO16	0.612	-0.175	0.666
SEC5	0.666	-0.183	0.605
SEC14	0.566	-0.118	0.702
HE10	-0.044	0.734	0.480
HE21	-0.065	0.775	0.429
ST6	-0.001	0.677	0.542
ST15	-0.207	0.709	0.553
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.335	_	


Table A580 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2006, Spain (second half-sample: n = 938)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.08	.068	.900	.917	.874	.066 (.060072)
2a	2 first-order correlated factors- without cross-loadings	4.60	.064	.891	.912	.889	.062 (.057068)
2b	2 first-order correlated factors- with cross-loadings	3.56	.050	.918	.939	.921	.052 (.047058)
2c	2 first-order correlated factors (14 items)-without cross-						
	loadings	4.82	.067	.911	.928	.903	.064 (.057071)
2d	2 first-order correlated factors (14 items)-with cross-loadings	3.67	.055	.934	.951	.932	.053 (.046061)
3a	3 first-order correlated factors- without cross-loadings	4.68	.064	.888	.909	.887	.063 (.057068)
3b	3 first-order correlated factors-	1.00	.001	.000	.,,,,	.007	.005 (.057 .000)
4	with cross-loadings	3.45	.048	.923	.944	.925	.051 (.045057)
4	2 first-order correlated factors of unified values	4.48	.054	.929	.944	.917	.061 (.048074)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

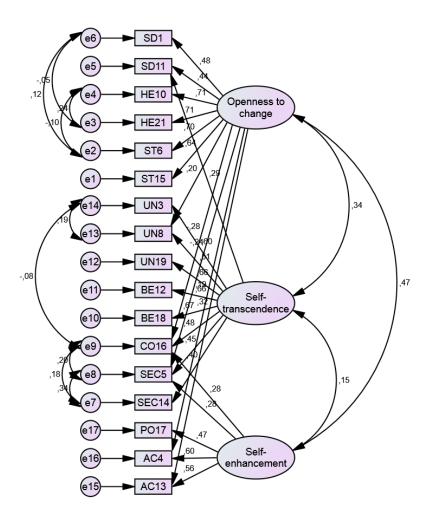

b Lower values indicate better model fit

Fig. 171 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Spain (second half-sample: n = 938)

Table A581 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Spain (N = 1,876)

		Subscale	
	Openness to change	Self- transcendence	Self- enhancement
Number of items	6	8	3
Mean (standard error)	2.98 (0.021)	1.96 (0.013)	3.37 (0.024)
95% Confidence interval	2.94-3.02	1.94-1.99	3.32-3.42
Standard deviation	0.892	0.571	1.037
Skewness (standard error)	0.354 (0.057)	0.620 (0.057)	0.067 (0.057)
Kurtosis (standard error)	-0.006 (0.113)	0.982 (0.113)	-0.538 (0.113)
Cronbach's alpha reliability coeff.	0.802	0.788	0.659
Split-half reliability coefficient	0.828	0.787	0.483
Average inter-item correlations	0.402	0.327	0.395
Minimum-maximum correlations	0.273-0.623	0.189-0.464	0.314-0.546
Range of correlations	0.351	0.275	0.232
	Average inter-i	tem correlations be	tween subscales
Openness to change	_		
Self-transcendence	0.237	_	
Self-enhancement	0.335	0.238	_

Fig. 172 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Spain (N = 1,876)

Table A582 Item analysis of Schwartz scale values of the European Social Survey, 2008: Spain (first half-sample: n = 1,288)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.58 (1.239)	2.52-2.65	19.3	34.6	25.4	10.1	7.5	2.1	1.0	0.72	0.02	0.406
SD11	2.10 (1.079)	2.04-2.16	31.7	41.3	17.1	5.0	3.5	1.1	0.4	1.22	1.58	0.424
UN3	1.72 (0.750)	1.67-1.76	42.2	46.4	9.0	1.3	0.3	0.3	0.5	1.33	3.75	0.239
UN8	2.00 (0.868)	1.96-2.05	30.2	44.9	19.3	4.0	0.9	0.1	0.5	0.78	0.69	0.433
UN19	2.01 (0.898)	1.96-2.06	30.1	46.8	15.0	6.4	0.9	0.1	0.6	0.89	0.73	0.292
BE12	1.74 (0.754)	1.69-1.78	42.0	44.9	10.6	1.9	0.2	0.1	0.2	0.99	1.45	0.316
BE18	1.69 (0.762)	1.65-1.73	45.8	42.1	9.2	2.4	0.3	-	0.2	1.08	1.28	0.338
TR9	2.23 (1.082)	2.17-2.29	27.2	40.9	17.1	10.7	3.3	0.5	0.5	0.83	0.18	0.066
TR20	2.56 (1.328)	2.49-2.69	23.0	34.1	19.6	12.3	7.8	2.9	0.3	0.74	-0.20	0.019
CO7	2.67 (1.218)	2.61-2.74	15.6	34.9	26.7	11.8	7.4	2.3	1.3	0.67	0.01	0.181
CO16	2.15 (0.983)	2.10-2.20	25.0	47.4	18.0	6.1	2.6	0.5	0.4	1.05	1.32	0.192
SEC5	1.91 (0.958)	1.86-1.96	37.6	43.0	12.1	4.4	2.1	0.4	0.4	1.32	2.08	0.261
SEC14	1.99 (0.972)	1.94-2.04	33.3	43.4	15.9	3.0	2.6	0.6	1.2	1.30	2.29	0.318
PO2	4.23 (1.225)	4.16-4.29	2.0	8.8	16.5	20.7	40.1	11.3	0.5	-0.62	-0.34	0.305
PO17	3.31 (1.458)	3.23-3.39	12.0	22.4	18.7	21.4	18.6	6.2	0.7	0.06	-1.03	0.326
AC4	3.38 (1.403)	3.30-3.45	8.7	21.6	24.2	20.8	16.8	7.4	0.5	0.13	-0.87	0.422
AC13	3.67 (1.346)	3.60-3.74	5.3	17.9	21.0	21.4	27.7	6.0	0.7	-0.20	-0.94	0.470
HE10	3.11 (1.406)	3.03-3.18	12.3	27.8	21.7	16.5	17.5	3.9	0.2	0.26	-0.97	0.497
HE21	3.02 (1.417)	2.94-3.10	15.0	26.2	23.0	19.1	10.8	5.8	0.2	0.37	-0.71	0.479
ST6	2.92 (1.358)	2.85-3.00	13.7	30.4	24.8	14.8	11.2	4.4	0.7	0.50	-0.54	0.457
ST15	4.05 (1.392)	3.97-4.12	5.2	12.1	15.5	18.4	37.1	11.5	0.2	-0.56	-0.65	0.394

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.068 and 0.136, respectively.

Table A583 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Spain (first half-sample: n = 1,288)

	Pı	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Hedonism	Self-	Openness to	Self-	variance
		transcendence	change	enhancement	
SD1	-0.056	0.140	0.630	-0.019	0.630
SD11	0.280	0.202	0.135	0.149	0.710
UN8	0.053	0.577	0.139	0.012	0.612
BE12	-0.016	0.690	0.055	-0.062	0.518
BE18	0.043	0.593	0.048	-0.027	0.630
SEC14	-0.032	0.416	-0.106	0.238	0.799
PO2	0.179	-0.181	0.130	0.333	0.691
PO17	0.055	0.138	-0.281	0.669	0.648
AC4	-0.217	0.010	0.387	0.544	0.491
AC13	0.114	-0.053	0.152	0.582	0.450
HE10	0.830	0.019	-0.033	0.060	0.296
HE21	0.831	0.015	0.022	-0.048	0.312
ST6	0.204	0.036	0.665	-0.142	0.435
ST15	0.281	-0.143	0.476	0.028	0.498
Factors		Correlations be	etween factors		
Hedonism	_				
Self-transcendence	0.170	_			
Openness to change	0.663	0.069	_		
Self-enhancement	0.430	-0.007	0.541	_	

Table A584 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Spain (first half-sample: n = 1,288)

		Subs	scale	
	Hedonism	Self-	Openness to	Self-
		transcendence	change	enhancement
Number of items	3	4	3	4
Mean (standard error)	2.74 (0.030)	1.85 (0.017)	3.19 (0.029)	3.64 (0.027)
95% Confidence interval	2.68-2.80	1.82-1.89	3.13-3.24	3.59-3.70
Standard deviation	1.072	0.593	1.051	0.971
Skewness (standard error)	0.511 (0.068)	0.729 (0.068)	0.153 (0.068)	0.126 (0.068)
Kurtosis (standard error)	-0.209 (0.136)	0.807 (0.136)	-0.332 (0.136)	-0.548 (0.136)
Cronbach's alpha reliability coeff.	0.771	0.659	0.698	0.679
Split-half reliability coefficient	0.762	0.672	0.643	0.695
Average inter-item correlations	0.496	0.339	0.434	0.349
Minimum-maximum correlations	0.381-0.695	0.223-0.456	0.351-0.525	0.196-0.508
Range of correlations	0.752	0.233	0.174	0.312
	Averag	ge inter-item corre	lations between su	ıbscales
Hedonism	_			
Self-transcendence	0.247	_		
Openness to change	0.421	0.207	_	
Self-enhancement	0.315	0.169	0.309	

Table A585 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, Spain (first half-sample: n = 1,288)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	transcendence	enhancement	
SD1	0.413	0.061	0.121	0.746
SD11	0.383	0.211	0.132	0.706
UN8	0.140	0.560	0.030	0.632
BE12	0.004	0.673	-0.054	0.543
BE18	0.063	0.587	-0.031	0.639
SEC14	-0.148	0.443	0.227	0.791
PO2	0.268	-0.162	0.350	0.693
PO17	-0.160	0.179	0.555	0.742
AC4	0.053	-0.012	0.654	0.532
AC13	0.192	-0.027	0.631	0.434
HE10	0.783	0.076	-0.042	0.394
HE21	0.844	0.062	-0.145	0.377
ST6	0.699	-0.022	-0.016	0.529
ST15	0.664	-0.174	0.086	0.502
Factors	Corre	lations between fa	ctors	
Openness to change	_			
Self-transcendence	0.187	_		
Self-enhancement	0.549	0.005	_	

Table A586 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Spain (first half-sample: n = 1,288)

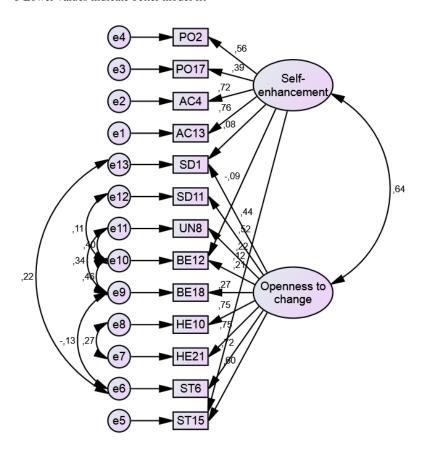

Variables	Principal axis facto	Unique	
variables	Factor I Self-enhancement	Factor II Openness to change	Unique Variance
SD1	0.231	0.320	0.748
SD11	0.169	0.386	0.737
UN8	-0.082	0.359	0.902
BE12	-0.231	0.324	0.939
BE18	-0.178	0.334	0.934
PO2	0.517	0.022	0.718
PO17	0.509	-0.191	0.830
AC4	0.819	-0.216	0.512
AC13	0.806	-0.081	0.428
HE10	0.082	0.731	0.381
HE21	-0.028	0.818	0.360
ST6	0.154	0.565	0.544
ST15	0.307	0.421	0.562
	Correlations be	etween factors	
Self-enhancement	_		
Openness to change	0.649	_	

Table A587 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, Spain (second half-sample: n = 1,288)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.48	.043	.938	.948	.921	.059 (.053065)
2a	2 first-order correlated factors (13 items)-without cross-						
	loadings	5.27	.045	.940	.951	.933	.058 (.051064)
2b	2 first-order correlated factors (13 items)-with cross-loadings	5.28	.043	.943	.953	.933	.058 (.051064)
3a	3 first-order correlated factors - without cross-loadings	5.51	.048	.927	.939	.921	.059 (.053065)
3b	3 first-order correlated factors-					.,	,
4a	with cross-loadings 4 first-order correlated factors-	5.51	.049	.929	.941	.921	.059 (.053065)
та	without cross-loadings	6.07	.049	.918	.930	.911	.063 (.057069)
4b	4 first-order correlated factors- with cross-loadings	5.59	.048	.929	.941	.919	.060 (.054066)
5	2 first-order correlated factors						,
	of unified values	10.11	.072	.885	.895	.845	.084 (.074095)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

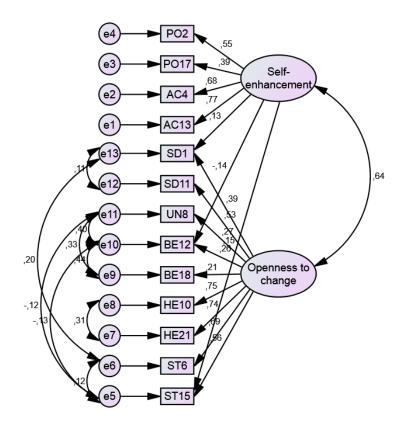


Fig. 173 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Spain (second half-sample: n = 1,288)

a Higher values indicate better model fit

Table A588 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Spain (N = 2.576)

	Sub	scale
	Self-enhancement	Openness to change
Number of items	4	9
Mean (standard error)	3.65 (0.019)	2.60 (0.014)
95% Confidence interval	3.62-3.69	2.57-2.63
Standard deviation	0.970	0.728
Skewness (standard error)	0.065 (0.048)	0.245 (0.048)
Kurtosis (standard error)	-0.517 (0.096)	-0.300 (0.096)
Cronbach's alpha reliability coeff.	0.686	0.794
Split-half reliability coefficient	0.696	0.613
Average inter-item correlations	0.357	0.286
Minimum-maximum correlations	0.207-0.526	-0.021-0.687
Range of correlations	0.320	0.708
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Openness to change	0.244	_

Fig. 174 Standardized solution for the 2 first-order correlated factors (model 2b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Spain (N = 2,576)

Table A589 Item analysis of Schwartz scale values of the European Social Survey, 2010: Spain (first half-sample: n = 942)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.41 (1.152)	2.33-2.48	21.7	38.6	22.6	9.6	6.3	1.0	0.3	0.83	0.31	0.310
SD11	2.13 (1.042)	2.07-2.20	30.9	40.0	17.7	6.7	3.9	0.5	0.2	1.04	1.02	0.281
UN3	1.65 (0.794)	1.60-1.70	51.7	38.5	7.3	1.0	1.2	0.2	0.1	1.62	4.15	0.162
UN8	2.10 (0.935)	2.04-2.16	27.1	48.3	16.8	5.3	2.1	0.3	0.1	0.86	0.84	0.282
UN19	1.93 (0.904)	1.87-1.99	36.3	41.7	14.9	5.2	1.6	0.1	0.2	1.00	1.12	0.281
BE12	1.75 (0.773)	1.70-1.80	43.7	43.3	10.0	2.4	0.2	0.3	-	1.38	4.19	0.274
BE18	1.73 (0.780)	1.68-1.78	43.4	43.6	9.4	2.5	0.6	0.1	0.2	1.28	2.68	0.321
TR9	2.28 (1.062)	2.21-2.34	25.4	41.6	19.3	9.1	3.9	0.4	0.2	0.78	0.19	0.070
TR20	2.75 (1.362)	2.66-2.84	20.7	32.3	20.3	12.4	11.0	3.3	-	0.57	-0.52	0.095
CO7	3.01 (1.269)	2.93-3.09	9.8	30.4	24.7	16.3	14.0	3.6	1.2	0.44	-0.59	0.223
CO16	2.34 (1.047)	2.27-2.41	22.3	44.3	21.3	7.4	4.0	0.3	0.3	0.73	0.21	0.257
SEC5	2.09 (1.041)	2.02-2.16	31.8	44.7	14.4	4.5	3.6	0.6	0.3	1.19	1.37	0.288
SEC14	1.99 (1.015)	1.92-2.05	34.5	43.2	13.6	3.6	3.3	0.6	1.2	1.41	2.34	0.252
PO2	4.18 (1.204)	4.10-4.25	2.7	6.6	17.1	20.0	46.1	7.2	0.4	-0.80	-0.04	0.205
PO17	3.55 (1.362)	3.47-3.64	7.1	18.6	20.6	25.8	22.2	5.5	0.2	-0.13	-0.90	0.350
AC4	3.42 (1.314)	3.34-3.50	6.8	19.1	27.3	21.8	20.3	4.6	0.2	0.00	-0.81	0.414
AC13	3.45 (1.307)	3.36-3.53	6.3	21.4	23.0	23.0	20.6	5.2	0.4	-0.04	-0.86	0.464
HE10	3.08 (1.310)	3.00-3.16	11.0	25.6	25.2	19.2	17.1	1.9	-	0.19	-0.94	0.430
HE21	3.06 (1.317)	2.98-3.15	13.0	28.1	25.9	17.4	13.1	2.5	-	0.35	-0.68	0.381
ST6	2.87 (1.277)	2.79-2.95	15.1	30.0	24.6	13.6	13.5	3.2	-	0.45	-0.58	0.431
ST15	3.97 (1.360)	3.89-4.06	4.4	13.6	17.3	18.8	36.8	9.0	0.1	-0.46	-0.75	0.330

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.159, respectively.

Table A590 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Spain (first half-sample: n = 942)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Self-enhancement	
SD1	0.343	0.045	0. 864
PO17	-0.025	0.491	0.772
AC4	-0.021	0.737	0.473
AC13	0.066	0.762	0.360
HE10	0.692	0.023	0.504
HE21	0.751	-0.073	0.489
ST6	0.664	-0.013	0.569
ST15	0.636	0.061	0.550
	Correlations be	tween factors	
Openness to change	_		
Self-enhancement	0.536	_	

Table A591 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Spain (first half-sample: n = 942)

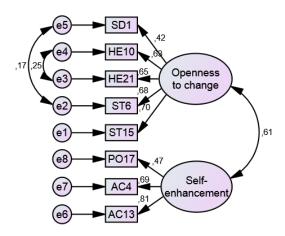

	Subscale			
	Openness to change	Self-enhancement		
Number of items	5	3		
Mean (standard error)	3.08 (0.030)	3.47 (0.034)		
95% Confidence interval	3.02-3.14	3.41-3.54		
Standard deviation	0.918	1.047		
Skewness (standard error)	0.243 (0.080)	-0.002 (0.080)		
Kurtosis (standard error)	-0.120 (0.159)	-0.469 (0.159)		
Cronbach's alpha reliability coeff.	0.760	0.696		
Split-half reliability coefficient	0.754	0.676		
Average inter-item correlations	0.383	0.435		
Minimum-maximum correlations	0.216-0.561	0.347-0.575		
Range of correlations	0.345	0.228		
	Average inter-	-item correlations		
	between	n subscales		
Openness to change	_			
Self-enhancement	0.306			

Table A592 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of three models: European Social Survey 2010, Spain (second half-sample: n = 943)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	2.84	.026	.978	.986	.973	.044 (.029060)
2	2 first-order correlated factors- without cross-loadings 2 first-order correlated factors	3.06	.030	.973	.982	.970	.047 (.033062)
3	of unified values	5.86	.066	.909	.922	.879	.072 (.059085)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

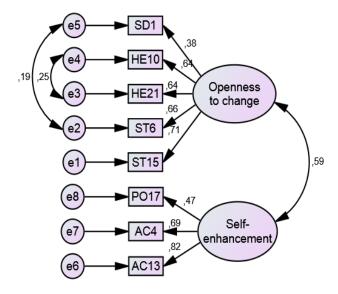


Fig. 175 Standardized solution for the 2 first-order correlated factors (model 2) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Spain (second half-sample: n = 943)

a Higher values indicate better model fit

Table A593 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Spain (N = 1.885)

	Su	bscale
	Openness to change	Self-enhancement
Number of items	5	3
Mean (standard error)	3.09 (0.022)	3.47 (0.024)
95% Confidence interval	3.05-3.13	3.42-3.51
Standard deviation	0.945	1.050
Skewness (standard error)	0.289 (0.056)	0.032 (0.056)
Kurtosis (standard error)	-0.090 (0.113)	-0.493 (0.113)
Cronbach's alpha reliability coeff.	0.766	0.694
Split-half reliability coefficient	0.746	0.673
Average inter-item correlations	0.392	0.432
Minimum-maximum correlations	0.246-0.558	0.350-0.562
Range of correlations	0.312	0.212
	Average inter-	item correlations
	between	n subscales
Openness to change	_	
Self-enhancement	0.311	_

Fig. 176 Standardized solution for the 2 first-order correlated factors (model 2) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Spain (N = 1,885)

Table A594 Item analysis of Schwartz scale values of the European Social Survey, 2012: Spain (first half-sample: n = 944)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.34 (1.205)	2.26-2.42	25.3	39.8	17.7	8.1	7.0	1.2	1.0	0.96	0.35	0.374
SD11	2.08 (1.115)	2.01-2.15	34.6	38.8	14.3	6.3	4.3	0.7	1.0	1.19	1.11	0.425
UN3	1.63 (0.750)	1.58-1.68	48.7	42.7	5.6	1.7	0.4	0.3	0.5	1.66	5.04	0.282
UN8	1.98 (0.913)	1.92-2.03	31.1	48.3	13.1	4.4	1.8	0.3	0.8	1.22	2.08	0.358
UN19	1.89 (0.932)	1.83-1.95	38.1	43.8	10.6	5.5	1.2	0.4	0.4	1.30	2.07	0.357
BE12	1.72 (0.775)	1.67-1.77	43.2	44.8	8.6	2.2	0.4	0.2	0.5	1.31	3.00	0.342
BE18	1.74 (0.805)	1.68-1.79	43.1	44.0	9.1	2.1	0.8	0.2	0.6	1.39	3.17	0.407
TR9	1.92 (0.948)	1.86-1.98	36.7	44.3	11.4	4.4	2.5	0.1	0.5	1.27	1.78	0.218
TR20	2.72 (1.436)	2.63-2.81	21.3	32.7	18.2	11.9	10.6	4.7	0.6	0.66	-0.51	0.246
CO7	3.23 (1.504)	3.13-3.33	12.1	28.0	17.5	13.1	22.1	5.9	1.3	0.20	-1.17	0.278
CO16	2.25 (1.158)	2.18-2.33	27.6	40.7	16.2	8.9	4.9	1.1	0.6	1.01	0.60	0.307
SEC5	2.03 (1.129)	1.96-2.10	37.0	41.0	9.6	5.9	5.4	0.5	0.5	1.32	1.28	0.366
SEC14	2.05 (1.096)	1.98-2.12	34.1	42.7	10.5	6.1	4.3	0.7	1.5	1.32	1.54	0.355
PO2	4.46 (1.239)	4.38-4.54	2.4	7.2	10.7	17.8	43.6	17.4	0.8	-0.91	0.25	0.303
PO17	3.47 (1.491)	3.37-3.56	11.1	20.6	16.7	17.9	26.9	5.9	0.8	-0.11	-1.17	0.362
AC4	3.24 (1.410)	3.15-3.33	10.0	27.9	19.2	16.7	22.0	3.5	0.7	0.14	-1.13	0.462
AC13	3.44 (1.375)	3.35-3.52	7.3	22.9	20.7	19.6	24.3	4.3	1.0	-0.02	-1.06	0.507
HE10	3.02 (1.413)	2.93-3.11	14.5	27.5	21.7	16.7	14.7	4.2	0.5	0.32	-0.87	0.391
HE21	3.02 (1.443)	2.93-3.12	15.1	28.2	19.1	17.9	13.9	5.1	0.7	0.34	-0.89	0.416
ST6	2.88 (1.413)	2.79-2.97	18.0	29.4	18.9	15.4	15.0	2.6	0.6	0.38	-0.93	0.435
ST15	4.05 (1.496)	3.95-4.14	7.0	12.1	14.4	18.9	30.2	16.9	0.5	-0.49	-0.79	0.298

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.159, respectively.

Table A595 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Spain (first half-sample: n = 944)

	Pı	rincipal axis facto	or analysis (factors	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Openness to	Conservation	Self-	Hedonism	variance
	change		enhancement		
SD1	0.593	-0.134	0.176	-0.067	0.660
SD11	0.384	0.089	0.009	0.228	0.688
UN8	0.535	0.188	-0.134	-0.003	0.624
UN19	0.405	0.249	-0.036	-0.055	0.728
BE12	0.462	0.340	-0.175	-0.030	0.580
BE18	0.305	0.400	-0.129	0.123	0.636
CO16	-0.080	0.647	0.122	-0.080	0.587
SEC5	0.001	0.588	0.171	-0.045	0.617
SEC14	0.064	0.536	0.058	-0.001	0.677
PO2	-0.081	0.005	0.488	0.111	0.712
PO17	-0.214	0.337	0.421	0.146	0.668
AC4	0.195	0.042	0.767	-0.174	0.440
AC13	0.073	0.097	0.640	0.093	0.473
HE10	-0.061	-0.004	0.019	0.809	0.370
HE21	0.170	-0.110	0.067	0.607	0.468
ST6	0.548	-0.225	0.214	0.104	0.568
Factors		Correlations b	etween factors		
Openness to change	_				
Conservation	0.329	_			
Self-enhancement	0.176	0.067	_		
Hedonism	0.443	0.028	0.485	_	

Table A596 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Spain (first half-sample: n = 944)

		Sub	scale	
	Openness to change	Conservation	Self- enhancement	Hedonism
Number of items	6	4	4	2
Mean (standard error)	2.15 (0.022)	2.02 (0.024)	3.65 (0.033)	3.02 (0.041)
95% Confidence interval	2.10-2.19	1.97-2.06	3.59-3.71	2.94-3.10
Standard deviation	0.670	0.743	1.003	1.259
Skewness (standard error)	0.829 (0.080)	0.967 (0.080)	-0.097 (0.080)	0.356 (0.080)
Kurtosis (standard error)	1.809 (0.159)	1.418 (0.159)	-0.610 (0.159)	-0.657 (0.159)
Cronbach's alpha reliability coeff.	0.680	0.660	0.701	0.715
Split-half reliability coefficient	0.645	0.638	0.726	0.715
Average inter-item correlations	0.276	0.322	0.371	0.557
Minimum-maximum correlations	0.161-0.401	0.195-0.425	0.258-0.530	0.557-0.557
Range of correlations	0.240	0.230	0.272	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Openness to change	_			
Conservation	0.229	_		
Self-enhancement	0.198	0.222	_	
Hedonism	0.252	0.187	0.321	

Table A597 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2012, Spain (first half-sample: n = 944)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Openness to	Self-	Self-	variance				
	change	transcendence	enhancement					
SD1	0.171	0.442	0.006	0.743				
SD11	0.262	0.449	0.013	0.680				
UN8	0.495	0.303	-0.196	0.621				
UN19	0.471	0.168	-0.077	0.730				
BE12	0.608	0.172	-0.192	0.573				
BE18	0.546	0.175	-0.061	0.644				
CO16	0.550	-0.290	0.250	0.602				
SEC5	0.531	-0.175	0.278	0.622				
SEC14	0.525	-0.103	0.163	0.690				
PO2	-0.137	0.144	0.509	0.700				
PO17	0.112	-0.034	0.541	0.684				
AC4	0.056	0.177	0.575	0.577				
AC13	0.015	0.253	0.629	0.467				
HE10	-0.114	0.561	0.248	0.585				
HE21	-0.101	0.663	0.177	0.501				
ST6	0.041	0.584	0.075	0.623				
Factors	Corre	lations between fa	ctors					
Openness to change	_							
Self-transcendence	0.200	_						
Self-enhancement	0.157	0.214	_					

Table A598 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Spain (first half-sample: n = 944)

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.401	0.058	0.822
SD11	0.409	0.134	0.783
UN8	0.151	0.279	0.874
UN19	0.093	0.341	0.856
BE12	0.031	0.408	0.825
BE18	0.108	0.411	0.793
CO16	-0.166	0.669	0.590
SEC5	-0.041	0.640	0.604
SEC14	-0.035	0.567	0.689
PO2	0.411	0.044	0.818
PO17	0.261	0.288	0.805
AC4	0.471	0.222	0.667
AC13	0.569	0.191	0.575
HE10	0.682	-0.140	0.572
HE21	0.726	-0.169	0.518
ST6	0.571	-0.055	0.689
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.298	_	

Note: Component and factor loadings >.22 are in boldface.


Table A599 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2012, Spain (second half-sample: n = 945)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.95	.062	.856	.880	.929	.065 (.059071)
2a	2 first-order correlated factors - without cross-loadings	4.95	.065	.839	.866	.839	.065 (.059071)
2b	2 first-order correlated factors - with cross-loadings	4.53	_	.856	.883	.847	.061 (.055067)
3a	3 first-order correlated factors - without cross-loadings	4.41	.057	.854	.882	.852	.060 (.054066)
3b	3 first-order correlated factors- with cross-loadings	3.49	.045	.892	.920	.892	.051 (.045058)
4a	4 first-order correlated factors- without cross-loadings	6.07	.075	.795	.820	.771	.075 (.069081)
4b	4 first-order correlated factors- with cross-loadings	5.59	.058	.843	.868	.820	.066 (.060073)
5	2 first-order correlated factors of unified values	10.11	.057	.902	.919	.881	.066 (.054080)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. Model 2b reached iteration limit, so the results are incorrect.

a Higher values indicate better model fit

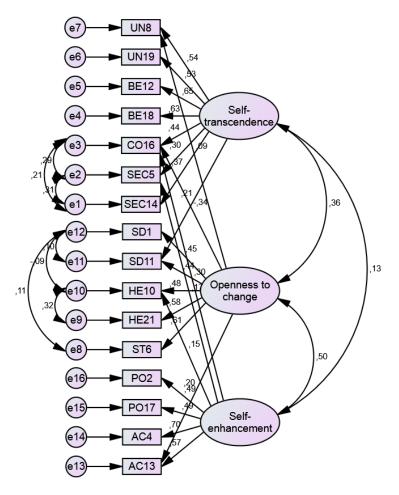

b Lower values indicate better model fit

Fig. 177 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Spain (second half-sample: n = 945)

Table A600 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Spain (N = 1,889)

		Subscale	
	Self- transcendence	Openness to change	Self- enhancement
Number of items	7	5	4
Mean (standard error)	1.94 (0.014)	2.68 (0.021)	3.64 (0.023)
95% Confidence interval	1.92-1.97	2.64-2.72	3.60-3.69
Standard deviation	0.599	0.901	0.986
Skewness (standard error)	0.843 (0.056)	0.512 (0.056)	-0.093 (0.056)
Kurtosis (standard error)	2.003 (0.113)	0.056 (0.113)	-0.582 (0.113)
Cronbach's alpha reliability coeff.	0.714	0.706	0.672
Split-half reliability coefficient	0.702	0.724	0.700
Average inter-item correlations	0.273	0.323	0.339
Minimum-maximum correlations	0.152-0.404	0.177-0.538	0.258-0.494
Range of correlations	0.252	0.362	0.236
	Average inter-it	tem correlations be	etween subscales
Self-transcendence	_		
Openness to change	0.194	_	
Self-enhancement	0.184	0.255	_

Fig. 178 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Spain (N = 1,889)

Table A601 Item analysis of Schwartz scale values of the European Social Survey, 2014: Spain (first half-sample: n = 962)

-				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.37 (1.197)	2.29-2.44	25.3	36.7	20.2	10.1	5.1	1.6	1.1	0.88	0.33	0.316
SD11	2.12 (1.166)	2.05-2.20	34.5	36.4	15.8	6.9	3.1	2.0	1.4	1.24	1.40	0.372
UN3	1.62 (0.831)	1.57-1.68	54.1	33.6	8.0	2.5	1.0	0.1	0.7	1.60	3.12	0.224
UN8	2.05 (0.996)	1.99-2.11	31.6	41.9	16.9	5.3	2.2	0.6	1.5	1.13	1.55	0.331
UN19	1.86 (0.918)	1.81-1.92	41.0	37.5	14.6	4.2	1.4	0.1	1.4	1.10	1.18	0.262
BE12	1.68 (0.789)	1.63-1.73	47.4	40.7	8.4	2.2	0.5	0.2	0.5	1.41	3.12	0.351
BE18	1.74 (0.790)	1.69-1.79	41.9	45.4	8.7	2.5	0.7	0.1	0.6	1.27	2.57	0.392
TR9	1.93 (0.936)	1.87-1.99	36.7	41.3	15.1	4.4	1.4	0.4	0.8	1.16	1.74	0.193
TR20	2.75 (1.466)	2.65-2.84	21.9	31.4	16.3	13.9	9.9	5.4	1.1	0.63	-0.59	0.176
CO7	3.27 (1.474)	3.18-3.36	10.6	26.1	18.6	16.8	16.7	8.0	3.1	0.24	-0.98	0.201
CO16	2.27 (1.173)	2.20-2.35	27.7	38.7	17.6	8.9	4.9	1.2	1.0	0.98	0.54	0.275
SEC5	2.02 (1.122)	1.94-2.09	39.3	35.0	14.7	5.3	4.0	0.9	0.8	1.27	1.36	0.286
SEC14	1.95 (1.124)	1.87-2.02	43.6	31.6	12.5	5.2	3.8	0.9	2.4	1.38	1.60	0.339
PO2	4.42 (1.227)	4.34-4.49	2.3	6.7	12.6	19.9	40.7	16.8	1.0	-0.80	0.10	0.257
PO17	3.53 (1.517)	3.43-3.63	10.8	19.1	18.3	16.8	24.1	8.9	1.9	-0.09	-1.12	0.380
AC4	3.49 (1.433)	3.40-3.58	8.2	20.3	21.7	18.5	22.1	7.7	1.5	0.01	-1.01	0.416
AC13	3.52 (1.448)	3.43-3.61	9.8	18.0	20.5	19.3	23.8	7.1	1.6	-0.12	-1.01	0.538
HE10	3.05 (1.428)	2.96-3.14	14.6	25.1	24.7	14.8	13.8	5.6	1.5	0.36	-0.77	0.436
HE21	3.03 (1.477)	2.94-3.12	16.2	25.3	23.0	15.5	11.7	7.3	1.0	0.41	-0.77	0.426
ST6	3.04 (1.478)	2.95-3.14	17.0	24.5	20.8	15.7	15.8	5.2	0.9	0.29	-0.96	0.455
ST15	4.04 (1.513)	3.95-4.14	7.2	11.7	16.2	16.0	29.9	17.8	1.1	-0.47	-0.85	0.366

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.158, respectively.

Table A602 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Spain (first half-sample: n = 962)

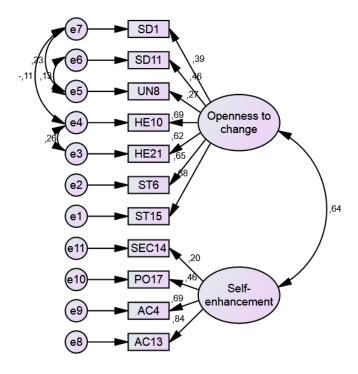
	Principal a	xis factor analysi	s (factors)	
-	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	enhancement	transcendence	
SD1	0.417	0.020	0.060	0.803
SD11	0.405	0.026	0.194	0.752
UN8	0.279	-0.105	0.341	0.792
BE12	0.052	-0.030	0.666	0.544
BE18	0.070	-0.012	0.663	0.539
SEC14	-0.212	0.280	0.457	0.738
PO17	-0.106	0.515	0.130	0.751
AC4	0.097	0.586	-0.039	0.596
AC13	0.157	0.780	-0.056	0.254
HE10	0.646	0.057	-0.002	0.543
HE21	0.751	-0.055	0.016	0.469
ST6	0.645	0.008	0.044	0.565
ST15	0.714	0.042	-0.134	0.483
Factors	Correl	ations between fa	actors	
Openness to change	_			
Self-enhancement	0.502	_		
Self-transcendence	0.214	0.119	_	

Table A603 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Spain (first half-sample: n = 962)

		Subscale	
	Openness to	Self-	Self-
	change	enhancement	transcendence
Number of items	6	3	4
Mean (standard error)	2.94 (0.031)	3.51 (0.037)	1.85 (0.020)
95% Confidence interval	2.88-3.00	3.44-3.59	1.81-1.89
Standard deviation	0.959	1.140	0.626
Skewness (standard error)	0.278 (0.079)	-0.050 (0.079)	0.821 (0.079)
Kurtosis (standard error)	-0.328 (0.158)	-0.638 (0.158)	0.855 (0.158)
Cronbach's alpha reliability coeff.	0.784	0.673	0.589
Split-half reliability coefficient	0.735	0.504	0.554
Average inter-item correlations	0.370	0.409	0.289
Minimum-maximum correlations	0.230-0.568	0.287-0.553	0.109-0.452
Range of correlations	0.338	0.267	0.343
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.305	_	
Self-transcendence	0.228	0.193	_

Table A604 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Spain (first half-sample: n = 962)

	Principal axis factor		
Variables	-	Unique	
	Factor I	Factor II	variance
	Openness to change	Self-enhancement	
SD1	0.441	0.001	0.805
SD11	0.447	0.020	0.789
UN8	0.339	-0.085	0.912
SEC14	-0.127	0.297	0.939
PO17	-0.115	0.546	0.762
AC4	0.057	0.600	0.597
AC13	0.113	0.780	0.276
HE10	0.671	0.016	0.537
HE21	0.788	-0.106	0.466
ST6	0.674	-0.027	0.566
ST15	0.698	-0.002	0.514
	Correlations be	tween factors	
Openness to change	_		
Self-enhancement	0.583	_	
-	0.583	_	


Table A605 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of five models: European Social Survey 2014, Spain (second half-sample: n = 963)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.58	.040	.931	.945	.906	.061 (.053070)
2	2 first-order correlated factors (11 items)-without cross-						
	loadings	5.61	.043	.913	.927	.897	.069 (.060078)
3a	3 first-order correlated factors-	6.61	.058	.872	.889	.853	.076 (.069084)
3b	without cross-loadings 3 first-order correlated factors-	0.01	.036	.072	.009	.033	.070 (.009064)
	with cross-loadings	6.32	.053	.882	.898	.861	.074 (.067082)
4	2 first-order correlated factors of unified values	6.72	.062	.893	.907	.863	.077 (.065090)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

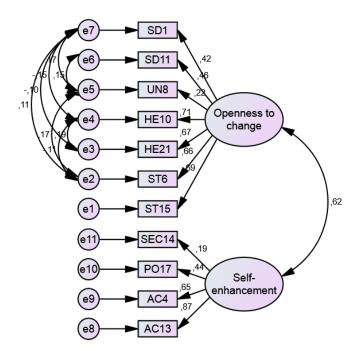

b Lower values indicate better model fit

Fig. 179 Standardized solution for the 2 first-order correlated factors (model 2) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Spain (second half-sample: n = 963)

Table A606 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Spain (N = 1,925)

	Su	bscale
	Openness to change	Self-enhancement
Number of items	7	4
Mean (standard error)	2.81 (0.020)	3.08 (0.022)
95% Confidence interval	2.77-2.85	3.04-3.13
Standard deviation	0.865	0.969
Skewness (standard error)	0.255 (0.056)	0.037 (0.056)
Kurtosis (standard error)	-0.252 (0.112)	-0.488 (0.112)
Cronbach's alpha reliability coeff.	0.769	0.634
Split-half reliability coefficient	0.785	0.549
Average inter-item correlations	0.312	0.289
Minimum-maximum correlations	0.142-0.573	0.122-0.563
Range of correlations	0.431	0.441
	Average inter	-item correlations
	between	n subscales
Openness to change	_	
Self-enhancement	0.239	_

Fig. 180 Standardized solution for the 2 first-order correlated factors (model 2) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Spain (N = 1,925)

Table A607 Item analysis of Schwartz scale values of the European Social Survey, 2002: Sweden (first half-sample: n = 826)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.68 (1.148)	2.60-2.75	16.9	27.8	33.2	15.0	5.7	1.0	0.4	0.36	-0.28	0.307
SD11	2.42 (1.078)	2.35-2.49	20.3	36.7	27.0	10.7	4.0	0.5	0.8	0.62	0.05	0.381
UN3	2.11 (1.002)	2.04-2.18	29.3	42.6	17.7	7.6	1.8	0.5	0.5	0.96	0.89	0.236
UN8	2.69 (1.047)	2.61-2.76	12.5	33.7	30.3	19.1	3.6	0.2	0.6	0.24	-0.50	0.326
UN19	2.51 (1.151)	2.43-2.59	20.0	34.0	24.2	15.1	4.5	0.8	1.3	0.55	-0.25	0.287
BE12	2.58 (1.029)	2.51-2.65	14.2	36.7	29.1	16.0	2.8	0.4	1.0	0.37	-0.28	0.418
BE18	2.10 (0.904)	2.04-2.16	25.4	47.1	17.7	7.9	0.2	0.4	1.3	0.82	0.80	0.439
TR9	3.12 (1.226)	3.03-3.20	7.9	27.6	26.2	22.5	13.9	1.6	0.4	0.18	-0.78	0.143
TR20	3.16 (1.376)	3.07-3.26	12.3	22.2	25.3	20.1	14.6	4.6	0.8	0.18	-0.80	0.182
CO7	3.36 (1.296)	3.27-3.45	6.9	21.5	26.0	22.2	18.9	3.8	0.7	0.06	-0.83	0.290
CO16	3.19 (1.265)	3.19-3.37	6.3	24.7	25.7	22.5	16.5	3.3	1.1	0.15	-0.78	0.327
SEC5	3.08 (1.272)	3.00-3.17	10.7	26.0	24.5	23.1	13.6	1.8	0.4	0.14	-0.83	0.244
SEC14	3.01 (1.262)	2.92-3.09	12.2	25.7	25.3	22.2	11.7	1.7	1.2	0.18	-0.75	0.406
PO2	4.36 (1.130)	4.28-4.43	1.7	4.4	16.1	24.9	39.6	13.0	0.4	-0.65	0.12	0.295
PO17	3.64 (1.193)	3.56-3.72	3.5	13.9	28.1	26.6	22.0	4.4	1.5	-0.12	-0.58	0.405
AC4	3.45 (1.237)	3.37-3.54	5.8	17.3	27.6	26.6	18.4	3.6	0.6	-0.05	-0.65	0.400
AC13	3.82 (1.287)	3.74-3.91	4.2	13.2	21.5	23.4	30.0	6.5	1.1	-0.34	-0.70	0.484
HE10	3.20 (1.251)	3.11-3.28	7.3	24.9	28.2	22.5	13.3	3.4	0.4	0.22	-0.63	0.374
HE21	2.95 (1.244)	2.87-3.04	12.7	26.5	26.4	21.3	10.8	1.5	0.8	0.21	-0.71	0.446
ST6	3.29 (1.265)	3.20-3.37	8.4	21.2	24.3	26.9	16.2	2.4	0.6	-0.03	-0.79	0.423
ST15	4.10 (1.325)	4.01-4.19	2.9	11.1	18.2	21.4	31.0	14.2	1.2	-0.41	-0.67	0.302

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.085 and 0.170, respectively.

Table A608 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Sweden (first half-sample: n = 826)

	Pı	rincipal axis factor	analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Self-	Hedonism	Conservation	variance
	enhancement	transcendence			
SD1	0.452	0.272	-0.134	-0.143	0.701
SD11	0.312	0.268	0.001	0.048	0.776
UN8	0.039	0.569	-0.084	-0.016	0.695
BE12	-0.028	0.679	-0.016	0.157	0.543
BE18	-0.085	0.635	0.080	0.223	0.547
CO16	0.083	0.118	-0.050	0.551	0.679
SEC14	0.061	0.171	0.095	0.483	0.710
PO17	0.486	-0.080	0.021	0.365	0.633
AC4	0.652	-0.115	-0.013	0.219	0.563
AC13	0.842	-0.098	-0.016	0.182	0.308
HE10	0.150	-0.070	0.615	-0.046	0.532
HE21	-0.125	0.003	0.915	0.113	0.266
ST6	0.399	0.282	0.148	-0.231	0.511
ST15	0.436	-0.002	0.288	-0.242	0.530
Factors		Correlations be	tween factors		
Self-enhancement	_				
Self-transcendence	0.313	_			
Hedonism	0.536	0.410	_		
Conservation	0.008	-0.044	-0.051	_	

Table A609 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Sweden (first half-sample: n = 826)

		Sub	scale	
	Self-	Self-	Hedonism	Conservation
	enhancement	transcendence		
Number of items	7	3	2	2
Mean (standard error)	3.34 (0.027)	2.45 (0.027)	3.08 (0.038)	3.14 (0.036)
95% Confidence interval	3.29-3.40	2.40-2.51	3.00-3.15	3.07-3.21
Standard deviation	0.778	0.768	1.101	1.023
Skewness (standard error)	-0.061 (0.085)	0.319 (0.085)	0.198 (0.085)	0.099 (0.085)
Kurtosis (standard error)	-0.365 (0.170)	-0.207 (0.170)	-0.507 (0.170)	-0.521 (0.170)
Cronbach's alpha reliability coeff.	0.756	0.661	0.716	0.475
Split-half reliability coefficient	0.761	0.578	0.716	0.475
Average inter-item correlations	0.303	0.398	0.557	0.312
Minimum-maximum correlations	0.143-0.590	0.331-0.488	0.557-0.557	0.312-0.312
Range of correlations	0.446	0.157	0.000	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Self-enhancement	_			
Self-transcendence	0.234	_		
Hedonism	0.295	0.277	_	
Conservation	0.225	0.237	0.194	_

Table A610 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, Sweden (first half-sample: n = 826)

	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	transcendence	enhancement	
SD1	0.414	0.113	0.008	0.799
SD11	0.301	0.201	0.129	0.792
UN8	0.174	0.465	-0.057	0.740
BE12	0.098	0.630	0.072	0.553
BE18	0.071	0.646	0.114	0.527
CO16	-0.318	0.185	0.583	0.690
SEC14	-0.143	0.250	0.476	0.738
PO17	0.103	-0.066	0.564	0.624
AC4	0.291	-0.151	0.476	0.569
AC13	0.464	-0.156	0.484	0.358
HE10	0.607	0.044	-0.038	0.642
HE21	0.509	0.184	0.012	0.672
ST6	0.691	0.177	-0.144	0.528
ST15	0.765	-0.053	-0.137	0.501
Factors	Corre	lations between fa	ctors	
Openness to change	_			
Self-transcendence	0.156	_		
Self-enhancement	0.458	0.108	_	

Table A611 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Sweden (first half-sample: n = 826)

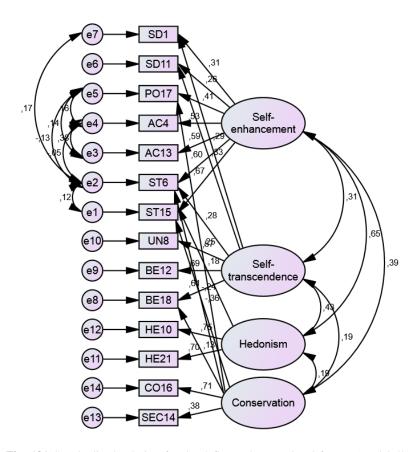

Variables	Principal axis factor	Unique	
	Factor I Openness to change	Factor II Self-enhancement	variance
SD1	0.442	0.009	0.801
SD11	0.350	0.140	0.812
UN8	0.270	-0.017	0.931
BE12	0.235	0.103	0.911
CO16	-0.262	0.594	0.724
SEC14	-0.067	0.473	0.802
PO17	0.086	0.567	0.626
AC4	0.259	0.440	0.633
AC13	0.426	0.436	0.455
HE10	0.623	-0.048	0.637
HE21	0.556	0.014	0.683
ST6	0.737	-0.142	0.535
ST15	0.745	-0.148	0.525
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.466	_	

Table A612 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2002, Sweden (second half-sample: n = 827)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.71	.048	.916	.936	.906	.057 (.049065)
2a	2 first-order correlated factors(13 items)-without cross-						
21	loadings	4.21	.049	.898	.920	.894	.062 (.054070)
2b	2 first-order correlated factors(13 items)-with cross-						
	loadings	4.27	.049	.902	.923	.892	.063 (.055071)
3a	3 first-order correlated factors-						
3b	without cross-loadings 3 first-order correlated factors-	4.27	.054	.890	.913	.887	.063 (.056070)
	with cross-loadings	4.16	.051	.899	.921	.891	.062 (.054070)
4a	4 first-order correlated factors- without cross-loadings	5.15	.058	.879	.899	.857	.071 (.063079)
4b	4 first-order correlated factors- with cross-loadings	2.96	.037	.939	.958	.932	.049 (.040057)
5	2 first-order correlated factors of unified values	8.83	.086	.868	.880	.823	.097 (.084111)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

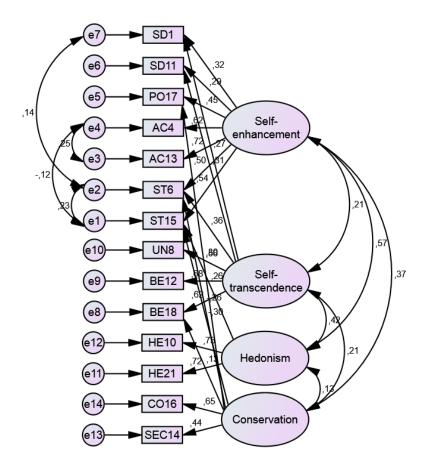


Fig. 181 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Sweden (second half-sample: n = 827)

a Higher values indicate better model fit

Table A613 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Sweden (N = 1,653)

		Sub	scale	
	Self- enhancement	Self- transcendence	Hedonism	Conservation
Number of items	7	3	2	2
Mean (standard error)	3.36 (0.019)	2.46 (0.019)	3.06 (0.027)	3.17 (0.025)
95% Confidence interval	3.32-3.39	2.42-2.49	3.00-3.11	3.12-3.22
Standard deviation	0.779	0.784	1.097	1.035
Skewness (standard error)	-0.080 (0.060)	0.396 (0.060)	0.185 (0.060)	0.100 (0.060)
Kurtosis (standard error)	-0.288 (0.120)	-0.058 (0.120)	-0.529 (0.120)	-0.509 (0.120)
Cronbach's alpha reliability coeff.	0.755	0.662	0.704	0.445
Split-half reliability coefficient	0.756	0.560	0.704	0.445
Average inter-item correlations	0.302	0.398	0.544	0.286
Minimum-maximum correlations	0.148-0.582	0.336-0.461	0.544-0.544	0.286-0.286
Range of correlations	0.434	0.125	0.000	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Self-enhancement	_			
Self-transcendence	0.240	_		
Hedonism	0.296	0.287	_	
Conservation	0.221	0.234	0.190	_

Fig. 182 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Sweden (N = 1,653)

Table A614 Item analysis of Schwartz scale values of the European Social Survey, 2004: Sweden (first half-sample: n = 816)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.68 (1.147)	2.60-2.76	16.3	28.6	32.0	16.2	4.0	1.7	1.2	0.43	-0.04	0.324
SD11	2.47 (1.090)	2.39-2.54	18.9	37.3	26.6	12.3	3.8	0.7	0.5	0.61	0.06	0.368
UN3	2.19 (0.999)	2.12-2.26	24.8	44.2	18.9	8.2	2.3	0.4	1.2	0.89	0.72	0.247
UN8	2.65 (1.087)	2.57-2.72	13.2	36.2	28.4	15.6	4.5	0.9	1.2	0.49	-0.09	0.357
UN19	2.46 (1.056)	2.39-2.53	18.5	37.6	24.3	15.9	2.5	0.2	1.0	0.44	-0.43	0.287
BE12	2.48 (0.994)	2.41-2.55	16.1	37.3	30.4	13.5	2.0	0.2	0.6	0.38	-0.23	0.450
BE18	2.10 (0.868)	2.04-2.16	24.3	48.5	19.1	6.6	0.5	0.1	0.9	0.71	0.50	0.441
TR9	3.05 (1.183)	2.96-3.13	6.9	29.3	30.4	19.5	10.2	2.6	1.2	0.41	-0.36	0.150
TR20	3.13 (1.347)	3.04-3.22	10.7	25.4	26.1	19.6	12.5	5.0	0.7	0.30	-0.66	0.273
CO7	3.34 (1.239)	3.26-3.43	5.9	21.0	27.7	25.4	14.7	4.0	1.3	0.12	-0.60	0.234
CO16	3.13 (1.280)	3.04-3.22	9.1	26.3	25.7	21.2	13.5	3.1	1.1	0.24	-0.70	0.405
SEC5	3.11 (1.257)	3.02-3.20	8.5	27.3	26.2	21.8	12.1	3.1	1.0	0.27	-0.62	0.203
SEC14	3.13 (1.327)	3.04-3.22	10.5	25.6	24.1	21.0	14.2	3.6	1.0	0.21	-0.78	0.380
PO2	4.36 (1.121)	4.28-4.44	1.3	3.9	17.3	24.9	37.1	14.1	1.3	-0.54	-0.06	0.303
PO17	3.54 (1.219)	3.46-3.63	3.2	18.4	28.2	23.9	21.3	4.2	0.9	0.03	-0.77	0.440
AC4	3.43 (1.264)	3.35-3.52	6.4	16.9	29.9	23.2	18.3	4.4	1.0	0.03	-0.64	0.380
AC13	3.75 (1.259)	3.66-3.83	3.7	14.2	24.5	24.1	26.7	5.9	0.9	-0.21	-0.73	0.509
HE10	3.16 (1.215)	3.08-3.24	8.9	20.7	31.4	23.0	12.1	2.5	1.3	0.13	-0.50	0.452
HE21	2.79 (1.188)	2.70-2.87	15.0	28.1	28.6	19.9	6.1	1.5	1.0	0.31	-0.42	0.510
ST6	3.26 (1.259)	3.18-3.35	8.6	20.3	27.1	24.1	16.4	2.3	1.1	0.01	-0.75	0.484
ST15	3.94 (1.322)	3.85-4.03	4.5	11.0	20.6	22.3	31.3	9.6	0.7	-0.40	-0.63	0.384

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.086 and 0.171, respectively.

Table A615 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Sweden (first half-sample: n = 816)

	Pri	ncipal axis facto	or analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Hedonism	Conservation	Openness to	variance
	enhancement			change	
SD1	0.151	-0.094	-0.111	0.682	0.567
SD11	0.136	0.080	0.103	0.311	0.774
UN8	-0.132	-0.061	0.280	0.440	0.699
BE12	-0.139	0.072	0.494	0.280	0.564
BE18	-0.099	0.192	0.475	0.144	0.614
CO16	0.328	-0.185	0.535	-0.101	0.680
SEC14	0.097	0.050	0.453	-0.093	0.786
PO2	0.503	0.251	-0.108	-0.080	0.604
PO17	0.562	0.001	0.231	-0.035	0.620
AC4	0.687	-0.062	-0.018	0.151	0.498
AC13	0.723	0.081	0.105	0.064	0.339
HE10	0.073	0.716	0.016	-0.078	0.483
HE21	-0.047	0.813	0.183	-0.181	0.414
ST6	0.070	0.473	-0.049	0.299	0.491
ST15	0.151	0.580	-0.177	0.157	0.456
Factors		Correlations b	etween factors		
Self-enhancement	_				
Hedonism	0.515	_			
Conservation	0.098	0.286	_		
Openness to change	0.297	0.584	0.333	_	

Table A616 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Sweden (first half-sample: n = 816)

		Sub	scale	
	Self- enhancement	Hedonism	Conservation	Openness to change
Number of items	4	4	4	3
Mean (standard error)	3.77 (0.032)	3.29 (0.034)	2.71 (0.026)	2.60 (0.028)
95% Confidence interval	3.71-3.83	3.22-3.36	2.66-2.76	2.54-2.65
Standard deviation	0.928	0.980	0.749	0.792
Skewness (standard error)	-0.165 (0.086)	-0.024 (0.086)	0.208 (0.086)	0.173 (0.086)
Kurtosis (standard error)	-0.317 (0.171)	-0.380 (0.171)	-0.082 (0.171)	-0.166 (0.171)
Cronbach's alpha reliability coeff.	0.760	0.793	0.569	0.519
Split-half reliability coefficient	0.776	0.838	0.613	0.478
Average inter-item correlations	0.440	0.490	0.268	0.264
Minimum-maximum correlations	0.322-0.618	0.433-0.588	0.185-0.466	0.206-0.344
Range of correlations	0.295	0.155	0.281	0.138
	Averag	ge inter-item corre	lations between su	ibscales
Self-enhancement	_			
Hedonism	0.383	_		
Conservation	0.227	0.256	_	
Openness to change	0.257	0.310	0.208	_

Table A617 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Sweden (first half-sample: n = 816)

	Principal a	xis factor analysi	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	enhancement	transcendence	
SD1	0.396	0.043	0.078	0.796
SD11	0.286	0.101	0.189	0.800
UN8	0.185	-0.150	0.427	0.768
BE12	0.152	-0.116	0.630	0.555
BE18	0.171	-0.052	0.569	0.604
CO16	-0.316	0.405	0.431	0.692
SEC14	-0.098	0.170	0.406	0.809
PO2	0.256	0.485	-0.202	0.607
PO17	-0.016	0.589	0.127	0.614
AC4	0.137	0.618	-0.085	0.536
AC13	0.182	0.702	0.009	0.339
HE10	0.595	0.102	0.041	0.554
HE21	0.541	0.046	0.188	0.575
ST6	0.694	0.000	0.074	0.479
ST15	0.738	0.081	-0.114	0.433
Factors	Correl	ations between fa	actors	
Openness to change	_			
Self-enhancement	0.517	_		
Self-transcendence	0.322	0.224	_	

Table A618 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Sweden (first half-sample: n = 816)

	Principal axis factor		
Variables		Unique	
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.325	0.181	0.810
SD11	0.281	0.250	0.796
UN8	-0.084	0.522	0.760
BE12	-0.116	0.725	0.537
BE18	-0.024	0.644	0.598
CO16	0.092	0.229	0.920
SEC14	0.031	0.329	0.882
PO2	0.710	-0.248	0.591
PO17	0.514	0.018	0.727
AC4	0.693	-0.151	0.590
AC13	0.783	-0.059	0.425
HE10	0.544	0.168	0.594
HE21	0.429	0.311	0.601
ST6	0.510	0.238	0.575
ST15	0.631	0.062	0.563
	Correlations bet	tween factors	
Self-enhancement	_		
Self-transcendence	0.446	_	

Note: Component and factor loadings >.22 are in boldface.

Table A619 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-14 items): European Social Survey 2004, Sweden (first half-sample: n = 816)

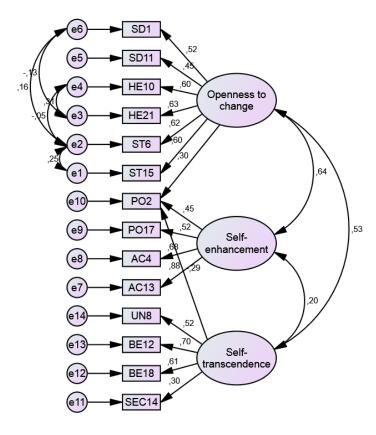

	Principal axis factor analysis (factors)				
	Factor I	Factor II	Factor III	Unique	
Item	Openness to	Self-	Self-	variance	
	change	enhancement	transcendence		
SD1	0.280	0.113	0.152	0.801	
SD11	0.236	0.118	0.207	0.799	
UN8	0.128	-0.121	0.437	0.774	
BE12	-0.001	-0.034	0.713	0.502	
BE18	0.043	0.016	0.628	0.575	
SEC14	-0.113	0.169	0.362	0.860	
PO2	0.279	0.451	-0.226	0.609	
PO17	-0.012	0.544	0.091	0.682	
AC4	-0.013	0.717	-0.023	0.504	
AC13	0.000	0.831	0.075	0.277	
HE10	0.611	0.069	0.033	0.549	
HE21	0.553	0.015	0.174	0.569	
ST6	0.735	-0.049	0.049	0.472	
ST15	0.807	0.015	-0.145	0.413	
Factors	Correl	ations between fa	actors		
Openness to change	_				
Self-enhancement	0.635	_			
Self-transcendence	0.432	0.227	_		

Table A620 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2004, Sweden (second half-sample: n = 816)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.57	.058	.895	.915	.878	.066 (.059073)
2a	2 first-order correlated factors- without cross-loadings	6.06	.065	.851	.871	.827	.079 (.072086)
2b	2 first-order correlated factors- with cross-loadings	4.67	.053	.891	.911	.874	.067 (.060074)
3a	3 first-order correlated factors- without cross-loadings	4.80	.057	.877	.900	.870	.068 (.062075)
3b	3 first-order correlated factors- with cross-loadings	4.35	.050	.893	.915	.885	.064 (.057071)
3c	3 first-order correlated factors (14 items)-with cross-loadings	3.78	.045	.915	.935	.912	.058 (.051066)
4a	4 first-order correlated factors- without cross-loadings	5.90	.067	.851	.872	.832	.078 (.071084)
4b	4 first-order correlated factors- with cross-loadings	4.90	.067	.886	.906	.866	.069 (.062076)
5	2 first-order correlated factors of unified values	7.10	.076	.890	.903	.858	.087 (.073101)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

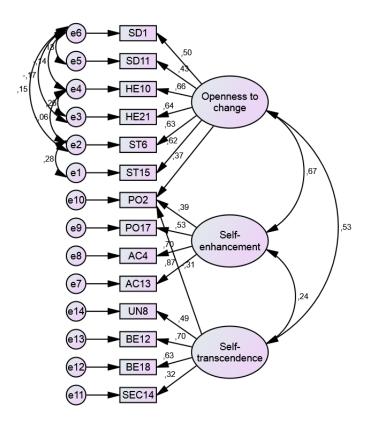


Fig. 183 Standardized solution for the 3 first-order correlated factors (model 3c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Sweden (second half-sample: n = 816)

a Higher values indicate better model fit

Table A621 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Sweden (N = 1,632)

		Subscale	
	Openness to	Self-	Self-
	change	enhancement	transcendence
Number of items	6	4	4
Mean (standard error)	3.07 (0.020)	3.82 (0.023)	2.59 (0.018)
95% Confidence interval	3.03-3.11	3.77-3.86	2.55-2.62
Standard deviation	0.826	0.929	0.718
Skewness (standard error)	0.034 (0.061)	-0.198 (0.061)	0.333 (0.061)
Kurtosis (standard error)	-0.227 (0.121)	-0.291 (0.121)	0.340 (0.121)
Cronbach's alpha reliability coeff.	0.769	0.759	0.578
Split-half reliability coefficient	0.748	0.777	0.564
Average inter-item correlations	0.353	0.439	0.280
Minimum-maximum correlations	0.211-0.574	0.324-0.612	0.117-0.443
Range of correlations	0.362	0.288	0.326
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.322	_	
Self-transcendence	0.246	0.199	_

Fig. 184 Standardized solution for the 3 first-order correlated factors (model 3c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Sweden (N = 1,632)

Table A622 Item analysis of Schwartz scale values of the European Social Survey, 2006: Sweden (first half-sample: n = 782)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.64 (1.125)	2.56-2.72	17.6	28.1	32.4	15.2	5.0	0.6	1.0	0.32	-0.36	0.366
SD11	2.40 (1.066)	2.32-2.47	19.9	39.1	24.9	11.0	3.6	0.5	0.9	0.67	0.14	0.391
UN3	2.13 (1.038)	2.06-2.20	28.9	43.1	16.1	8.1	2.4	0.6	0.8	1.04	1.01	0.216
UN8	2.61 (1.026)	2.54-2.69	11.9	38.7	28.9	16.1	2.9	0.6	0.8	0.47	-0.04	0.291
UN19	2.36 (1.097)	2.28-2.44	23.5	35.3	26.3	10.5	2.6	1.2	0.6	0.72	0.38	0.237
BE12	2.41 (0.968)	2.34-2.48	17.4	38.5	29.2	12.7	1.0	0.3	1.0	0.38	-0.22	0.436
BE18	2.09 (0.913)	2.03-2.16	25.6	48.5	17.5	6.1	1.2	0.4	0.8	0.97	1.36	0.426
TR9	2.97 (1.151)	2.89-3.05	7.7	30.2	32.0	17.3	11.0	1.2	0.8	0.37	-0.46	0.175
TR20	3.10 (1.373)	3.00-3.19	10.9	27.9	25.1	17.3	12.8	5.5	0.6	0.38	-0.68	0.245
CO7	3.36 (1.258)	3.28-3.45	5.5	20.6	30.4	22.0	15.7	4.9	0.9	0.19	-0.61	0.243
CO16	3.20 (1.247)	3.11-3.28	6.5	27.1	26.2	21.1	15.5	2.6	1.0	0.22	-0.77	0.346
SEC5	3.18 (1.249)	3.09-3.27	8.3	23.0	30.2	19.9	15.0	2.6	1.0	0.18	-0.66	0.244
SEC14	3.18 (1.289)	3.09-3.27	9.0	24.4	26.5	21.1	15.1	3.1	0.9	0.18	-0.75	0.352
PO2	4.36 (1.169)	4.27-4.44	1.7	4.5	17.9	23.1	36.6	15.5	0.8	-0.56	-0.15	0.380
PO17	3.54 (1.236)	3.46-3.63	3.6	19.1	26.9	23.1	21.9	4.1	1.4	-0.01	-0.81	0.455
AC4	3.55 (1.266)	3.47-3.64	5.1	16.4	27.5	24.0	21.4	4.9	0.8	-0.07	-0.71	0.472
AC13	3.82 (1.253)	3.73-3.91	3.2	13.6	23.7	22.6	30.6	5.8	0.6	-0.28	-0.76	0.526
HE10	3.13 (1.278)	3.04-3.22	8.8	26.6	26.6	20.8	13.0	3.3	0.8	0.27	-0.66	0.467
HE21	2.80 (1.202)	2.71-2.88	14.3	29.9	27.1	18.3	8.7	0.9	0.8	0.32	-0.60	0.488
ST6	3.24 (1.259)	3.16-3.33	8.1	22.0	27.9	22.6	16.1	2.6	0.8	0.08	-0.74	0.493
ST15	3.94 (1.286)	3.85-4.03	3.8	10.7	21.1	24.7	29.7	9.3	0.6	-0.37	-0.57	0.365

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.087 and 0.175, respectively.

Table A623 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Sweden (first half-sample: n = 782)

	Principal a	xis factor analysi	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Self-	variance
	change	enhancement	transcendence	
SD1	0.442	0.141	-0.079	0.745
SD11	0.402	0.089	0.076	0.767
BE12	0.208	-0.124	0.488	0.694
BE18	0.186	-0.051	0.523	0.651
CO16	-0.317	0.390	0.404	0.709
SEC14	-0.121	0.142	0.459	0.774
PO2	0.193	0.539	-0.076	0.594
PO17	-0.040	0.618	0.144	0.581
AC4	0.176	0.625	-0.033	0.483
AC13	0.205	0.687	-0.018	0.357
HE10	0.622	0.021	0.122	0.536
HE21	0.573	-0.080	0.300	0.524
ST6	0.697	0.039	-0.025	0.497
ST15	0.624	0.152	-0.151	0.542
Factors	Correl	ations between fa	actors	
Openness to change	_			
Self-enhancement	0.488	_		
Self-transcendence	0.313	0.242	_	

Table A624 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Sweden (first half-sample: n = 782)

		Subscale	
	Openness to	Self-	Self-
	change	enhancement	transcendence
Number of items	6	4	4
Mean (standard error)	3.02 (0.030)	3.82 (0.034)	2.72 (0.026)
95% Confidence interval	2.97-3.08	3.75-3.89	2.67-2.77
Standard deviation	0.828	0.960	0.723
Skewness (standard error)	0.061 (0.087)	-0.262 (0.087)	0.141 (0.087)
Kurtosis (standard error)	-0.388 (0.175)	-0.391 (0.175)	-0.022 (0.175)
Cronbach's alpha reliability coeff.	0.776	0.785	0.538
Split-half reliability coefficient	0.822	0.801	0.584
Average inter-item correlations	0.362	0.476	0.238
Minimum-maximum correlations	0.168-0.580	0.356-0.600	0.161-0.408
Range of correlations	0.412	0.244	0.247
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.340	_	
Self-transcendence	0.224	0.236	-

Table A625 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Sweden (first half-sample: n = 782)

	Principal axis factor	analysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Self-enhancement	
SD1	0.470	0.035	0.757
SD11	0.464	0.032	0.765
BE12	0.319	-0.013	0.904
BE18	0.298	0.073	0.878
CO16	-0.233	0.507	0.839
SEC14	-0.017	0.258	0.939
PO2	0.177	0.481	0.629
PO17	-0.052	0.691	0.565
AC4	0.162	0.586	0.510
AC13	0.195	0.646	0.385
HE10	0.714	-0.060	0.540
HE21	0.668	-0.079	0.614
ST6	0.780	-0.111	0.489
ST15	0.644	-0.004	0.588
	Correlations bet	ween factors	
Openness to change		·	
Self-enhancement	0.634	_	

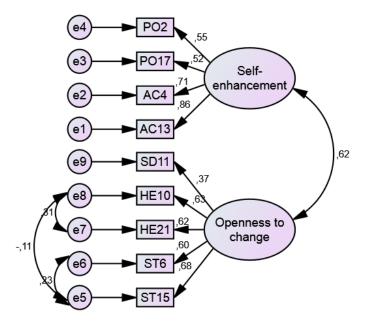
Note: Component and factor loadings >.22 are in boldface.

Table A626 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-10 items): European Social Survey 2006, Sweden (first half-sample: n = 782)

Variables	Principal axis factor	Unique	
· uriuoios	Factor I Openness to change	Factor II Self-enhancement	variance
SD1	0.330	0.196	0.769
SD11	0.392	0.111	0.778
PO2	0.085	0.568	0.608
PO17	-0.053	0.619	0.656
AC4	-0.002	0.738	0.457
AC13	0.031	0.797	0.331
HE10	0.734	-0.039	0.497
HE21	0.706	-0.102	0.583
ST6	0.670	0.035	0.519
ST15	0.545	0.141	0.583
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.644	_	

Table A627 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-9 items): European Social Survey 2006, Sweden (first half-sample: n = 782)

	Principal axis factor		
Variables _	Factor I Self-enhancement	Factor II Openness to change	Unique variance
SD11	0.134	0.352	0.769
PO2	0.564	0.091	0.608
PO17	0.613	-0.050	0.656
AC4	0.743	-0.008	0.457
AC13	0.805	0.030	0.331
HE10	-0.043	0.764	0.497
HE21	-0.107	0.746	0.583
ST6	0.091	0.596	0.519
ST15	0.180	0.507	0.583
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.627	_	


Table A628 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2006, Sweden (second half-sample: n = 782)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.21	.059	.884	.903	.857	.073 (.066081)
2a	2 first-order correlated						
	factors(14 items)-without cross-	1.16	056	001	010	002	0.67 (0.50 , 0.74)
2b	loadings 2 first-order correlated	4.46	.056	.891	.912	.883	.067 (.059074)
20	factors(14 items)-with cross-						
	loading	4.39	.056	.894	.915	.885	.066 (.058074)
2c	2 first-order correlated						,
	factors(10 items)-without cross-						
	loadings	3.38	.038	.949	.963	.948	.055 (.044067)
2d	2 first-order correlated factors						
	(9 items)-without cross- loadings	2.42	.027	.971	.983	.973	.043 (.028057)
3a	3 first-order correlated factors-	2.72	.027	.7/1	.703	.713	.043 (.020 .037)
	without cross-loadings	5.46	.067	.864	.885	.849	.076 (.068083)
3b	3 first-order correlated factors-						
_	with cross-loadings	4.06	.053	.904	.925	.897	.062 (.055070)
4	2 first-order correlated factors	0.10	004	065	077	010	100 (000 116)
	of unified values	9.12	.084	.865	.877	.819	.102 (.088116)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

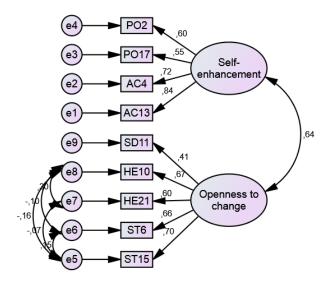

b Lower values indicate better model fit

Fig. 185 Standardized solution for the 2 first-order correlated factors (model 2d-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Sweden (second half-sample: n = 782)

Table A629 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Sweden (N = 1,564)

	Sub	scale
	Self-enhancement	Openness to change
Number of items	4	5
Mean (standard error)	3.83 (0.024)	3.09 (0.022)
95% Confidence interval	3.78-3.88	3.05-3.13
Standard deviation	0.948	0.861
Skewness (standard error)	-0.252 (0.062)	0.014 (0.062)
Kurtosis (standard error)	-0.357 (0.124)	-0.413 (0.124)
Cronbach's alpha reliability coeff.	0.770	0.754
Split-half reliability coefficient	0.793	0.783
Average inter-item correlations	0.454	0.376
Minimum-maximum correlations	0.340-0.609	0.240-0.580
Range of correlations	0.269	0.340
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Openness to change	0.328	_

Fig. 186 Standardized solution for the 2 first-order correlated factors (model 2d-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Sweden (N = 1,564)

Table A630 Item analysis of Schwartz scale values of the European Social Survey, 2008: Sweden (first half-sample: n = 765)

-			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.61 (1.146)	2.53-2.69	18.8	28.4	31.9	13.3	5.6	0.8	1.2	0.40	-0.28	0.390
SD11	2.35 (1.082)	2.27-2.42	23.5	37.1	24.1	11.1	3.4	0.4	0.4	0.64	-0.04	0.326
UN3	2.12 (0.998)	2.05-2.20	29.3	41.2	17.9	8.8	2.1	-	0.8	0.79	0.13	0.241
UN8	2.60 (1.072)	2.52-2.67	14.2	37.1	27.8	15.0	4.6	0.4	0.8	0.46	-0.25	0.299
UN19	2.45 (1.106)	2.37-2.53	19.7	37.8	24.7	12.5	3.9	0.8	0.5	0.65	0.04	0.295
BE12	2.30 (0.944)	2.23-2.37	20.1	41.7	26.3	10.3	0.9	0.1	0.5	0.46	-0.17	0.433
BE18	1.98 (0.904)	1.91-2.04	31.2	47.6	14.0	4.8	1.4	0.3	0.7	1.12	1.71	0.431
TR9	3.00 (1.182)	2.92-3.09	7.6	29.5	31.6	17.3	10.6	2.2	1.2	0.43	-0.34	0.109
TR20	3.17 (1.374)	3.07-3.27	10.7	24.7	24.8	21.7	10.8	6.5	0.7	0.30	-0.65	0.297
CO7	3.39 (1.246)	3.31-3.48	4.1	22.6	27.2	23.8	15.6	5.1	1.7	0.21	-0.67	0.232
CO16	3.16 (1.261)	3.07-3.25	7.7	27.1	26.5	20.7	14.8	2.6	0.7	0.23	-0.75	0.343
SEC5	3.14 (1.207)	3.06-3.23	8.1	24.1	28.6	24.2	12.3	2.0	0.8	0.13	-0.62	0.243
SEC14	3.07 (1.304)	2.98-3.16	10.7	27.1	25.6	18.3	14.6	2.6	1.0	0.26	-0.77	0.373
PO2	4.34 (1.182)	4.26-4.43	1.7	5.9	16.5	21.3	39.5	14.1	1.0	-0.64	-0.12	0.362
PO17	3.51 (1.234)	3.42-3.59	3.4	18.3	31.5	21.4	19.3	5.2	0.8	0.15	-0.70	0.468
AC4	3.46 (1.307)	3.37-3.56	6.7	17.4	27.8	22.6	19.0	5.5	1.0	0.02	-0.72	0.471
AC13	3.76 (1.294)	3.67-3.85	4.4	14.0	23.3	23.3	28.0	6.4	0.7	-0.26	-0.75	0.498
HE10	3.11 (1.273)	3.02-3.20	9.9	23.8	30.3	18.0	13.9	2.9	1.2	0.25	-0.62	0.430
HE21	2.75 (1.217)	2.66-2.83	18.0	25.1	29.7	19.1	6.3	1.4	0.4	0.29	-0.50	0.508
ST6	3.18 (1.240)	3.09-3.27	9.8	20.9	26.8	26.5	12.8	2.1	1.0	0.02	-0.68	0.451
ST15	3.90 (1.330)	3.80-3.99	4.7	11.6	21.0	24.1	28.1	9.9	0.5	-0.33	-0.65	0.421

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.088 and 0.177, respectively.

Table A631 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Sweden (first half-sample: n = 765)

_	Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Self-	Openness to	Hedonism	Conservation	variance		
	enhancement	change					
SD1	0.088	0.595	-0.140	-0.009	0.697		
SD11	0.083	0.226	0.076	0.163	0.836		
BE12	-0.236	0.390	0.057	0.415	0.590		
BE18	-0.122	0.308	0.106	0.360	0.675		
CO16	0.254	-0.219	-0.018	0.540	0.678		
SEC14	0.129	-0.043	-0.014	0.503	0.733		
PO2	0.606	-0.047	0.160	-0.085	0.560		
PO17	0.575	0.037	-0.044	0.253	0.573		
AC4	0.614	0.084	0.014	0.097	0.536		
AC13	0.804	0.074	-0.073	0.123	0.314		
HE10	0.096	-0.139	0.870	-0.066	0.325		
HE21	-0.031	0.066	0.667	0.119	0.454		
ST6	0.081	0.779	-0.020	-0.149	0.406		
ST15	0.363	0.463	0.132	-0.194	0.432		
Factors							
Self-enhancement	_						
Openness to change	0.390	_					
Hedonism	0.451	0.635	_				
Conservation	0.129	0.294	0.257	_			

Table A632 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Sweden (first half-sample: n = 765)

	Subscale						
	Self- enhancement	Openness to change	Hedonism	Conservation			
Number of items	4	4	2	4			
Mean (standard error)	3.77 (0.035)	3.01 (0.031)	2.93 (0.040)	2.63 (0.026)			
95% Confidence interval	3.70-3.84	2.95-3.07	2.85-3.01	2.57-2.68			
Standard deviation	0.976	0.853	1.103	0.724			
Skewness (standard error)	-0.185 (0.088)	-0.044 (0.088)	0.273 (0.088)	0.293 (0.088)			
Kurtosis (standard error)	-0.332 (0.177)	-0.414 (0.177)	-0.333 (0.177)	0.378 (0.177)			
Cronbach's alpha reliability coeff.	0.783	0.640	0.724	0.540			
Split-half reliability coefficient	0.781	0.677	0.724	0.612			
Average inter-item correlations	0.472	0.331	0.568	0.239			
Minimum-maximum correlations	0.353-0.587	0.220-0.573	0.568-0.568	0.137-0.446			
Range of correlations	0.234	0.352	0.000	0.309			
	Average inter-item correlations between subscales						
Self-enhancement	_						
Openness to change	0.326	_					
Hedonism	0.381	0.329	_				
Conservation	0.234	0.198	0.229	_			

Table A633 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, Sweden (first half-sample: n = 765)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Openness to	Conservation	variance
	enhancement	change		
SD1	0.072	0.438	-0.052	0.780
SD11	0.077	0.317	0.133	0.835
BE12	-0.268	0.539	0.332	0.603
BE18	-0.144	0.484	0.295	0.672
CO16	0.241	-0.135	0.546	0.672
SEC14	0.110	0.042	0.489	0.729
PO2	0.639	0.032	-0.049	0.573
PO17	0.572	0.017	0.260	0.577
AC4	0.626	0.074	0.110	0.535
AC13	0.804	-0.008	0.143	0.327
HE10	0.212	0.483	-0.038	0.632
HE21	0.054	0.607	0.076	0.573
ST6	0.090	0.661	-0.185	0.516
ST15	0.383	0.507	-0.223	0.417
Factors	Correl	ations between fa	ctors	
Self-enhancement	_			
Openness to change	0.473	_		
Conservation	0.055	0.200	_	

Table A634 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, Sweden (first half-sample: n = 765)

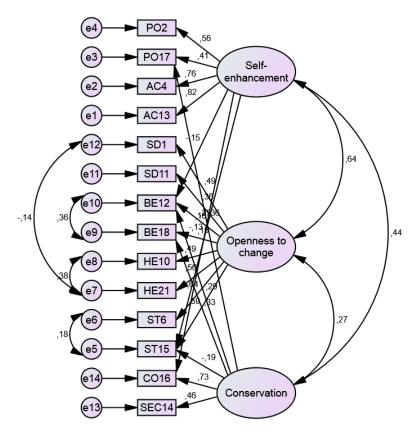

Variables	Principal axis factor	Unique	
	Factor I Openness to change	Factor II Self-enhancement	variance
SD1	0.501	-0.049	0.778
SD11	0.312	0.088	0.860
BE12	0.403	-0.093	0.876
BE18	0.386	-0.011	0.857
CO16	-0.214	0.475	0.857
SEC14	-0.047	0.321	0.914
PO2	0.128	0.502	0.650
PO17	-0.004	0.661	0.567
AC4	0.109	0.606	0.537
AC13	0.032	0.788	0.345
HE10	0.564	0.071	0.627
HE21	0.631	-0.011	0.611
ST6	0.803	-0.169	0.498
ST15	0.633	0.121	0.489
	Correlations be	tween factors	
Openness to change	_		
Self-enhancement	0.631	_	

Table A635 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2008, Sweden (second half-sample: n = 766)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.11	.051	.900	.922	.887	.064 (.056072)
2	2 first-order correlated factors- without cross-loadings	4.16	.057	.890	.913	.885	.064 (.057072)
3a	3 first-order correlated factors- without cross-loadings	5.13	.062	.862	.885	.850	.073 (.066081)
3b	3 first-order correlated factors- with cross-loadings	3.53	.047	.914	.936	.908	.057 (.049066)
4a	4 first-order correlated factors- without cross-loadings	4.88	.061	.867	.890	.859	.071 (.064079)
4b	4 first-order correlated factors- with cross-loadings	4.61	.056	.885	.906	.869	.069 (.061077)
5	2 first-order correlated factors of unified values	7.50	.078	.889	.902	.856	.092 (.078107)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval. a Higher values indicate better model fit

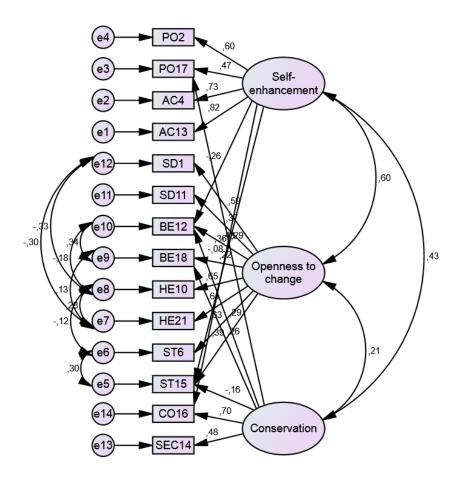

b Lower values indicate better model fit

Fig. 187 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Sweden (second half-sample: n = 766)

Table A636 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Sweden (N = 1,531)

		Subscale	
	Self-	Openness to	Conservation
	enhancement	change	
Number of items	4	8	2
Mean (standard error)	3.78 (0.024)	2.78 (0.017)	3.12 (0.026)
95% Confidence interval	3.73-3.82	2.74-2.81	3.07-3.18
Standard deviation	0.954	0.678	1.019
Skewness (standard error)	-0.172 (0.063)	0.056 (0.063)	0.138 (0.063)
Kurtosis (standard error)	-0.432 (0.125)	-0.190 (0.125)	-0.463 (0.125)
Cronbach's alpha reliability coeff.	0.777	0.741	0.454
Split-half reliability coefficient	0.789	0.756	0.454
Average inter-item correlations	0.463	0.258	0.294
Minimum-maximum correlations	0.349-0.604	0.098-0.563	0.294-0.294
Range of correlations	0.255	0.465	0.000
	Average inter-it	tem correlations be	etween subscales
Self-enhancement	_		
Openness to change	0.257	_	
Conservation	0.306	0.204	_

Fig. 188 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Sweden (N = 1,531)

Table A637 Item analysis of Schwartz scale values of the European Social Survey, 2010: Sweden (first half-sample: n = 748)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.44 (1.154)	2.36-2.53	26.1	23.3	32.6	11.6	3.6	0.9	1.9	0.46	-0.23	0.208
SD11	2.30 (1.176)	2.22-2.39	27.7	34.8	19.7	9.1	5.9	0.7	2.3	0.85	0.13	0.270
UN3	1.98 (0.938)	1.91-2.05	32.4	45.6	12.7	6.1	1.1	0.5	1.6	1.19	1.88	0.280
UN8	2.31 (0.971)	2.24-2.38	18.3	46.0	20.9	10.2	2.4	0.1	2.1	0.74	0.32	0.274
UN19	2.37 (1.100)	2.29-2.45	20.9	40.8	21.1	10.7	3.6	1.1	1.9	0.86	0.52	0.231
BE12	2.11 (0.902)	2.04-2.17	24.7	46.8	19.0	6.3	0.8	0.4	2.0	0.89	1.22	0.396
BE18	1.87 (0.786)	1.81-1.93	33.2	49.7	11.1	3.9	0.4	-	1.7	0.92	1.11	0.391
TR9	2.91 (1.239)	2.82-2.99	9.4	34.8	25.5	14.0	11.0	2.7	2.7	0.57	-0.34	0.059
TR20	3.18 (1.413)	3.08-3.28	10.6	26.6	23.1	16.2	15.2	6.3	2.0	0.32	-0.83	0.188
CO7	3.63 (1.311)	3.53-3.72	3.7	19.4	24.2	20.1	23.4	6.7	2.5	-0.02	-0.91	0.214
CO16	3.26 (1.333)	3.16-3.35	7.1	27.4	21.5	20.7	16.0	4.8	2.4	0.24	-0.84	0.340
SEC5	3.29 (1.433)	3.18-3.39	10.3	23.8	21.4	18.9	16.4	7.1	2.1	0.19	-0.91	0.243
SEC14	3.21 (1.348)	3.11-3.30	8.7	26.3	22.9	17.1	17.0	4.4	3.6	0.26	-0.83	0.371
PO2	4.59 (1.098)	4.51-4.67	1.1	3.3	12.3	21.3	41.2	19.4	1.5	-0.79	0.38	0.242
PO17	3.55 (1.221)	3.46-3.63	3.5	17.6	29.0	21.9	19.9	4.7	3.3	0.03	-0.70	0.372
AC4	3.59 (1.332)	3.49-3.68	5.6	16.4	26.5	23.0	17.9	8.4	2.1	0.01	-0.71	0.278
AC13	3.96 (1.285)	3.87-4.05	2.9	12.3	20.5	21.7	30.9	9.5	2.3	-0.34	-0.69	0.382
HE10	2.89 (1.254)	2.80-2.98	13.6	26.7	28.7	15.6	11.1	1.9	2.3	0.35	-0.53	0.373
HE21	2.74 (1.169)	2.65-2.82	13.2	34.6	24.5	18.0	6.1	1.5	2.0	0.48	-0.28	0.419
ST6	3.21 (1.364)	3.11-3.31	11.9	21.4	22.7	21.3	17.1	3.5	2.1	0.08	-0.90	0.430
ST15	3.84 (1.398)	3.74-3.94	7.0	12.0	19.3	21.7	27.8	10.0	2.3	-0.36	-0.72	0.268

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.179, respectively.

Table A638 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Sweden (first half-sample: n = 748)

	Principal a	xis factor analysis	s (factors)	
•	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Benevolence	variance
	change	enhancement		
BE12	0.005	0.041	0.615	0.606
BE18	0.127	0.030	0.473	0.696
CO16	-0.172	0.476	0.213	0.738
SEC14	-0.004	0.285	0.235	0.837
PO17	0.021	0.789	-0.077	0.388
AC13	0.299	0.389	-0.093	0.724
HE10	0.678	0.039	-0.060	0.559
HE21	0.612	-0.089	0.182	0.521
ST6	0.568	-0.016	0.048	0.656
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Self-enhancement	0.289	_		
Benevolence	0.459	0.205	_	

Table A639 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Sweden (first half-sample: n = 748)

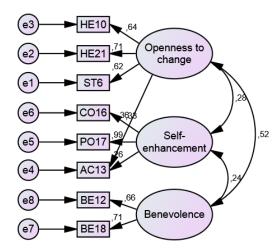
		Subscale	
	Openness to change	Self- enhancement	Benevolence
Number of items	3	4	2
Mean (standard error)	2.95 (0.036)	3.49 (0.031)	1.99 (0.026)
95% Confidence interval	2.88-3.02	3.43-3.55	1.94-2.04
Standard deviation	0.981	0.855	0.710
Skewness (standard error)	0.169 (0.089)	0.043 (0.089)	0.709 (0.089)
Kurtosis (standard error)	-0.270 (0.179)	-0.261 (0.179)	0.613 (0.179)
Cronbach's alpha reliability coeff.	0.669	0.566	0.580
Split-half reliability coefficient	0.589	0.545	0.580
Average inter-item correlations	0.406	0.249	0.413
Minimum-maximum correlations	0.384-0.449	0.154-0.369	0.413-0.413
Range of correlations	0.065	0.215	0.000
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.203	_	
Benevolence	0.300	0.193	_

Table A640 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Sweden (first half-sample: n = 748)

Variables	Principal axis factor	Unique	
, and a second	Factor I Openness to change	Factor II Self-enhancement	variance
BE12	0.323	0.118	0.857
BE18	0.377	0.090	0.827
CO16	-0.064	0.507	0.760
SEC14	0.119	0.314	0.862
PO17	-0.037	0.753	0.450
AC13	0.231	0.367	0.756
HE10	0.621	0.020	0.605
HE21	0.722	-0.087	0.512
ST6	0.597	-0.026	0.653
	Correlations bet	ween factors	
Openness to change	_		
Self-enhancement	0.330	_	

Table A641 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-8 items): European Social Survey 2010, Sweden (first half-sample: n = 748)

	Principal a	xis factor analysis	s (factors)	
·	Factor I	Factor II	Factor III	Unique
Item	Openness to	Self-	Benevolence	variance
	change	enhancement		
BE12	-0.004	0.044	0.642	0.579
BE18	0.071	0.045	0.589	0.596
CO16	-0.120	0.420	0.175	0.802
PO17	-0.014	0.866	-0.024	0.263
AC13	0.306	0.361	-0.086	0.743
HE10	0.660	0.049	-0.031	0.563
HE21	0.641	-0.095	0.117	0.532
ST6	0.591	-0.026	0.008	0.654
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Self-enhancement	0.276	_		
Benevolence	0.472	0.166	_	


Table A642 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2010, Sweden (second half-sample: n = 749)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.33	.045	.935	.953	.923	.056 (.042070)
2a	2 first-order correlated factors- without cross-loadings	5.30	.058	.887	.905	.858	.076 (.063089)
2b	2 first-order correlated factors- with cross-loadings	3.96	.051	.919	.938	.902	.063 (.050077)
3a	3 first-order correlated factors- without cross-loadings	5.55	.058	.882	.900	.850	.078 (.065091)
3b	3 first-order correlated factors- with cross-loadings	3.65	.041	.929	.947	.912	.060 (.046074)
3c	3 first-order correlated factors (8 items)-with cross-loadings	2.68	.033	.958	.973	.953	.047 (.030065)
4	2 first-order correlated factors of unified values	6.92	.073	.849	.867	.803	.089 (.075104)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

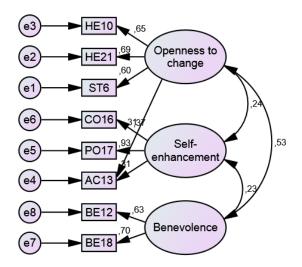

b Lower values indicate better model fit

Fig. 189 Standardized solution for the 3 first-order correlated factors (model 3c-8 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Sweden (second half-sample: n = 749)

Table A643 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Sweden (N = 1,497)

		Subscale	
	Openness to change	Self- enhancement	Benevolence
Number of items	3	3	2
Mean (standard error)	2.94 (0.026)	3.60 (0.024)	2.02 (0.019)
95% Confidence interval	2.89-2.99	3.56-3.65	1.99-2.06
Standard deviation	0.988	0.921	0.726
Skewness (standard error)	0.176 (0.063)	-0.045 (0.063)	0.716 (0.063)
Kurtosis (standard error)	-0.375 (0.126)	-0.219 (0.126)	0.725 (0.126)
Cronbach's alpha reliability coeff.	0.679	0.535	0.612
Split-half reliability coefficient	0.602	0.588	0.612
Average inter-item correlations	0.418	0.281	0.443
Minimum-maximum correlations	0.386-0.457	0.139-0.362	0.443-0.443
Range of correlations	0.071	0.223	0.000
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.227	_	
Benevolence	0.309	0.205	_

Fig. 190 Standardized solution for the 3 first-order correlated factors (model 3c-8 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Sweden (N = 1,497)

Table A644 Item analysis of Schwartz scale values of the European Social Survey, 2012: Sweden (first half-sample: n = 923)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.36 (1.134)	2.29-2.43	28.3	26.3	29.7	10.8	3.7	0.4	0.8	0.50	-0.36	0.365
SD11	2.18 (1.065)	2.11-2.25	30.1	36.6	21.5	8.1	2.8	0.4	0.4	0.82	0.35	0.317
UN3	1.83 (0.910)	1.77-1.89	40.7	43.1	10.1	4.1	1.1	0.5	0.3	1.45	2.90	0.270
UN8	2.23 (0.980)	2.17-2.29	22.9	44.1	21.8	8.8	1.4	0.5	0.5	0.80	0.70	0.362
UN19	2.15 (1.085)	2.08-2.22	32.5	35.1	19.7	8.8	3.0	0.3	0.5	0.84	0.20	0.304
BE12	1.98 (0.872)	1.92-2.03	32.2	43.4	18.7	4.1	0.8	0.1	0.7	0.80	0.67	0.480
BE18	1.76 (0.804)	1.71-1.82	40.7	45.9	9.6	2.2	0.7	0.3	0.5	1.38	3.41	0.448
TR9	2.67 (1.138)	2.60-2.75	13.4	36.3	27.7	14.6	6.4	1.1	0.4	0.55	-0.14	0.228
TR20	3.00 (1.431)	2.91-3.10	14.3	29.0	22.2	16.0	11.9	6.1	0.4	0.44	-0.72	0.272
CO7	3.24 (1.468)	3.15-3.34	12.8	23.5	20.2	18.1	18.7	6.0	0.8	0.14	-1.04	0.372
CO16	2.94 (1.380)	2.85-3.03	15.8	26.9	24.4	15.8	12.9	3.7	0.5	0.37	-0.73	0.416
SEC5	2.96 (1.404)	2.87-3.05	17.6	24.1	23.8	16.3	15.1	2.9	0.3	0.27	-0.91	0.368
SEC14	2.81 (1.305)	2.73-2.89	17.7	27.3	23.6	17.4	10.2	2.0	1.8	0.36	-0.67	0.438
PO2	4.38 (1.227)	4.30-4.46	2.2	5.7	15.3	22.9	35.8	17.9	0.3	-0.65	-0.11	0.270
PO17	3.27 (1.289)	3.18-3.35	9.1	20.2	28.1	22.1	17.0	2.9	0.7	0.05	-0.76	0.539
AC4	3.38 (1.341)	3.29-3.46	7.8	20.0	27.7	19.9	19.0	5.2	0.3	0.08	-0.82	0.488
AC13	3.74 (1.346)	3.65-3.83	6.9	11.7	23.2	23.0	27.5	6.9	0.8	-0.32	-0.69	0.499
HE10	2.95 (1.321)	2.87-3.04	13.5	27.6	26.7	16.8	11.7	3.3	0.4	0.38	-0.61	0.337
HE21	2.55 (1.132)	2.48-2.62	19.0	34.0	24.6	17.1	4.3	0.4	0.5	0.41	-0.52	0.457
ST6	3.00 (1.293)	2.92-3.08	12.9	25.6	26.9	19.0	13.3	2.0	0.4	0.23	-0.77	0.428
ST15	3.73 (1.391)	3.64-3.82	6.3	15.4	21.8	19.6	28.5	8.0	0.4	-0.24	-0.91	0.279

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.080 and 0.161, respectively.

Table A645 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Sweden (first half-sample: n = 923)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Self-	Conservation	Self-	variance				
	enhancement		transcendence					
SD1	0.370	-0.053	0.258	0.779				
SD11	0.359	-0.074	0.227	0.810				
UN8	0.049	0.119	0.509	0.696				
UN19	-0.120	0.252	0.454	0.724				
BE12	0.170	0.133	0.557	0.575				
BE18	0.195	0.106	0.497	0.642				
CO7	-0.163	0.708	0.115	0.523				
CO16	-0.113	0.716	0.113	0.500				
SEC5	-0.032	0.517	0.126	0.710				
SEC14	0.004	0.518	0.215	0.653				
PO17	0.333	0.496	-0.053	0.540				
AC4	0.630	0.191	-0.159	0.500				
AC13	0.706	0.227	-0.266	0.348				
HE10	0.609	-0.219	0.114	0.644				
HE21	0.511	-0.079	0.292	0.631				
ST6	0.610	-0.183	0.241	0.577				
Factors	Correlations between factors							
Self-enhancement	_							
Conservation	0.346	_						
Self-transcendence	0.169	0.139	_					

Table A646 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Sweden (first half-sample: n = 923)

	Subscale					
	Self-	Conservation	Self-			
	enhancement		transcendence			
Number of items	7	5	4			
Mean (standard error)	2.88 (0.026)	3.04 (0.032)	2.03 (0.022)			
95% Confidence interval	2.83-2.93	2.98-3.11	1.99-2.07			
Standard deviation	0.785	0.967	0.671			
Skewness (standard error)	0.055 (0.080)	0.033 (0.080)	0.643 (0.080)			
Kurtosis (standard error)	-0.229 (0.161)	-0.435 (0.161)	1.388 (0.161)			
Cronbach's alpha reliability coeff.	0.752	0.748	0.677			
Split-half reliability coefficient	0.760	0.717	0.685			
Average inter-item correlations	0.299	0.371	0.357			
Minimum-maximum correlations	0.194-0.599	0.261-0.497	0.285-0.475			
Range of correlations	0.404	0.236	0.190			
	Average inter-it	tem correlations be	etween subscales			
Self-enhancement	_					
Conservation	0.220	_				
Self-transcendence	0.233	0.272	_			

Table A647 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, Sweden (first half-sample: n = 923)

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.429	0.010	0.813
SD11	0.414	-0.020	0.835
UN8	0.156	0.247	0.886
UN19	-0.019	0.360	0.875
BE12	0.284	0.273	0.786
BE18	0.299	0.232	0.804
CO7	-0.159	0.737	0.520
CO16	-0.108	0.742	0.499
SEC5	-0.017	0.546	0.708
SEC14	0.038	0.569	0.659
PO17	0.307	0.456	0.592
AC4	0.567	0.129	0.607
AC13	0.582	0.138	0.582
HE10	0.655	-0.207	0.630
HE21	0.580	-0.011	0.669
ST6	0.669	-0.129	0.601
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.376	_	

Table A648 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-12 items): European Social Survey 2012, Sweden (first half-sample: n = 923)

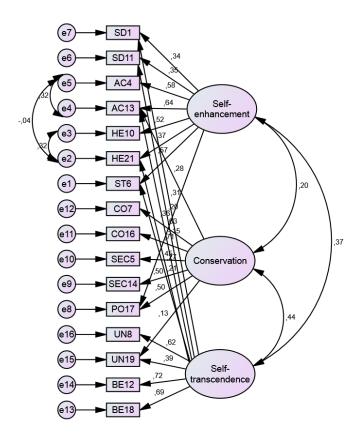

Variables	Principal axis factor a	Unique	
variables	Factor I Openness to change	Factor II Conservation	variance
SD1	0.419	-0.005	0.826
SD11	0.406	-0.035	0.844
CO7	-0.159	0.742	0.507
CO16	-0.102	0.739	0.496
SEC5	-0.013	0.537	0.716
SEC14	0.044	0.542	0.688
PO17	0.316	0.485	0.557
AC4	0.578	0.165	0.572
AC13	0.604	0.182	0.525
HE10	0.643	-0.191	0.637
HE21	0.557	-0.014	0.695
ST6	0.650	-0.124	0.619
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.644	_	

Table A649 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2012, Sweden (second half-sample: n = 924)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.37	.050	.911	.929	.890	.060 (.054067)
2a	2 first-order correlated factors- without cross-loadings	7.27	.071	.824	.844	.796	.082 (.077088)
2b	2 first-order correlated factors- with cross-loadings	6.54	.065	.847	.866	820	.077 (.072084)
2c	2 first-order correlated factors(12 items)-without cross-	7.00	0.60	0.50	07.4	022	006 (050 , 005)
2d	loadings 2 first-order correlated	7.88	.068	.859	.874	.823	.086 (.078095)
	factors(12 items)-with cross- loadings	6.03	.057	.894	.910	.870	.074 (.066082)
3a	3 first-order correlated factors- without cross-loadings	6.34	.071	.837	.858	.826	.076 (.070082)
3b	3 first-order correlated factors- with cross-loadings	4.61	.056	.891	.912	.882	.063 (.057069)
4	2 first-order correlated factors of unified values	8.74	.069	.892	.903	.857	.092 (.079105)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

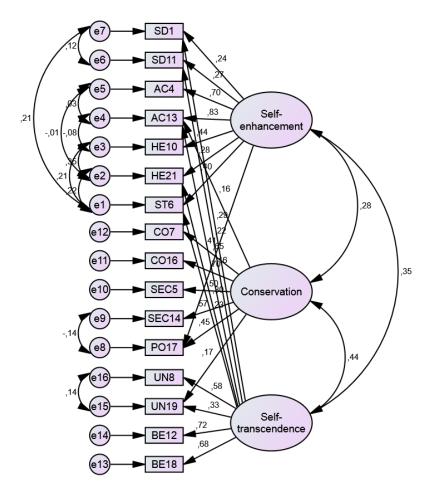


Fig. 191 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Sweden (second half-sample: n = 924)

a Higher values indicate better model fit

Table A650 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Sweden (N = 1,847)

	Subscale					
	Self- enhancement	Conservation	Self- transcendence			
Number of items	7	5	4			
Mean (standard error)	2.87 (0.018)	3.05 (0.022)	2.05 (0.016)			
95% Confidence interval	2.84-2.91	3.01-3.09	2.02-2.09			
Standard deviation	0.793	0.945	0.690			
Skewness (standard error)	0.082 (0.057)	-0.008 (0.057)	0.671 (0.057)			
Kurtosis (standard error)	-0.242 (0.114)	-0.413 (0.114)	1.209 (0.114)			
Cronbach's alpha reliability coeff.	0.758	0.728	0.689			
Split-half reliability coefficient	0.684	0.710	0.703			
Average inter-item correlations	0.307	0.348	0.370			
Minimum-maximum correlations	0.204-0.593	0.249-0.477	0.281-0.486			
Range of correlations	0.390	0.229	0.205			
	Average inter-it	tem correlations be	etween subscales			
Self-enhancement	_					
Conservation	0.226	_				
Self-transcendence	0.247	0.269	_			

Fig. 192 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Sweden (N = 1,847)

Table A651 Item analysis of Schwartz scale values of the European Social Survey, 2014: Sweden (first half-sample: n = 895)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.37 (1.202)	2.29-2.45	30.5	23.7	27.5	10.9	5.3	0.6	1.6	0.56	-0.41	0.250
SD11	2.30 (1.169)	2.22-2.37	28.2	34.2	21.7	8.6	4.8	1.1	1.5	0.88	0.36	0.272
UN3	1.78 (0.950)	1.72-1.84	45.9	37.2	10.1	3.0	1.8	0.7	1.3	1.63	3.38	0.232
UN8	2.18 (0.991)	2.12-2.25	25.1	43.4	19.7	8.0	2.1	0.3	1.3	0.86	0.65	0.344
UN19	2.14 (1.056)	2.07-2.21	30.1	39.6	18.5	7.2	3.2	0.4	1.0	0.97	0.72	0.251
BE12	2.04 (0.919)	1.98-2.10	29.6	44.6	16.9	6.6	0.9	0.2	1.2	0.88	0.81	0.455
BE18	1.74 (0.786)	1.69-1.79	42.6	44.0	8.5	3.4	0.4	1.1	1.7	1.13	1.54	0.381
TR9	2.67 (1.161)	2.59-2.74	15.1	34.6	25.7	15.3	6.8	0.9	1.6	0.49	-0.32	0.140
TR20	3.11 (1.350)	3.02-3.19	11.2	26.1	24.0	19.7	12.8	4.6	1.6	0.30	-0.71	0.182
CO7	3.27 (1.385)	3.18-3.36	9.4	25.4	19.7	20.6	18.3	4.7	2.0	0.13	-0.97	0.360
CO16	3.02 (1.320)	2.93-3.10	11.6	28.6	24.1	17.7	13.3	3.1	1.6	0.34	-0.71	0.366
SEC5	3.03 (1.344)	2.95-3.12	13.3	25.5	24.9	17.0	15.2	2.7	1.5	0.25	-0.83	0.308
SEC14	2.95 (1.300)	2.87-3.04	12.6	28.7	23.8	17.3	11.8	2.8	2.9	0.37	-0.62	0.360
PO2	4.53 (1.126)	4.45-4.60	1.3	4.4	12.1	22.6	40.6	17.7	1.5	-0.80	0.36	0.280
PO17	3.39 (1.283)	3.31-3.48	5.8	20.0	29.8	19.1	18.8	4.7	1.8	0.15	-0.73	0.436
AC4	3.54 (1.352)	3.45-3.63	6.8	18.7	22.8	21.5	23.4	5.5	1.5	-0.10	-0.91	0.382
AC13	3.94 (1.290)	3.86-4.02	4.0	10.4	22.2	21.2	31.6	8.7	1.8	-0.39	-0.60	0.435
HE10	2.95 (1.275)	2.86-3.03	12.3	28.6	25.8	17.2	12.4	2.0	1.7	0.33	-0.66	0.340
HE21	2.57 (1.131)	2.49-2.64	17.8	34.6	26.1	14.1	5.5	0.6	1.3	0.49	-0.30	0.426
ST6	3.08 (1.312)	3.00-3.17	12.6	22.7	26.7	19.8	14.9	2.2	1.1	0.14	-0.81	0.380
ST15	3.86 (1.364)	3.77-3.95	5.9	12.5	19.6	21.1	30.7	8.6	1.6	-0.39	-0.72	0.294

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.082 and 0.163, respectively.

Table A652 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Sweden (first half-sample: n = 895)

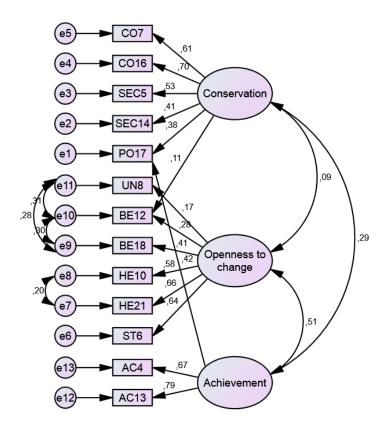
	Principal a			
	Factor I	Factor II	Factor III	Unique
Item	Conservation	Openness to	Achievement	variance
		change		
UN8	0.103	0.420	-0.100	0.820
BE12	0.265	0.456	-0.118	0.702
BE18	0.186	0.416	-0.081	0.778
CO7	0.648	-0.027	0.003	0.589
CO16	0.695	-0.071	-0.003	0.542
SEC5	0.506	-0.042	0.063	0.734
SEC14	0.480	0.121	-0.013	0.726
PO17	0.367	0.028	0.304	0.691
AC4	0.025	0.000	0.670	0.540
AC13	0.031	0.003	0.736	0.441
HE10	-0.148	0.550	0.081	0.686
HE21	-0.093	0.637	0.098	0.563
ST6	-0.097	0.510	0.073	0.272
Factors	Correl	ations between fa	ctors	
Conservation	_			
Openness to change	0.295	_		
Achievement	0.302	0.429	_	

Table A653 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Sweden (first half-sample: n = 895)

	Subscale					
	Conservation	Openness to change	Achievement			
Number of items	5	6	2			
Mean (standard error)	3.13 (0.030)	2.43 (0.022)	3.74 (0.038)			
95% Confidence interval	3.08-3.19	2.38-2.47	3.66-3.81			
Standard deviation	0.892	0.665	1.149			
Skewness (standard error)	0.122 (0.082)	0.451 (0.082)	-0.245 (0.082)			
Kurtosis (standard error)	-0.485 (0.163)	0.093 (0.163)	-0.640 (0.163)			
Cronbach's alpha reliability coeff.	0.696	0.667	0.677			
Split-half reliability coefficient	0.642	0.503	0.677			
Average inter-item correlations	0.314	0.258	0.512			
Minimum-maximum correlations	0.182-0.418	0.145-0.437	0.512-0.512			
Range of correlations	0.236	0.292	0.000			
	Average inter-it	tem correlations be	etween subscales			
Conservation	_					
Openness to change	0.188	_				
Achievement	0.260	0.226	_			

Table A654 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Sweden (first half-sample: n = 895)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
UN8	0.301	0.070	0.889
BE12	0.310	0.226	0.802
BE18	0.310	0.156	0.844
CO7	-0.064	0.656	0.597
CO16	-0.113	0.706	0.548
SEC5	-0.029	0.529	0.731
SEC14	0.070	0.475	0.745
PO17	0.226	0.422	0.701
AC4	0.430	0.145	0.748
AC13	0.469	0.163	0.697
HE10	0.573	-0.155	0.712
HE21	0.662	-0.101	0.600
ST6	0.527	-0.105	0.751
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.367	_	


Table A655 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2014, Sweden (second half-sample: n = 896)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.42	.051	.916	.933	.881	.062 (.053071)
2a	2 first-order correlated factors- without cross-loadings	6.25	.078	.841	.862	.817	.077 (.069084)
2b	2 first-order correlated factors- with cross-loadings	5.15	.065	.873	.894	.856	.068 (.061076)
3a	3 first-order correlated factors- without cross-loadings	5.39	.067	.865	.886	.847	.070 (.063078)
3b	3 first-order correlated factors- with cross-loadings	3.29	.050	.921	.943	.920	.051 (.043059)
4	2 first-order correlated factors of unified values	10.99	.082	.831	.843	.769	.106 (.093119)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

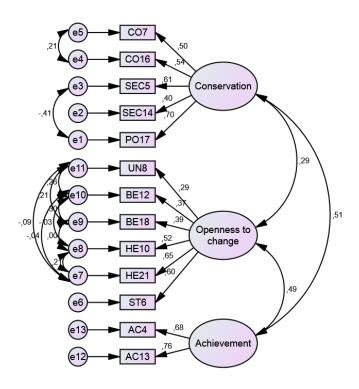

b Lower values indicate better model fit

Fig. 193 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Sweden (second half-sample: n = 896)

Table A656 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Sweden (N = 1,791)

	Subscale					
	Conservation	Openness to change	Achievement			
Number of items	5	6	2			
Mean (standard error)	3.15 (0.021)	2.43 (0.016)	3.74 (0.028)			
95% Confidence interval	3.11-3.19	2.40-2.46	3.68-3.79			
Standard deviation	0.891	0.673	1.169			
Skewness (standard error)	0.080 (0.058)	0.365 (0.058)	-0.235 (0.058)			
Kurtosis (standard error)	-0.389 (0.116)	-0.018 (0.116)	-0.613 (0.116)			
Cronbach's alpha reliability coeff.	0.691	0.673	0.684			
Split-half reliability coefficient	0.621	0.471	0.684			
Average inter-item correlations	0.308	0.262	0.521			
Minimum-maximum correlations	0.200-0.422	0.119-0.471	0.521-0.521			
Range of correlations	0.222	0.352	0.000			
	Average inter-it	tem correlations be	etween subscales			
Conservation	_					
Openness to change	0.180	_				
Achievement	0.256	0.229	_			

Fig. 194 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Sweden (N = 1,791)

Table A657 Item analysis of Schwartz scale values of the European Social Survey, 2002: Switzerland (first half-sample: n = 1,020)

		_		Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.34 (1.159)	2.26-2.41	24.5	40.0	18.6	9.7	5.5	0.9	0.8	0.89	0.29	0.254
SD11	1.78 (0.856)	1.72-1.83	44.0	39.2	12.2	3.6	0.5	0.2	0.3	1.17	1.62	0.351
UN3	2.03 (0.988)	1.97-2.09	31.3	44.8	13.9	5.6	2.6	0.4	1.4	1.19	1.57	0.245
UN8	2.05 (0.880)	1.99-2.10	26.2	50.7	16.8	4.4	1.4	0.3	0.3	1.04	1.78	0.247
UN19	1.90 (0.847)	1.85-1.95	35.1	44.3	16.6	2.8	0.9	0.1	0.2	0.92	1.13	0.290
BE12	2.25 (0.889)	2.19-2.30	18.2	48.6	24.8	6.4	1.7	0.1	0.2	0.70	0.66	0.359
BE18	1.80 (0.720)	1.75-1.84	35.6	51.1	11.2	1.5	0.2	0.1	0.4	0.85	1.64	0.412
TR9	2.69 (1.190)	2.62-2.76	14.0	37.6	23.9	13.3	9.7	0.6	0.8	1.42	1.19	0.119
TR20	3.03 (1.362)	2.95-3.11	11.0	31.0	23.6	15.9	12.8	4.8	0.9	0.45	-0.66	0.266
CO7	3.85 (1.366)	3.77-3.93	4.4	15.7	19.8	17.9	32.1	8.6	1.5	-0.31	-0.91	0.254
CO16	3.12 (1.377)	3.04-3.21	9.9	30.1	22.5	14.5	18.3	3.7	0.9	0.31	-0.94	0.308
SEC5	2.56 (1.260)	2.48-2.63	19.9	38.5	19.2	10.6	10.2	1.0	0.6	0.71	-0.34	0.332
SEC14	2.64 (1.197)	2.57-2.72	15.3	38.2	22.5	12.2	9.1	0.9	1.8	0.62	-0.30	0.357
PO2	4.37 (1.184)	4.30-4.44	1.8	6.4	14.7	21.5	41.6	14.0	0.1	-0.72	-0.01	0.231
PO17	3.19 (1.350)	3.11-3.27	8.9	27.8	22.0	17.5	18.4	3.4	2.0	0.22	-0.94	0.399
AC4	3.41 (1.408)	3.32-3.50	8.8	21.7	22.5	18.2	23.2	5.2	0.3	0.01	-1.04	0.407
AC13	3.30 (1.295)	3.22-3.38	7.3	22.9	27.1	20.4	18.8	3.2	0.3	0.10	-0.85	0.408
HE10	2.17 (1.065)	2.11-2.24	28.7	42.2	16.2	9.1	3.5	0.2	0.1	0.91	0.37	0.43
HE21	2.98 (1.306)	2.90-3.06	12.6	27.9	25.2	18.1	13.1	2.4	0.6	0.30	-0.75	0.375
ST6	2.85 (1.309)	2.77-2.93	15.2	31.0	22.4	17.3	11.3	2.2	0.8	0.41	-0.69	0.336
ST15	4.05 (1.369)	3.96-4.13	3.4	13.4	17.5	19.2	33.2	13.0	0.2	-0.42	-0.80	0.21

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.077 and 0.153, respectively.

Table A658 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, Switzerland (first half-sample: n = 1,020)

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		enhancement	
SD11	0.417	0.000	0.076	0.795
BE12	0.232	0.240	-0.034	0.876
BE18	0.318	0.188	0.034	0.822
CO16	-0.068	0.545	0.050	0.694
SEC5	-0.069	0.670	0.040	0.546
SEC14	0.086	0.589	-0.085	0.661
PO17	-0.026	0.239	0.404	0.713
AC4	-0.019	-0.054	0.785	0.425
AC13	0.128	-0.023	0.575	0.605
HE10	0.744	0.040	-0.058	0.464
HE21	0.646	-0.022	0.006	0.585
ST6	0.506	-0.124	0.057	0.735
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.221	_		
Self-enhancement	0.400	0.393	_	

Table A659 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Switzerland (first half-sample: n = 1,020)

		Subscale	
	Openness to change	Conservation	Self- enhancement
Number of items	5	4	3
Mean (standard error)	2.31 (0.022)	2.64 (0.025)	3.30 (0.032)
95% Confidence interval	2.27-2.36	2.59-2.69	3.24-3.36
Standard deviation	0.704	0.803	1.032
Skewness (standard error)	0.398 (0.077)	0.328 (0.077)	0.089 (0.077)
Kurtosis (standard error)	-0.140 (0.153)	-0.270 (0.153)	-0.641 (0.153)
Cronbach's alpha reliability coeff.	0.664	0.595	0.642
Split-half reliability coefficient	0.667	0.655	0.497
Average inter-item correlations	0.288	0.261	0.374
Minimum-maximum correlations	0.174-0.497	0.122-0.425	0.303-0.470
Range of correlations	0.324	0.303	0.167
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.180	_	
Self-enhancement	0.232	0.216	_

Table A660 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, Switzerland (first half-sample: n = 1,020)

	Principal axis factor a		
Variables		Unique	
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD11	0.450	-0.008	0.800
BE18	0.299	0.161	0.851
CO16	-0.114	0.562	0.717
SEC5	-0.125	0.664	0.602
SEC14	-0.025	0.489	0.769
PO17	0.142	0.464	0.719
AC4	0.325	0.323	0.716
AC13	0.399	0.271	0.691
HE10	0.666	-0.055	0.579
HE21	0.628	-0.075	0.633
ST6	0.548	-0.151	0.735
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.351	_	
-			

Table A661 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors-9 items): European Social Survey 2002, Switzerland (first half-sample: n = 1,020)

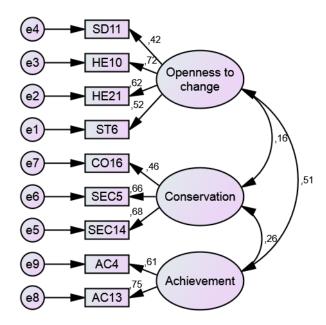

	Principal a	xis factor analysis	s (factors)	
	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Achevement	variance
	change			
	- Change			
SD11	0.398	-0.005	0.068	0.818
CO16	-0.049	0.491	0.042	0.752
SEC5	-0.063	0.713	0.041	0.486
SEC14	0.079	0.607	-0.060	0.631
AC4	-0.037	-0.009	0.845	0.312
AC13	0.163	0.047	0.494	0.651
HE10	0.737	0.048	-0.058	0.472
HE21	0.682	0.012	-0.011	0.538
ST6	0.471	-0.104	0.089	0.752
Factors	Correl	lations between fa	ctors	
Openness to change	_			
Conservation	0.177	_		
Achievement	0.365	0.307	_	

Table A662 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2002, Switzerland (second half-sample: n = 1,020)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.18	.054	.887	.906	.859	.064 (.056072)
2a	2 first-order correlated factors- without cross-loadings	6.58	.066	.852	.871	.822	.074 (.066083)
2b	2 first-order correlated factors- with cross-loadings	6.34	.060	.865	.882	.830	.072 (.064081)
3a	3 first-order correlated factors- without cross-loadings	7.74	.074	.804	.824	.772	.081 (.074089)
3b	3 first-order correlated factors- with cross-loadings	5.50	.052	.866	.887	.848	.066 (.059074)
3c	3 first-order correlated factors (9 items)-without cross-						,
4	loadings 3 first-order correlated factors	3.23	.031	.944	.960	.940	.047 (.035059)
4	of unified values	6.56	.067	.802	.825	.780	.074 (.067081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

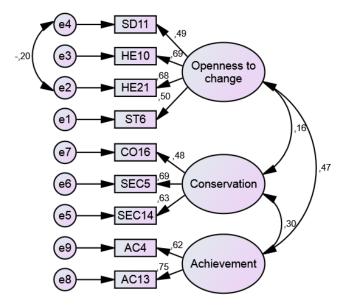


Fig. 195 Standardized solution for the 3 first-order correlated factors (model 3c-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Switzerland (second half-sample: n = 1,020)

a Higher values indicate better model fit

Table A663 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, Switzerland (N = 2,040)

		Subscale	
	Openness to change	Conservation	Achievement
Number of items	4	3	2
Mean (standard error)	2.47 (0.018)	2.76 (0.022)	3.36 (0.026)
95% Confidence interval	2.43-2.50	2.72-2.80	3.31-3.41
Standard deviation	0.811	0.976	1.161
Skewness (standard error)	0.393 (0.054)	0.468 (0.054)	0.068 (0.054)
Kurtosis (standard error)	-0.145 (0.108)	-0.219 (0.108)	-0.685 (0.108)
Cronbach's alpha reliability coeff.	0.652	0.621	0.630
Split-half reliability coefficient	0.611	0.514	0.630
Average inter-item correlations	0.324	0.358	0.461
Minimum-maximum correlations	0.206-0.482	0.307-0.434	0.461-0.461
Range of correlations	0.275	0.127	0.000
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.172	_	
Achievement	0.265	0.226	_

Fig. 196 Standardized solution for the 3 first-order correlated factors (model 3c-9 items) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, Switzerland (N = 2,040)

Table A664 Item analysis of Schwartz scale values of the European Social Survey, 2004: Switzerland (first half-sample: n = 1,070)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.33 (1.076)	2.26-2.39	22.5	39.2	23.2	8.9	3.8	0.7	1.8	0.81	0.45	0.252
SD11	1.84 (0.875)	1.78-1.89	40.7	39.8	13.7	3.6	1.1	-	1.0	1.05	1.07	0.296
UN3	2.01 (1.037)	1.94-2.07	34.2	43.6	13.1	4.1	3.4	0.8	0.7	1.39	2.19	0.263
UN8	2.06 (0.909)	2.00-2.11	27.1	48.3	16.9	4.9	1.5	0.4	0.9	1.06	1.70	0.332
UN19	1.88 (0.877)	1.82-1.93	38.6	40.3	16.5	3.2	0.8	0.2	0.4	0.99	1.21	0.331
BE12	2.13 (0.938)	2.07-2.18	25.8	45.0	20.5	5.6	2.1	0.1	0.8	0.85	0.76	0.423
BE18	1.73 (0.741)	1.69-1.78	41.8	44.4	11.1	1.5	0.2	0.1	0.9	0.94	1.41	0.412
TR9	2.68 (1.172)	2.61-2.75	13.6	36.4	27.5	11.1	8.0	1.5	1.9	0.66	-0.00	0.094
TR20	2.81 (1.349)	2.73-2.89	16.3	31.3	24.6	12.7	10.5	3.8	0.8	0.58	-0.43	0.267
CO7	3.49 (1.376)	3.40-3.57	5.4	23.4	21.8	18.0	22.2	6.7	2.4	0.09	-1.01	0.213
CO16	2.97 (1.320)	2.89-3.05	11.5	30.7	25.0	13.6	14.2	3.0	2.0	0.43	-0.66	0.324
SEC5	2.52 (1.255)	2.45-2.60	20.2	38.2	21.3	8.8	8.9	1.8	0.8	0.82	0.02	0.378
SEC14	2.69 (1.223)	2.62-2.77	16.3	32.1	27.2	11.1	9.1	1.6	2.7	0.57	-0.22	0.387
PO2	4.50 (1.086)	4.43-4.56	0.8	4.0	12.4	25.8	39.1	16.9	0.9	-0.64	0.14	0.182
PO17	3.00 (1.303)	2.93-3.08	9.7	33.3	20.9	15.6	15.4	2.2	2.8	0.39	-0.80	0.391
AC4	3.31 (1.331)	3.23-3.39	6.5	25.1	26.4	17.0	19.3	4.6	1.0	0.21	-0.89	0.401
AC13	3.42 (1.314)	3.34-3.50	5.7	21.0	27.7	19.5	19.2	5.6	1.3	0.14	-0.81	0.357
HE10	2.27 (1.042)	2.21-2.34	22.8	42.6	22.6	7.8	2.9	0.8	0.5	0.91	0.90	0.357
HE21	3.06 (1.278)	2.98-3.13	10.9	24.2	31.4	16.7	13.0	3.0	0.7	0.30	-0.56	0.353
ST6	2.87 (1.266)	2.79-2.94	13.9	29.3	27.1	14.6	12.6	1.3	1.1	0.37	-0.66	0.430
ST15	4.06 (1.379)	3.98-4.14	4.3	10.9	18.9	19.4	30.3	14.7	1.5	-0.42	-0.70	0.245

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.075 and 0.149, respectively.

Table A665 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, Switzerland (first half-sample: n = 1,070)

	Pr	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Openness to	Self-	variance
	transcendence		change	enhancement	
UN8	0.642	-0.082	0.044	-0.069	0.625
UN19	0.562	0.054	-0.012	-0.085	0.683
BE12	0.602	0.071	-0.010	-0.005	0.604
BE18	0.628	0.014	-0.042	0.087	0.577
CO16	0.013	0.564	-0.022	-0.010	0.681
SEC5	0.005	0.681	0.018	0.022	0.522
SEC14	0.008	0.604	0.061	-0.003	0.621
PO17	0.065	0.231	-0.060	0.390	0.736
AC4	-0.019	0.033	0.006	0.651	0.567
AC13	-0.085	-0.063	0.002	0.732	0.510
HE10	0.058	0.021	0.678	-0.063	0.545
HE21	-0.126	0.079	0.783	-0.025	0.442
ST6	0.175	-0.146	0.424	0.229	0.607
Factors		Correlations be	etween factors		
Self-transcendence	_				
Conservation	0.405	_			
Openness to change	0.330	0.103	_		
Self-enhancement	0.292	0.286	0.459	_	

Table A666 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Switzerland (first half-sample: n = 1,070)

		Sub	scale	
	Self- transcendence	Conservation	Openness to change	Self- enhancement
Number of items	4	3	3	3
Mean (standard error)	1.95 (0.019)	2.73 (0.030)	2.73 (0.029)	2.25 (0.030)
95% Confidence interval	1.91-1.99	2.67-2.79	2.68-2.79	3.19-3.31
Standard deviation	0.628	0.972	0.938	0.988
Skewness (standard error)	0.703 (0.075)	0.393 (0.075)	0.321 (0.075)	0.251 (0.075)
Kurtosis (standard error)	0.817 (0.149)	-0.215 (0.149)	-0.236 (0.149)	-0.376 (0.149)
Cronbach's alpha reliability coeff.	0.694	0.652	0.682	0.613
Split-half reliability coefficient	0.690	0.546	0.656	0.459
Average inter-item correlations	0.366	0.386	0.424	0.345
Minimum-maximum correlations	0.333-0.448	0.342-0.447	0.380-0.494	0.290-0.451
Range of correlations	0.116	0.105	0.114	0.160
	Averag	ge inter-item corre	lations between su	ibscales
Self-transcendence	_			
Conservation	0.254	_		
Openness to change	0.247	0.200	_	
Self-enhancement	0.212	0.236	0.270	_

Table A667 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2004, Switzerland (first half-sample: n = 1,070)

	Principal a	xis factor analysis	s (factors)	
Item	Factor I Conservation	Factor II Openness to	Factor III Self-	Unique variance
	Compon (will on	change	enhancement	,
UN8	0.203	0.399	-0.171	0.769
UN19	0.309	0.293	-0.173	0.775
BE12	0.349	0.316	-0.099	0.727
BE18	0.328	0.328	-0.042	0.728
CO16	0.570	-0.104	0.060	0.694
SEC5	0.665	-0.082	0.113	0.561
SEC14	0.585	-0.034	0.088	0.652
PO17	0.326	-0.012	0.365	0.739
AC4	0.107	0.064	0.601	0.581
AC13	-0.007	0.046	0.674	0.526
HE10	-0.085	0.652	0.053	0.580
HE21	-0.094	0.535	0.163	0.660
ST6	-0.123	0.578	0.226	0.571
Factors	Correl	ations between fa	ctors	
Conservation	_			
Openness to change	0.309	_		
Self-enhancement	0.110	0.304	_	

Table A668 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, Switzerland (first half-sample: n = 1,070)

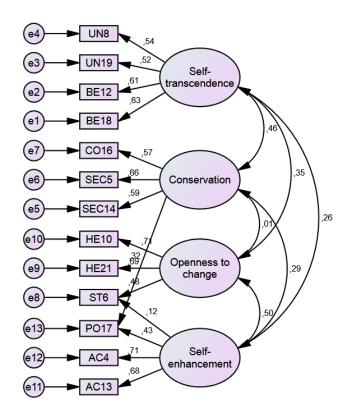

Variables	Principal axis factor	Unique	
_	Factor I Conservation	Factor II Openness to change	variance
UN19	0.294	0.054	0.900
BE12	0.340	0.122	0.842
BE18	0.330	0.182	0.818
CO16	0.588	-0.119	0.686
SEC5	0.694	-0.074	0.547
SEC14	0.613	-0.045	0.640
PO17	0.347	0.230	0.774
AC4	0.152	0.475	0.704
AC13	0.057	0.504	0.724
HE10	-0.030	0.553	0.704
HE21	-0.041	0.567	0.692
ST6	-0.076	0.655	0.597
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.326	_	

Table A669 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, Switzerland (second half-sample: n = 1,071)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.03	.050	.907	.920	.847	.069 (.060077)
2a	2 first-order correlated factors (12 items)-without cross-						
	loadings	8.70	.069	.839	.853	.780	.085 (.077093)
2b	2 first-order correlated factors						
	(12 items)-with cross-loadings	7.05	.059	.872	.887	.827	.075 (.067083)
3a	3 first-order correlated factors-						
	without cross-loadings	9.41	.081	.798	.814	.745	.089 (.082096)
3b	3 first-order correlated factors-						
	with cross-loadings	7.22	.063	.858	.874	.811	.076 (.069084)
4a	4 first-order correlated factors-						
	without cross-loadings	5.03	.050	.888	.907	.878	.061 (.055068)
4b	4 first-order correlated factors- with cross-loadings	3.86	.039	.917	.937	.913	.052 (.045059)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

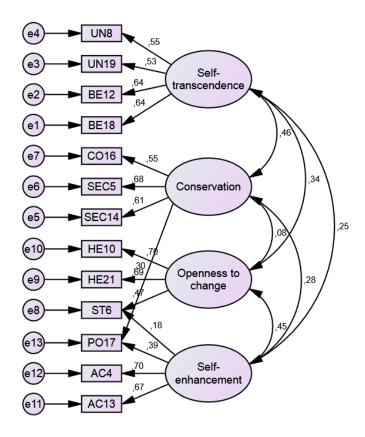


Fig. 197 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Switzerland (second half-sample: n = 1,071)

a Higher values indicate better model fit

Table A670 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, Switzerland (N = 2,141)

		Sub	scale	•
	Self- transcendence	Conservation	Openness to change	Self- enhancement
Number of items	4	3	3	3
Mean (standard error)	1.94 (0.013)	2.73 (0.030)	2.73 (0.029)	2.25 (0.030)
95% Confidence interval	1.92-1.97	2.67-2.79	2.68-2.79	3.19-3.31
Standard deviation	0.608	0.972	0.938	0.988
Skewness (standard error)	0.602 (0.053)	0.393 (0.053)	0.321 (0.053)	0.251 (0.053)
Kurtosis (standard error)	0.534 (0.106)	-0.215 (0.106)	-0.236 (0.106)	-0.376 (0.106)
Cronbach's alpha reliability coeff.	0.677	0.643	0.675	0.643
Split-half reliability coefficient	0.677	0.542	0.651	0.507
Average inter-item correlations	0.348	0.377	0.416	0.375
Minimum-maximum correlations	0.314-0.417	0.332-0.435	0.366-0.496	0.317-0.458
Range of correlations	0.104	0.102	0.130	0.141
	Averag	ge inter-item corre	lations between su	ıbscales
Self-transcendence	_			
Conservation	0.244	_		
Openness to change	0.239	0.180	_	
Self-enhancement	0.216	0.246	0.279	_

Fig. 198 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, Switzerland (N = 2,141)

Table A671 Item analysis of Schwartz scale values of the European Social Survey, 2006: Switzerland (first half-sample: n = 902)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.43 (1.113)	2.36-2.50	19.5	39.8	24.3	8.9	6.2	0.4	0.9	0.76	0.15	0.251
SD11	1.89 (0.886)	1.83-1.94	36.1	45.5	12.4	3.8	1.0	0.4	0.8	1.28	2.51	0.285
UN3	1.92 (0.926)	1.86-1.98	35.4	45.5	12.1	3.5	2.5	0.1	0.9	1.29	2.04	0.196
UN8	2.04 (0.864)	1.99-2.10	24.7	53.4	14.6	3.9	2.2	-	1.1	1.10	1.82	0.236
UN19	1.81 (0.813)	1.75-1.86	39.5	44.7	12.2	2.8	0.8	-	0.1	1.03	1.30	0.217
BE12	2.13 (0.897)	2.07-2.19	23.4	48.7	19.7	5.5	1.7	0.1	0.9	0.85	0.96	0.318
BE18	1.67 (0.682)	1.63-1.72	43.1	47.1	7.5	0.9	0.3	-	1.0	0.94	1.64	0.399
TR9	2.54 (1.103)	2.47-2.61	14.2	43.2	23.2	11.2	6.3	0.7	1.2	0.74	0.13	0.131
TR20	2.88 (1.293)	2.80-2.96	12.6	32.5	25.9	13.7	12.2	2.5	0.4	0.49	-0.54	0.183
CO7	3.75 (1.372)	3.67-3.84	4.2	18.2	21.0	18.5	28.6	8.4	1.1	-0.17	-1.00	0.232
CO16	2.90 (1.328)	2.81-2.99	13.1	33.3	21.3	15.0	13.2	2.7	1.6	0.46	-0.69	0.317
SEC5	2.44 (1.193)	2.37-2.52	20.5	41.9	17.8	11.0	6.9	1.1	0.8	0.85	0.11	0.368
SEC14	2.69 (1.147)	2.62-2.77	11.8	40.0	23.3	14.3	7.6	1.0	2.0	0.62	-0.18	0.381
PO2	4.49 (1.141)	4.42-4.57	1.0	5.0	14.4	19.3	42.5	17.2	0.7	-0.72	-0.00	0.237
PO17	2.92 (1.287)	2.83-3.00	10.8	35.6	19.8	15.2	14.1	1.8	2.8	0.45	-0.74	0.351
AC4	3.17 (1.330)	3.08-3.26	8.9	27.8	24.3	16.0	19.8	2.3	0.9	0.20	-0.99	0.412
AC13	3.30 (1.275)	3.22-3.38	6.4	23.9	26.5	20.4	18.8	2.9	1.0	0.12	-0.86	0.357
HE10	2.20 (0.954)	2.13-2.26	22.2	47.7	21.2	5.8	2.5	0.3	0.3	0.94	1.17	0.410
HE21	3.12 (1.259)	3.04-3.21	8.5	25.3	31.0	17.3	14.5	2.8	0.6	0.28	-0.62	0.332
ST6	2.93 (1.319)	2.85-3.02	12.6	31.7	22.5	16.3	13.2	2.5	1.1	0.40	-0.72	0.394
ST15	4.12 (1.357)	4.03-4.21	3.8	10.5	19.0	16.7	35.8	13.6	0.6	-0.50	-0.66	0.238

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.163, respectively.

Table A672 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, Switzerland (first half-sample: n = 902)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Conservation	Openness to	Achievement	variance				
		change						
BE12	0.192	0.262	-0.083	0.903				
BE18	0.253	0.296	-0.025	0.839				
CO16	0.624	-0.027	-0.056	0.639				
SEC5	0.665	-0.006	0.011	0.552				
SEC14	0.595	0.126	-0.048	0.636				
PO17	0.441	-0.118	0.290	0.641				
AC4	0.010	-0.013	0.807	0.349				
AC13	-0.026	0.111	0.538	0.668				
HE10	0.009	0.674	0.034	0.527				
HE21	-0.026	0.711	-0.018	0.507				
ST6	-0.088	0.494	0.149	0.696				
Factors	Correl	ations between fa	ctors					
Conservation	_							
Openness to change	0.127	_						
Achievement	0.401	0.347	_					

Table A673 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Switzerland (first half-sample: n = 902)

		Subscale	
	Conservation	Openness to change	Achievement
Number of items	4	5	2
Mean (standard error)	2.74 (0.030)	2.41 (0.022)	3.24 (0.037)
95% Confidence interval	2.68-2.80	2.37-2.45	3.16-3.31
Standard deviation	0.890	0.668	1.111
Skewness (standard error)	0.390 (0.081)	0.546 (0.081)	0.121 (0.081)
Kurtosis (standard error)	-0.348 (0.163)	0.585 (0.163)	-0.693 (0.163)
Cronbach's alpha reliability coeff.	0.686	0.634	0.625
Split-half reliability coefficient	0.641	0.692	0.625
Average inter-item correlations	0.356	0.263	0.455
Minimum-maximum correlations	0.287-0.448	0.109-0.501	0.455-0.455
Range of correlations	0.161	0.393	0.000
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.178	_	
Achievement	0.274	0.223	_

Table A674 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, Switzerland (first half-sample: n = 902)

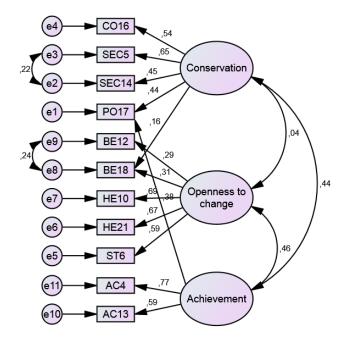

	Principal axis factor		
Variables	Factor I Conservation	Factor II Openness to change	Unique variance
BE18	0.194	0.240	0.879
CO16	0.576	-0.115	0.691
SEC5	0.658	-0.067	0.587
SEC14	0.538	0.036	0.699
PO17	0.611	-0.001	0.627
AC4	0.359	0.356	0.673
AC13	0.225	0.384	0.754
HE10	-0.059	0.666	0.575
HE21	-0.109	0.640	0.618
ST6	-0.086	0.584	0.679
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.278	_	

Table A675 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2006, Switzerland (second half-sample: n = 902)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.61	.048	.930	.943	.889	.063 (.052075)
2a	2 first-order correlated factors (10 items)-without cross-						
	loadings	10.53	.092	.802	.816	.741	.103 (.093113)
2b	2 first-order correlated factors						
	(10 items)-with cross-loadings	6.85	.058	.879	.894	.841	.081 (.070091)
3a	3 first-order correlated factors-						
	without cross-loadings	4.84	.055	.898	.916	.882	.065 (.056075)
3b	3 first-order correlated factors-						
	with cross-loadings	3.44	.042	.931	.949	.925	.052 (.042062)
4	3 first-order correlated factors of unified values	6.41	.072	.759	.786	.731	.077 (.070085)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

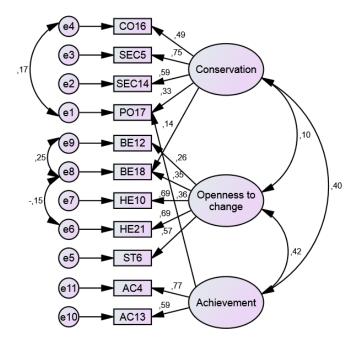


Fig. 199 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Switzerland (second half-sample: n = 902)

a Higher values indicate better model fit

Table A676 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, Switzerland (N = 1,804)

		Subscale	
	Conservation	Openness to change	Achievement
Number of items	4	5	2
Mean (standard error)	2.75 (0.021)	2.41 (0.016)	3.26 (0.027)
95% Confidence interval	2.71-2.79	2.38-2.44	3.21-3.31
Standard deviation	0.897	0.679	1.128
Skewness (standard error)	0.341 (0.058)	0.521 (0.058)	0.113 (0.058)
Kurtosis (standard error)	-0.434 (0.115)	0.561 (0.115)	-0.689 (0.115)
Cronbach's alpha reliability coeff.	0.680	0.645	0.623
Split-half reliability coefficient	0.636	0.699	0.623
Average inter-item correlations	0.349	0.270	0.453
Minimum-maximum correlations	0.272-0.444	0.143-0.503	0.453-0.453
Range of correlations	0.171	0.360	0.000
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.175	_	
Achievement	0.278	0.232	_

Fig. 200 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, Switzerland (N = 1,804)

Table A677 Item analysis of Schwartz scale values of the European Social Survey, 2008: Switzerland (first half-sample: n = 909)

				Frequ	ency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.36 (1.176)	2.28-2.43	24.0	38.4	21.0	7.8	5.9	1.3	1.5	0.94	0.50	0.239
SD11	1.73 (0.840)	1.67-1.78	45.5	39.4	9.8	2.1	1.0	0.3	1.9	1.50	3.43	0.233
UN3	1.95 (0.938)	1.89-2.01	34.5	42.4	14.5	3.6	2.5	0.1	2.3	1.18	1.64	0.214
UN8	1.99 (0.898)	1.93-2.05	30.8	45.3	15.6	4.2	1.5	0.2	2.3	1.07	1.62	0.200
UN19	1.86 (0.840)	1.81-1.91	37.2	43.2	13.1	4.1	0.7	-	1.8	0.95	0.87	0.241
BE12	2.00 (0.829)	1.95-2.06	27.9	47.2	18.2	4.0	0.6	0.1	2.1	0.76	0.87	0.290
BE18	1.67 (0.732)	1.62-1.71	45.2	43.9	6.8	1.5	0.3	0.2	2.0	1.39	3.85	0.332
TR9	2.66 (1.228)	2.58-2.74	14.4	39.8	21.3	10.8	9.5	1.8	2.4	0.73	-0.11	0.081
TR20	2.93 (1.371)	2.84-3.02	13.8	30.5	23.1	14.6	10.9	5.0	2.2	0.52	-0.53	0.265
CO7	3.54 (1.397)	3.45-3.64	6.8	21.0	20.2	17.2	24.4	6.4	4.0	-0.08	-1.02	0.258
CO16	2.99 (1.384)	2.90-3.08	13.1	31.0	20.6	12.5	18.2	2.5	2.1	0.36	-0.95	0.297
SEC5	2.41 (1.275)	2.33-2.49	25.7	35.6	16.7	9.0	9.2	1.1	2.5	0.85	-0.11	0.276
SEC14	2.60 (1.198)	2.52-2.68	16.7	38.2	20.4	12.0	8.1	1.1	3.5	0.66	-0.18	0.357
PO2	4.28 (1.222)	4.20-4.36	2.9	6.6	15.0	21.1	39.1	12.7	2.8	-0.72	0.01	0.226
PO17	2.92 (1.311)	2.83-3.00	14.4	27.8	22.2	15.5	13.9	1.8	4.4	0.32	-0.77	0.392
AC4	3.10 (1.367)	3.02-3.19	11.9	26.4	22.6	16.3	17.7	3.0	2.2	0.23	-0.93	0.366
AC13	3.11 (1.318)	3.03-3.20	10.3	25.3	26.8	14.7	17.2	2.8	2.9	0.26	-0.80	0.397
HE10	2.17 (0.972)	2.11-2.24	24.0	44.7	21.0	5.4	2.6	0.4	1.9	0.98	1.26	0.323
HE21	3.01 (1.260)	2.93-3.09	10.1	27.5	29.8	16.2	11.4	3.2	1.8	0.41	-0.44	0.297
ST6	2.89 (1.344)	2.80-2.98	14.9	29.4	24.5	13.0	12.5	3.3	2.4	0.47	-0.58	0.336
ST15	3.94 (1.436)	3.85-4.04	5.0	13.3	20.5	18.6	25.0	15.7	2.0	-0.26	-0.90	0.236

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table A678 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, Switzerland (first half-sample: n = 909)

Variables	Principal axis factor	Unique	
variables _	Factor I Self-enhancement	Factor II Openness to change	variance
SEC14	0.365	-0.170	0.887
PO17	0.517	-0.159	0.754
AC4	0.634	0.064	0.561
AC13	0.636	0.094	0.539
HE10	-0.038	0.584	0.675
ST6	-0.057	0.708	0.528
	Correlations be	tween factors	
Self-enhancement	_		
Openness to change	0.399	_	

Table A679 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Switzerland (first half-sample: n = 909)

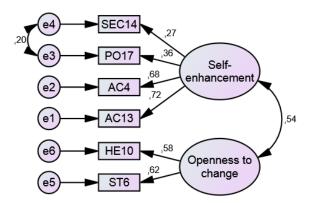

	Sub	scale
	Self-enhancement	Openness to change
Number of items	4	2
Mean (standard error)	2.93 (0.029)	2.53 (0.032)
95% Confidence interval	2.88-2.99	2.47-2.60
Standard deviation	0.880	0.975
Skewness (standard error)	0.170 (0.081)	0.557 (0.081)
Kurtosis (standard error)	-0.333 (0.162)	0.127 (0.162)
Cronbach's alpha reliability coeff.	0.606	0.553
Split-half reliability coefficient	0.501	0.553
Average inter-item correlations	0.274	0.402
Minimum-maximum correlations	0.144-0.482	0.402-0.402
Range of correlations	0.338	0.000
	Average inter-i	tem correlations
	between	subscales
Self-enhancement	_	
Openness to change	0.192	_

Table A680 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of three models: European Social Survey 2008, Switzerland (second half-sample: n = 910)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	3.92	.032	.960	.969	.934	.057 (.035080)
2	2 first-order correlated factors- without cross-loadings	3.92	.032	.960	.969	.934	.057 (.035080)
3	3 first-order correlated factors of unified values	6.89	.078	.758	.783	.727	.081 (.073088)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

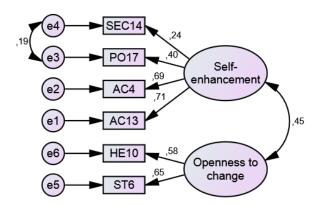

a Higher values indicate better model fit b Lower values indicate better model fit

Fig. 201 Standardized solution for the 2 first-order correlated factors (model 2) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Switzerland (second half-sample: n = 910)

Table A681 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, Switzerland (N = 1,819)

	Subscale		
	Self-enhancement	Openness to change	
Number of items	4	2	
Mean (standard error)	2.94 (0.021)	2.54 (0.023)	
95% Confidence interval	2.90-2.98	2.49-2.58	
Standard deviation	0.878	0.971	
Skewness (standard error)	0.200 (0.057)	0.612 (0.057)	
Kurtosis (standard error)	-0.209 (0.115)	0.263 (0.115)	
Cronbach's alpha reliability coeff.	0.609	0.537	
Split-half reliability coefficient	0.502	0.537	
Average inter-item correlations	0.277	0.379	
Minimum-maximum correlations	0.168-0.483	0.379-0.379	
Range of correlations	0.315	0.000	
	Average inter-i	tem correlations	
	between subscales		
Self-enhancement	_		
Openness to change	0.202	_	

Fig. 202 Standardized solution for the 2 first-order correlated factors (model 2) without cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, Switzerland (N = 1,819)

Table A682 Item analysis of Schwartz scale values of the European Social Survey, 2010: Switzerland (first half-sample: n = 753)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.33 (1.120)	2.25-2.41	23.8	40.0	20.8	8.8	5.3	0.5	0.8	0.84	0.29	0.289
SD11	1.77 (0.845)	1.71-1.83	43.0	42.2	10.2	2.7	1.2	0.1	0.5	1.34	2.50	0.345
UN3	1.85 (0.912)	1.78-1.92	38.5	45.6	10.4	2.5	2.0	0.5	0.5	1.55	3.48	0.252
UN8	2.01 (0.888)	1.95-2.07	29.0	48.6	15.5	4.4	1.9	-	0.7	1.00	1.25	0.342
UN19	1.82 (0.873)	1.76-1.89	41.2	39.8	15.0	1.7	1.3	0.3	0.7	1.23	2.24	0.329
BE12	1.96 (0.849)	1.90-2.02	29.9	49.9	15.5	2.3	1.7	0.1	0.5	1.11	2.16	0.459
BE18	1.60 (0.702)	1.55-1.65	48.9	44.1	4.6	1.1	0.8	-	0.5	1.47	3.92	0.400
TR9	2.47 (1.141)	2.39-2.55	17.0	43.6	22.3	7.7	7.7	0.8	0.9	0.89	0.35	0.105
TR20	2.74 (1.387)	2.64-2.84	19.3	32.5	20.6	13.0	10.1	4.0	0.5	0.62	-0.47	0.273
CO7	3.49 (1.389)	3.39-3.59	7.7	20.7	21.0	19.1	25.6	4.8	1.1	-0.08	-1.05	0.297
CO16	2.80 (1.281)	2.71-2.89	13.4	36.1	22.2	13.0	11.8	2.0	1.5	0.57	-0.50	0.399
SEC5	2.30 (1.247)	2.21-2.39	29.2	37.5	17.5	6.5	7.6	1.5	0.3	1.02	0.41	0.411
SEC14	2.37 (1.168)	2.29-2.45	22.8	39.0	21.2	7.7	6.0	1.3	1.9	0.94	0.54	0.441
PO2	4.19 (1.158)	4.11-4.27	1.5	8.0	17.7	23.9	39.3	8.9	0.8	-0.57	-0.30	0.279
PO17	2.80 (1.336)	2.71-2.90	17.7	29.9	21.8	13.7	13.4	1.6	2.0	0.42	-0.77	0.421
AC4	3.04 (1.372)	2.94-3.14	11.4	31.2	22.3	13.8	17.8	2.9	0.5	0.35	-0.93	0.409
AC13	3.11 (1.321)	3.01-3.20	9.4	28.8	25.0	16.6	16.5	2.9	0.8	0.29	-0.83	0.467
HE10	2.12 (0.995)	2.05-2.19	27.1	46.1	17.3	5.2	3.5	0.3	0.7	1.08	1.26	0.391
HE21	2.94 (1.261)	2.85-3.03	11.8	29.0	27.5	16.6	12.1	2.0	1.1	0.36	-0.60	0.405
ST6	2.73 (1.303)	2.64-2.82	17.9	32.0	22.6	14.7	10.4	1.9	0.5	0.50	-0.57	0.400
ST15	3.89 (1.445)	3.79-4.00	6.2	13.4	20.2	16.6	30.3	12.4	0.9	-0.33	-0.90	0.239

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.089 and 0.178, respectively.

Table A683 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, Switzerland (first half-sample: n = 753)

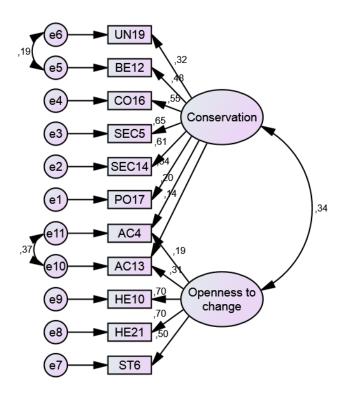
	Principal axis factor analysis (factors)					
•	Factor I	Factor II	Factor III	Unique		
Item	Openness to	Conservation	Self-	variance		
	change		transcendence			
SD11	0.309	0.053	0.218	0.810		
UN8	0.113	-0.021	0.466	0.757		
UN19	-0.029	0.098	0.519	0.700		
BE12	0.127	0.128	0.547	0.590		
BE18	0.120	0.112	0.491	0.668		
CO16	-0.114	0.519	0.174	0.688		
SEC5	-0.171	0.678	0.138	0.534		
SEC14	-0.063	0.453	0.303	0.650		
PO17	0.000	0.568	0.067	0.651		
AC4	0.350	0.498	-0.317	0.530		
AC13	0.398	0.378	-0.129	0.617		
HE10	0.645	-0.167	0.235	0.547		
HE21	0.669	-0.073	0.091	0.556		
ST6	0.641	-0.075	0.028	0.613		
Factors	Correl	ations between fa	actors			
Openness to change	_					
Conservation	0.373	_				
Self-transcendence	0.188	0.283	_			

Table A684 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Switzerland (first half-sample: n = 753)

		Subscale	
	Openness to change	Conservation	Self- transcendence
Number of items	5	5	4
Mean (standard error)	2.53 (0.028)	2.66 (0.031)	1.85 (0.022)
95% Confidence interval	2.48-2.59	2.60-2.72	1.81-1.89
Standard deviation	0.772	0.854	0.599
Skewness (standard error)	0.407 (0.089)	0.472 (0.089)	1.091 (0.089)
Kurtosis (standard error)	0.018 (0.178)	-0.127 (0.178)	2.699 (0.178)
Cronbach's alpha reliability coeff.	0.685	0.686	0.691
Split-half reliability coefficient	0.695	0.707	0.685
Average inter-item correlations	0.307	0.307	0.363
Minimum-maximum correlations	0.205-0.502	0.101-0.426	0.319-0.430
Range of correlations	0.298	0.325	0.111
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.220	_	
Self-transcendence	0.235	0.240	_

Table A685 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, Switzerland (first half-sample: n = 753)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Conservation	Openness to change	
SD11	0.139	0.326	0.840
UN19	0.325	0.004	0.894
BE12	0.358	0.157	0.804
BE18	0.328	0.148	0.834
CO16	0.586	-0.077	0.685
SEC5	0.730	-0.129	0.522
SEC14	0.576	-0.015	0.674
PO17	0.574	0.038	0.653
AC4	0.278	0.332	0.743
AC13	0.272	0.414	0.670
HE10	-0.070	0.643	0.616
HE21	-0.062	0.697	0.543
ST6	-0.098	0.658	0.606
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.380	_	


Table A686 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-11 items): European Social Survey 2010, Switzerland (first half-sample: n = 753)

Variables	Principal axis factor	Unique	
v arrables	Factor I Conservation	Factor II Openness to change	Unique variance
UN19	0.311	-0.011	0.906
BE12	0.344	0.146	0.824
CO16	0.583	-0.068	0.683
SEC5	0.731	-0.121	0.515
SEC14	0.574	-0.006	0.673
PO17	0.568	0.037	0.661
AC4	0.290	0.340	0.731
AC13	0.282	0.420	0.659
HE10	-0.061	0.621	0.638
HE21	-0.053	0.698	0.537
ST6	-0.086	0.655	0.604
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.380	_	

Table A687 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of seven models: European Social Survey 2010, Switzerland (second half-sample: n = 753)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLI ^a	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.55	.058	.854	.881	.833	.069 (.061077)
2a	2 first-order correlated factors (13 items)-without cross-						
	loadings	5.59	.063	.814	.841	.796	.078 (.070086)
2b	2 first-order correlated factors						
	(13 items)-with cross-loadings	5.70	.063	.817	.842	.792	.079 (.071087)
2c	2 first-order correlated factors						
	(11 items)-with cross-loadings	4.66	.053	.877	.900	.859	.070 (.060080)
3a	3 first-order correlated factors-						
	without cross-loadings	6.19	.073	.774	.801	.756	.083 (.076090)
3b	3 first-order correlated factors-						
	with cross-loadings	5.89	.064	.799	.826	.770	.081 (.073088)
4	3 first-order correlated factors						
	of unified values	5.78	.076	.790	.818	.771	.080 (.072088)

b Lower values indicate better model fit

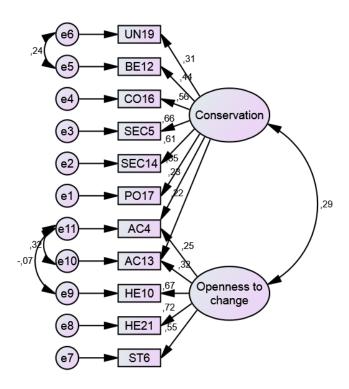


Fig. 203 Standardized solution for the 2 first-order correlated factors (model 2c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Switzerland (second half-sample: n = 753)

a Higher values indicate better model fit

Table A688 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, Switzerland (N = 1,506)

	Su	bscale
	Conservation	Openness to change
Number of items	6	5
Mean (standard error)	2.33 (0.019)	2.79 (0.021)
95% Confidence interval	2.29-2.37	2.75-2.84
Standard deviation	0.727	0.834
Skewness (standard error)	0.413 (0.063)	0.305 (0.063)
Kurtosis (standard error)	-0.104 (0.126)	-0.257 (0.126)
Cronbach's alpha reliability coeff.	0.703	0.684
Split-half reliability coefficient	0.659	0.649
Average inter-item correlations	0.285	0.307
Minimum-maximum correlations	0.165-0.427	0.160-0.502
Range of correlations	0.262	0.343
	Average inter-	item correlations
	between	n subscales
Conservation	_	
Openness to change	0.204	_

Fig. 204 Standardized solution for the 2 first-order correlated factors (model 2c-11 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, Switzerland (N = 1,506)

Table A689 Item analysis of Schwartz scale values of the European Social Survey, 2012: Switzerland (first half-sample: n = 746)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.24 (1.081)	2.16-2.31	26.9	38.5	22.5	7.1	3.8	0.7	0.5	0.89	0.62	0.203
SD11	1.69 (0.805)	1.64-1.75	47.5	39.3	10.3	1.7	0.8	0.1	0.3	1.34	2.59	0.322
UN3	1.90 (0.974)	1.83-1.97	38.7	42.1	12.3	3.4	2.3	0.7	0.5	1.46	2.71	0.225
UN8	2.08 (0.884)	2.01-2.14	24.9	50.5	18.2	4.6	1.2	0.4	0.1	1.02	1.82	0.197
UN19	1.83 (0.890)	1.77-1.90	40.6	41.8	12.9	3.1	1.1	0.4	0.1	1.31	2.47	0.209
BE12	1.87 (0.792)	1.81-1.93	33.8	49.6	12.7	3.6	0.1	0.1	-	0.90	1.25	0.396
BE18	1.62 (0.696)	1.57-1.67	47.6	44.5	6.0	1.3	0.4	-	0.1	1.19	2.35	0.395
TR9	2.43 (1.083)	2.35-2.50	17.4	44.2	22.3	10.5	4.6	0.8	0.3	0.83	0.44	0.120
TR20	2.70 (1.303)	2.60-2.79	16.8	35.5	24.0	11.7	8.3	3.5	0.3	0.72	-0.11	0.270
CO7	3.34 (1.444)	3.24-3.44	8.8	25.5	20.9	16.6	19.6	7.1	1.5	0.18	-1.03	0.280
CO16	2.74 (1.280)	2.65-2.83	15.8	33.6	25.2	12.2	10.5	2.1	0.5	0.58	-0.38	0.380
SEC5	2.19 (1.181)	2.10-2.27	33.0	35.3	18.6	7.0	4.4	1.5	0.3	1.07	0.81	0.405
SEC14	2.25 (1.031)	2.17-2.32	22.9	43.3	21.4	6.8	3.1	0.8	1.6	0.99	1.12	0.368
PO2	4.25 (1.228)	4.17-4.34	1.6	8.4	16.5	24.1	34.9	14.3	0.1	-0.51	-0.42	0.302
PO17	2.80 (1.313)	2.71-2.90	16.2	31.2	22.3	14.9	11.1	2.3	2.0	0.47	-0.59	0.482
AC4	2.86 (1.353)	2.76-2.96	15.8	31.1	22.3	16.0	11.7	3.1	0.1	0.46	-0.66	0.486
AC13	2.95 (1.270)	2.85-3.04	10.7	31.2	27.9	15.7	11.5	2.8	0.1	0.46	-0.49	0.463
HE10	2.10 (0.985)	2.03-2.17	29.4	43.2	18.5	6.3	2.3	0.3	0.1	0.95	0.86	0.448
HE21	2.88 (1.259)	2.79-2.97	12.7	29.6	29.4	14.2	11.4	2.1	0.5	0.44	-0.47	0.399
ST6	2.64 (1.246)	2.55-2.73	18.5	33.9	23.2	15.0	7.6	1.6	0.1	0.56	-0.37	0.406
ST15	3.72 (1.471)	3.62-3.83	7.1	18.0	18.6	18.5	26.5	10.7	0.5	-0.19	-1.04	0.239

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.090 and 0.179, respectively.

Table A690 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, Switzerland (first half-sample: n = 746)

	Principal axis factor analysis (factors)						
	Factor I	Factor II	Factor III	Unique			
Item	Openness to	Self-	Conservation	variance			
	change	enhancement					
SD11	0.429	0.037	-0.039	0.811			
BE12	0.247	-0.166	0.369	0.811			
BE18	0.242	-0.163	0.400	0.788			
CO16	-0.134	0.040	0.621	0.633			
SEC5	-0.101	0.164	0.546	0.627			
SEC14	0.036	-0.023	0.481	0.767			
PO2	-0.049	0.587	-0.052	0.705			
PO17	-0.026	0.418	0.318	0.603			
AC4	0.099	0.661	0.007	0.489			
AC13	0.115	0.687	-0.074	0.495			
HE10	0.697	0.047	0.015	0.473			
HE21	0.555	0.035	0.050	0.650			
ST6	0.566	0.041	-0.030	0.669			
Factors	Correlations between factors						
Openness to change	_						
Self-enhancement	0.453	_					
Conservation	0.352	0.511	_				

Table A691 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Switzerland (first half-sample: n = 746)

		Subscale	
	Openness to change	Self- enhancement	Conservation
Number of items	4	4	5
Mean (standard error)	2.33 (0.028)	3.21 (0.035)	2.13 (0.023)
95% Confidence interval	2.27-2.38	3.15-3.28	2.09-2.18
Standard deviation	0.767	0.952	0.637
Skewness (standard error)	0.576 (0.090)	0.371 (0.090)	0.495 (0.090)
Kurtosis (standard error)	0.134 (0.179)	-0.264 (0.179)	0.026 (0.179)
Cronbach's alpha reliability coeff.	0.660	0.720	0.608
Split-half reliability coefficient	0.706	0.760	0.609
Average inter-item correlations	0.331	0.391	0.245
Minimum-maximum correlations	0.181-0.480	0.299-0.519	0.145-0.391
Range of correlations	0.299	0.220	0.247
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.272	_	
Conservation	0.196	0.231	_

Table A692 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-11 items): European Social Survey 2012, Switzerland (first half-sample: n = 746)

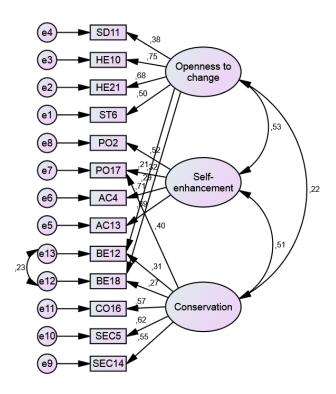

	Principal axis factor	analysis (factors)	
Variables	-	Unique	
_	Factor I	Factor II	variance
	Conservation	Openness to change	
SD11	-0.086	0.461	0.823
CO16	0.580	-0.195	0.749
SEC5	0.643	-0.148	0.668
SEC14	0.416	-0.048	0.846
PO2	0.388	0.129	0.779
PO17	0.629	0.026	0.586
AC4	0.468	0.280	0.561
AC13	0.409	0.314	0.595
HE10	-0.061	0.731	0.510
HE21	-0.015	0.575	0.679
ST6	-0.095	0.606	0.687
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.545	_	

Table A693 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2012, Switzerland (second half-sample: n = 747)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.33	.054	.888	.911	.863	.067 (.058076)
2a	2 first-order correlated factors (11 items)-without cross-						` ,
	loadings	4.14	.044	.905	.925	.892	.065 (.055076)
2b	2 first-order correlated factors						
	(11 items)-with cross-loadings	4.30	.042	.906	.925	.886	.067 (.056078)
3a	3 first-order correlated factors-						
	without cross-loadings	5.56	.066	.829	.854	.813	.078 (.070086)
3b	3 first-order correlated factors-						
	with cross-loadings	3.97	.048	.884	.909	.878	.063 (.055072)
4	3 first-order correlated factors						
	of unified values	5.81	.075	.776	.805	.751	.080 (.072088)

a Higher values indicate better model fit

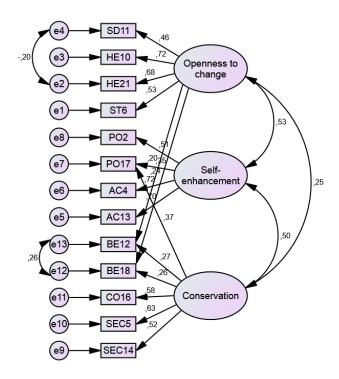

b Lower values indicate better model fit

Fig. 205 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Switzerland (second half-sample: n = 747)

Table A694 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, Switzerland (N = 1,493)

		Subscale	
	Openness to	Self-	Conservation
	change	enhancement	
Number of items	4	4	5
Mean (standard error)	2.32 (0.020)	3.19 (0.024)	2.14 (0.017)
95% Confidence interval	2.29-2.36	3.14-3.24	2.11-2.18
Standard deviation	0.755	0.933	0.645
Skewness (standard error)	0.530 (0.063)	0.344 (0.063)	0.568 (0.063)
Kurtosis (standard error)	0.122 (0.127)	-0.222 (0.127)	0.358 (0.127)
Cronbach's alpha reliability coeff.	0.653	0.712	0.619
Split-half reliability coefficient	0.717	0.740	0.609
Average inter-item correlations	0.324	0.382	0.254
Minimum-maximum correlations	0.179-0.499	0.288-0.496	0.162-0.376
Range of correlations	0.321	0.207	0.213
	Average inter-i	tem correlations be	etween subscales
Openness to change	_		
Self-enhancement	0.262	_	
Conservation	0.237	0.194	_

Fig. 206 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, Switzerland (N = 1,493)

Table A695 Item analysis of Schwartz scale values of the European Social Survey, 2014: Switzerland (first half-sample: n = 766)

				Frequency percent of response categories					ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.21 (1.094)	2.14-2.29	29.6	35.1	23.5	7.2	3.5	0.7	0.4	0.85	0.47	0.211
SD11	1.75 (0.868)	1.69-1.81	45.3	39.6	10.8	2.6	1.2	0.3	0.3	1.41	2.73	0.248
UN3	1.94 (0.996)	1.87-2.01	38.5	39.0	14.8	4.2	2.3	0.5	0.7	1.27	1.84	0.270
UN8	2.03 (0.923)	1.96-2.09	29.4	46.9	16.7	4.0	2.1	0.3	0.7	1.09	1.66	0.309
UN19	1.84 (0.930)	1.77-1.91	42.7	37.3	14.4	3.5	1.0	0.5	0.5	1.29	2.18	0.311
BE12	1.90 (0.870)	1.84-1.97	34.9	45.7	14.4	3.1	1.2	0.3	0.5	1.14	2.03	0.411
BE18	1.57 (0.708)	1.52-1.62	53.0	39.2	5.7	1.0	0.7	-	0.4	1.46	3.32	0.400
TR9	2.42 (1.160)	2.34-2.50	20.1	41.8	21.0	9.0	6.0	1.3	0.8	0.91	0.45	0.107
TR20	2.81 (1.357)	2.71-2.91	16.2	32.6	22.8	13.6	10.3	3.9	0.5	0.58	-0.46	0.305
CO7	3.38 (1.466)	3.27-3.48	8.5	26.1	19.1	17.2	19.7	8.1	1.3	0.16	-1.07	0.219
CO16	2.75 (1.331)	2.66-2.85	17.2	34.3	20.2	13.7	12.4	1.8	0.3	0.52	-0.67	0.364
SEC5	2.28 (1.287)	2.19-2.37	34.2	30.5	17.0	9.0	8.0	0.9	0.4	0.87	-0.13	0.393
SEC14	2.37 (1.189)	2.29-2.46	24.4	37.1	20.4	9.0	6.4	1.0	1.7	0.86	0.22	0.417
PO2	4.37 (1.181)	4.28-4.45	2.0	5.5	14.1	26.1	36.4	15.7	0.3	-0.66	0.06	0.250
PO17	2.70 (1.328)	2.61-2.80	19.7	32.6	18.5	14.9	12.0	1.2	1.0	0.48	-0.78	0.453
AC4	3.00 (1.350)	2.90-3.09	13.3	28.5	22.7	18.0	14.1	2.9	0.5	0.30	-0.83	0.424
AC13	3.06 (1.326)	2.97-3.16	11.1	27.9	24.4	19.5	13.4	3.4	0.3	0.29	-0.75	0.434
HE10	2.05 (0.999)	1.98-2.12	32.4	41.9	16.3	6.5	2.1	0.4	0.4	1.04	1.06	0.394
HE21	2.83 (1.277)	2.74-2.92	15.4	28.6	27.3	16.1	10.4	2.0	0.3	0.40	-0.57	0.390
ST6	2.74 (1.297)	2.65-2.83	17.4	32.8	21.8	15.8	9.8	2.0	0.5	0.50	-0.56	0.389
ST15	3.72 (1.458)	3.61-3.82	6.5	18.8	18.4	18.7	26.8	10.3	0.5	-0.17	-1.05	0.252

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.088 and 0.176, respectively.

Table A696 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, Switzerland (first half-sample: n = 766)

	Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Conservation	Openness to	Self-	Self-	variance		
		change	transcendence	enhancement			
UN8	-0.083	0.039	0.557	-0.053	0.718		
UN19	0.144	0.035	0.459	-0.134	0.738		
BE12	0.110	-0.005	0.609	-0.045	0.583		
BE18	-0.041	-0.002	0.635	0.075	0.587		
TR20	0.550	0.052	0.008	-0.110	0.724		
CO16	0.508	-0.055	0.056	0.047	0.703		
SEC5	0.531	-0.113	-0.005	0.219	0.600		
SEC14	0.639	0.098	-0.021	-0.049	0.598		
PO17	0.329	-0.077	0.079	0.378	0.627		
AC4	-0.076	0.039	-0.076	0.884	0.275		
AC13	0.156	0.167	-0.062	0.412	0.695		
HE10	-0.038	0.555	0.091	0.098	0.611		
HE21	0.116	0.871	-0.099	-0.074	0.290		
ST6	-0.173	0.419	0.186	0.204	0.668		
Factors		Correlations b	etween factors				
Conservation	_						
Openness to change	0.175	_					
Self-transcendence	0.412	0.332	_				
Self-enhancement	0.418	0.336	0.290	_			

Table A697 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Switzerland (first half-sample: n = 766)

	Subscale					
	Conservation	Openness to change	Self- transcendence	Self- enhancement		
Number of items	4	3	4	3		
Mean (standard error)	2.55 (0.033)	2.54 (0.034)	1.83 (0.022)	2.92 (0.037)		
95% Confidence interval	2.49-2.62	2.47-2.61	1.79-1.88	2.85-2.99		
Standard deviation	0.902	0.935	0.603	1.019		
Skewness (standard error)	0.596 (0.088)	0.593 (0.088)	0.936 (0.088)	0.293 (0.088)		
Kurtosis (standard error)	0.023 (0.176)	0.127 (0.176)	1.838 (0.176)	-0.424 (0.176)		
Cronbach's alpha reliability coeff.	0.649	0.679	0.652	0.642		
Split-half reliability coefficient	0.619	0.665	0.680	0.565		
Average inter-item correlations	0.320	0.424	0.328	0.374		
Minimum-maximum correlations	0.269-0.420	0.364-0.509	0.272-0.460	0.292-0.451		
Range of correlations	0.151	0.145	0.189	0.159		
	Averag	ge inter-item corre	elations between su	ibscales		
Conservation	_					
Openness to change	0.198	_				
Self-transcendence	0.224	0.243	_			
Self-enhancement	0.273	0.279	0.211	_		

Table A698 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, Switzerland (first half-sample: n = 766)

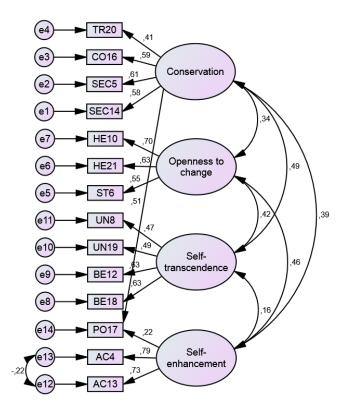

	Principal axis factor		
Variables			Unique
_	Factor I	Factor II	variance
	Conservation	Openness to change	
UN19	0.241	0.077	0.922
BE12	0.309	0.126	0.858
BE18	0.239	0.210	0.859
TR20	0.478	-0.071	0.793
CO16	0.574	-0.102	0.707
SEC5	0.672	-0.096	0.591
SEC14	0.581	-0.023	0.673
PO17	0.560	0.079	0.646
AC4	0.292	0.361	0.701
AC13	0.303	0.325	0.725
HE10	-0.060	0.662	0.589
HE21	-0.043	0.650	0.598
ST6	-0.095	0.640	0.629
	Correlations be	tween factors	
Conservation	_		
Openness to change	0.395	_	

Table A699 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2014, Sweden (second half-sample: n = 766)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.09	.053	.871	.898	.855	.064 (.056072)
2a	2 first-order correlated factors (13 items)-without cross-						, ,
	loadings	4.18	.051	.875	.901	.862	.064 (.056073)
2b	2 first-order correlated factors						
	(13 items)-with cross-loadings	3.98	.048	.885	.910	.870	.062 (.054071)
3a	4 first-order correlated factors-						
	without cross-loadings	4.02	.053	.862	.891	.859	.063 (.055071)
3b	4 first-order correlated factors-						
	with cross-loadings	3.53	.046	.880	.910	.881	.058 (.050065)
4	3 first-order correlated factors						
	of unified values	6.64	.079	.746	.773	.714	.086 (.078094)

a Higher values indicate better model fit

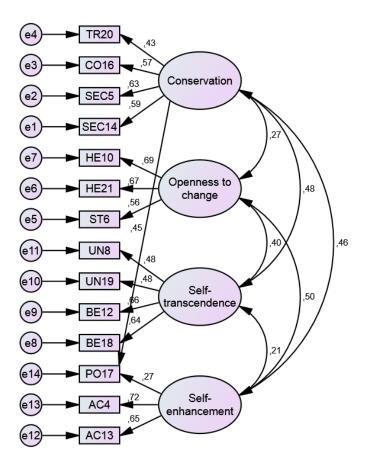

b Lower values indicate better model fit

Fig. 207 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Switzerland (second half-sample: n = 766)

Table A700 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, Switzerland (N = 1,532)

		Sub	scale		
	Conservation	Openness to	Self-	Self-	
		change	transcendence	enhancement	
Number of items	4	3	4	3	
Mean (standard error)	2.53 (0.022)	2.51 (0.023)	1.84 (0.015)	2.88 (0.026)	
95% Confidence interval	2.49-2.58	2.46-2.55	1.81-1.87	2.83-2.93	
Standard deviation	0.872	0.909	0.591	1.021	
Skewness (standard error)	0.567 (0.063)	0.561 (0.063)	1.091 (0.063)	0.339 (0.063)	
Kurtosis (standard error)	0.092 (0.125)	0.053 (0.125)	3.037 (0.125)	-0.368 (0.125	
Cronbach's alpha reliability coeff.	0.634	0.661	0.645	0.643	
Split-half reliability coefficient	0.598	0.636	0.626	0.498	
Average inter-item correlations	0.306	0.406	0.320	0.374	
Minimum-maximum correlations	0.243-0.421	0.364-0.489	0.270-0.421	0.304-0.468	
Range of correlations	0.179	0.125	0.152	0.164	
	Averag	ge inter-item corre	lations between su	ıbscales	
Conservation	_				
Openness to change	0.200				
Self-transcendence	0.218	0.235			
Self-enhancement	0.266	0.278	0.202		

Fig. 208 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, Switzerland (N = 1,532)

Table A701 Item analysis of Schwartz scale values of the European Social Survey, 2002: United Kingdom (first half-sample: n = 911)

				Frequency percent of response categories								
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.46 (1.214)	2.38-2.54	24.8	31.7	21.2	14.6	5.7	0.8	1.2	0.59	-0.42	0.379
SD11	2.20 (1.096)	2.13-2.27	29.7	37.4	18.0	11.0	2.4	0.7	0.8	0.84	0.28	0.411
UN3	2.30 (1.144)	2.23-2.38	27.3	36.1	17.7	14.1	2.7	0.9	1.2	0.75	-0.02	0.294
UN8	2.40 (1.057)	2.33-2.46	20.0	40.3	22.0	13.9	3.1	0.1	0.7	0.55	-0.32	0.376
UN19	2.36 (1.111)	2.28-2.43	24.7	34.2	22.5	13.6	2.6	0.7	1.6	0.61	-0.15	0.397
BE12	2.33 (1.041)	2.26-2.39	23.2	37.9	23.2	12.7	2.4	-	0.7	0.51	-0.44	0.407
BE18	2.11 (0.961)	2.05-2.17	28.2	42.2	17.3	9.0	1.3	-	2.0	0.75	0.07	0.443
TR9	2.96 (1.300)	2.87-3.04	13.1	28.2	24.3	18.6	12.3	2.3	1.3	0.31	-0.72	0.273
TR20	2.98 (1.477)	2.88-3.08	18.0	26.5	18.0	16.8	14.1	5.2	1.5	0.35	-0.93	0.314
CO7	3.19 (1.341)	3.10-3.27	10.3	24.3	23.9	21.2	15.5	3.8	1.0	0.17	-0.83	0.257
CO16	2.74 (1.255)	2.66-2.82	16.9	31.7	20.3	18.6	8.8	1.2	2.5	0.39	-0.67	0.375
SEC5	2.27 (1.175)	2.20-2.35	29.6	35.7	16.5	12.0	4.9	0.4	0.9	0.80	-0.12	0.353
SEC14	2.47 (1.255)	2.39-2.55	23.7	34.5	17.6	14.2	6.1	1.6	2.3	0.74	-0.17	0.381
PO2	4.20 (1.284)	4.11-4.28	4.5	7.0	14.5	22.8	38.0	11.9	1.3	-0.74	-0.03	0.312
PO17	3.55 (1.325)	3.46-2.63	6.9	17.8	21.1	24.4	22.9	4.6	2.3	-0.19	-0.83	0.436
AC4	3.17 (1.365)	3.08-3.26	11.0	25.0	22.3	21.5	14.5	4.5	1.2	0.20	-0.83	0.482
AC13	3.31 (1.413)	3.22-3.40	11.4	21.2	19.9	20.7	20.4	4.4	2.0	0.01	-1.01	0.509
HE10	3.52 (1.374)	3.43-3.61	7.7	18.4	21.1	22.9	22.8	5.8	1.2	-0.10	-0.91	0.397
HE21	2.97 (1.349)	2.88-3.05	15.8	24.6	22.5	21.7	10.4	3.4	1.5	0.26	-0.73	0.480
ST6	2.93 (1.324)	2.84-3.01	14.7	28.2	22.0	19.8	11.3	2.6	1.4	0.32	-0.74	0.481
ST15	3.78 (1.402)	3.69-3.88	7.1	14.2	17.8	21.0	29.5	8.2	2.2	-0.37	-0.82	0.382

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table A702 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2002, United Kingdom (first half-sample: n = 911)

	Pr				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Self-	Openness to	Hedonism	variance
		enhancement	change		
SD1	-0.039	0.190	0.604	-0.195	0.641
SD11	0.125	-0.046	0.376	0.160	0.750
UN8	0.212	-0.100	0.442	-0.050	0.736
UN19	0.464	-0.117	0.379	-0.075	0.565
BE12	0.383	-0.105	0.314	0.035	0.686
BE18	0.473	-0.007	0.184	0.070	0.666
TR20	0.497	0.070	0.020	-0.039	0.739
CO16	0.654	0.083	-0.129	0.010	0.604
SEC5	0.480	0.204	-0.114	0.026	0.749
SEC14	0.528	0.013	0.024	0.091	0.695
PO2	-0.035	0.480	-0.110	0.236	0.633
PO17	0.293	0.588	-0.106	-0.023	0.612
AC4	0.038	0.724	0.132	-0.071	0.442
AC13	-0.012	0.648	0.202	0.024	0.422
HE10	-0.058	0.187	-0.023	0.625	0.457
HE21	0.159	-0.062	-0.059	0.886	0.285
ST6	-0.075	0.069	0.600	0.149	0.517
ST15	-0.228	0.143	0.383	0.336	0.526
Factors		Correlations be	etween factors		
Conservation	_				
Self-enhancement	0.075	_			
Openness to change	0.331	0.368	_		
Hedonism	0.047	0.576	0.453	_	

Table A703 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, United Kingdom (first half-sample: n = 911)

		Sub	scale	
	Conservation	Self- enhancement	Openness to change	Hedonism
Number of items	7	4	5	2
Mean (standard error)	2.47 (0.024)	3.56 (0.034)	2.75 (0.027)	3.24 (0.040)
95% Confidence interval	2.42-2.51	3.49-3.62	2.70-2.81	3.17-3.32
Standard deviation	0.738	1.011	0.801	1.215
Skewness (standard error)	0.323 (0.081)	-0.121 (0.081)	0.163 (0.081)	0.058 (0.081)
Kurtosis (standard error)	-0.306 (0.162)	-0.577 (0.162)	-0.375 (0.162)	-0.728 (0.162)
Cronbach's alpha reliability coeff.	0.732	0.742	0.664	0.744
Split-half reliability coefficient	0.712	0.780	0.639	0.744
Average inter-item correlations	0.287	0.416	0.282	0.592
Minimum-maximum correlations	0.186-0.404	0.328-0.576	0.149-0.488	0.592-0.592
Range of correlations	0.218	0.248	0.338	0.000
	Averag	ge inter-item corre	lations between su	ibscales
Conservation	_			
Self-enhancement	0.213	_		
Openness to change	0.211	0.264	_	
Hedonism	0.221	0.389	0.281	_

Table A704 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2002, United Kingdom (first half-sample: n = 911)

	Principal a	xis factor analysis	(factors)	
	Factor I	Factor II	Factor III	Unique
Item	Self-	Conservation	Openness to	variance
	enhancement		change	
SD1	0.106	0.031	0.438	0.749
SD11	0.081	0.087	0.428	0.751
UN8	-0.132	0.192	0.459	0.737
UN19	-0.192	0.437	0.424	0.562
BE12	-0.099	0.343	0.383	0.683
BE18	0.013	0.437	0.261	0.669
TR20	0.005	0.491	0.056	0.739
CO16	0.030	0.628	-0.050	0.619
SEC5	0.180	0.487	-0.083	0.747
SEC14	0.039	0.488	0.112	0.708
PO2	0.666	0.000	-0.141	0.614
PO17	0.548	0.364	-0.180	0.625
AC4	0.657	0.142	-0.007	0.539
AC13	0.671	0.074	0.082	0.480
HE10	0.620	-0.120	0.123	0.544
HE21	0.508	0.014	0.218	0.600
ST6	0.217	-0.089	0.596	0.518
ST15	0.428	-0.263	0.421	0.505
Factors	Correl	lations between fa	ctors	
Self-enhancement	_			
Conservation	0.075	_		
Openness to change	0.413	0.299	_	

Table A705 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2002, United Kingdom (first half-sample: n = 911)

	Principal axis factor		
Variables			Unique
	Factor I	Factor II	variance
	Self-enhancement	Self-transcendence	
SD1	0.316	0.206	0.817
SD11	0.278	0.260	0.808
UN8	0.061	0.401	0.820
UN19	-0.063	0.641	0.611
BE12	0.028	0.522	0.717
BE18	0.059	0.556	0.666
TR20	-0.063	0.520	0.747
CO16	-0.110	0.594	0.677
SEC5	0.051	0.422	0.806
SEC14	0.001	0.539	0.709
PO2	0.589	-0.138	0.686
PO17	0.382	0.210	0.759
AC4	0.625	0.057	0.583
AC13	0.703	0.027	0.494
HE10	0.717	-0.150	0.532
HE21	0.624	0.044	0.592
ST6	0.512	0.140	0.672
ST15	0.671	-0.123	0.587
	Correlations bet	ween factors	
Self-enhancement	_		
Self-transcendence	0.319	_	

Table A706 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (4 factors-14 items): European Social Survey 2002, United Kingdom (first half-sample: n = 911)

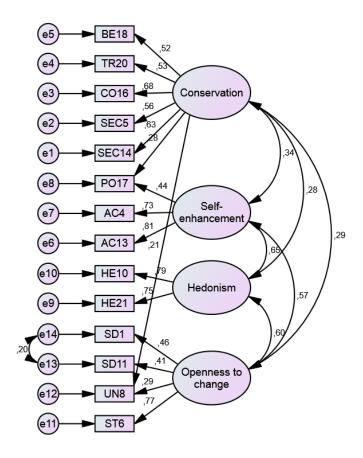

	Pr	incipal axis factor	analysis (factor	s)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Self-	Hedonism	Openness to	variance
		enhancement		change	
SD1	-0.068	0.124	-0.197	0.746	0.490
SD11	0.116	-0.122	0.190	0.433	0.716
UN8	0.223	-0.098	-0.030	0.388	0.793
BE18	0.463	0.003	0.037	0.161	0.699
TR20	0.507	0.053	-0.082	0.022	0.735
CO16	0.667	0.055	-0.055	-0.110	0.581
SEC5	0.398	0.126	0.046	-0.002	0.786
SEC14	0.556	-0.094	0.061	0.109	0.652
PO17	0.270	0.566	-0.006	-0.151	0.615
AC4	-0.042	0.791	-0.009	0.047	0.362
AC13	-0.042	0.598	0.119	0.129	0.461
HE10	-0.129	0.093	0.799	-0.040	0.328
HE21	0.099	-0.021	0.755	-0.022	0.425
ST6	-0.025	0.077	0.189	0.468	0.618
Factors		Correlations be	tween factors		
Conservation	_				
Self-enhancement	0.251	_			
Hedonism	0.198	0.563	_		
Openness to change	0.304	0.467	0.458	_	

Table A707 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2002, United Kingdom (second half-sample: n = 911)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.64	.071	.870	.889	.842	.071 (.066077)
2a	2 first-order correlated factors- without cross-loadings	6.43	.070	.832	.854	.815	.077 (.072082)
2b	2 first-order correlated factors- with cross-loadings	6.41	.069	.834	.855	.815	.077 (.072082)
3a	3 first-order correlated factors- without cross-loadings	7.81	.081	.790	.810	.768	.087 (.081092)
3b	3 first-order correlated factors- with cross-loadings	6.18	.067	.842	.863	.823	.075 (.070081)
4a	4 first-order correlated factors- without cross-loadings	6.87	.078	.813	.835	.800	.080 (.075085)
4b	4 first-order correlated factors- with cross-loadings	5.64	.064	.854	.876	.842	.071 (.066077)
4c	4 first-order correlated factors (14 items)-with cross-loadings	4.13	.049	.909	.929	.905	.059 (.052066)
5	2 first-order correlated factors of unified values	5.95	.063	.932	.942	.915	.074 (.061087)

a Higher values indicate better model fit

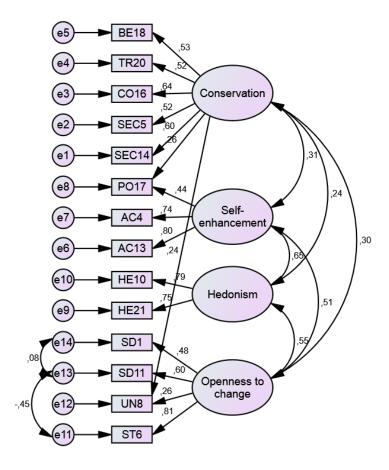

b Lower values indicate better model fit

Fig. 209 Standardized solution for the 4 first-order correlated factors (model 4c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, United Kingdom (second half-sample: n = 911)

Table A708 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2002, United Kingdom (N = 1,822)

		Sub	scale	
	Conservation	Self- enhancement	Hedonism	Openness to change
Number of items	5	3	2	4
Mean (standard error)	2.54 (0.020)	3.35 (0.026)	3.26 (0.029)	2.51 (0.019)
95% Confidence interval	2.50-2.58	3.30-3.40	3.20-3.31	2.47-2.54
Standard deviation	0.834	1.093	1.221	0.807
Skewness (standard error)	0.339 (0.057)	0.058 (0.057)	0.049 (0.057)	0.319 (0.057)
Kurtosis (standard error)	-0.325 (0.115)	-0.617 (0.115)	-0.736 (0.115)	-0.251 (0.115)
Cronbach's alpha reliability coeff.	0.689	0.725	0.744	0.615
Split-half reliability coefficient	0.617	0.559	0.744	0.603
Average inter-item correlations	0.312	0.467	0.592	0.284
Minimum-maximum correlations	0.237-0.401	0.405-0.582	0.592-0.592	0.223-0.371
Range of correlations	0.163	0.178	0.000	0.148
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Self-enhancement	0.254	_		
Hedonism	0.234	0.407	_	
Openness to change	0.211	0.264	0.267	_

Fig. 210 Standardized solution for the 4 first-order correlated factors (model 4c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2002, United Kingdom (N = 1,822)

Table A709 Item analysis of Schwartz scale values of the European Social Survey, 2004: United Kingdom (first half-sample: n = 948)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.70 (1.267)	2.61-2.78	18.2	31.6	22.9	14.7	9.3	1.5	1.8	0.50	-0.51	0.348
SD11	2.20 (1.075)	2.13-2.26	25.7	45.4	14.0	8.5	3.9	0.6	1.8	1.08	0.94	0.402
UN3	2.18 (1.077)	2.11-2.25	28.4	41.0	15.5	9.0	3.8	0.3	2.0	0.96	0.51	0.339
UN8	2.40 (1.064)	2.34-2.47	16.7	45.4	19.7	10.4	4.7	0.5	2.5	0.88	0.45	0.365
UN19	2.30 (1.135)	2.22-2.37	25.9	38.4	18.4	10.2	4.9	0.5	1.7	0.84	0.17	0.343
BE12	2.14 (0.980)	2.08-2.20	26.1	45.3	16.1	8.6	1.8	0.3	1.8	0.93	0.77	0.443
BE18	1.94 (0.867)	1.88-1.99	31.5	49.2	11.1	5.5	0.8	0.2	1.7	1.13	1.78	0.443
TR9	2.86 (1.247)	2.78-2.94	11.4	34.9	22.9	15.6	11.5	1.7	2.0	0.48	-0.56	0.217
TR20	2.86 (1.428)	2.77-2.95	17.0	32.7	17.5	12.6	14.6	3.8	1.9	0.50	-0.79	0.353
CO7	3.36 (1.368)	3.27-3.35	8.0	23.7	20.1	20.1	21.2	4.3	2.4	0.05	-1.00	0.339
CO16	2.63 (1.242)	2.55-2.71	16.9	39.5	17.1	15.3	8.3	1.4	1.6	0.63	-0.39	0.367
SEC5	2.28 (1.200)	2.21-2.36	27.4	40.2	14.2	8.4	7.2	0.7	1.8	0.99	0.31	0.382
SEC14	2.42 (1.176)	2.35-2.50	20.9	39.3	17.5	11.6	6.0	1.1	3.6	0.85	0.15	0.436
PO2	4.31 (1.263)	4.23-4.39	2.8	9.8	9.0	21.5	41.7	13.4	1.8	-0.84	0.04	0.329
PO17	3.26 (1.330)	3.17-3.34	7.6	26.1	23.5	16.8	20.5	3.2	2.4	0.17	-0.97	0.422
AC4	3.03 (1.266)	2.95-3.11	8.5	33.5	20.0	19.1	14.6	1.7	2.5	0.33	-0.85	0.477
AC13	3.43 (1.388)	3.34-3.51	6.6	24.5	20.1	19.0	21.8	5.9	2.0	0.08	-1.03	0.538
HE10	3.37 (1.331)	3.29-3.46	7.9	22.7	19.3	23.4	21.8	2.8	2.0	-0.06	-1.00	0.431
HE21	3.02 (1.270)	2.94-3.10	11.4	27.5	23.1	22.3	11.9	2.0	1.8	0.22	-0.75	0.474
ST6	3.00 (1.316)	2.91-3.08	11.9	29.9	21.9	18.1	14.1	2.3	1.7	0.31	-0.82	0.481
ST15	3.88 (1.408)	3.79-3.97	6.0	15.2	14.8	21.1	31.6	9.6	1.7	-0.42	-0.82	0.306

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.079 and 0.159, respectively.

Table A710 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2004, United Kingdom (first half-sample: n = 948)

	Principal a			
	Factor I	Factor II	Factor III	Unique
Item	Self-	Conservation	Self-	variance
	enhancement		transcendence	
SD1	0.268	-0.148	0.387	0.741
SD11	0.182	-0.002	0.404	0.751
UN3	-0.018	-0.009	0.516	0.744
UN8	-0.093	0.038	0.589	0.667
UN19	-0.127	0.189	0.475	0.704
BE12	0.003	0.147	0.505	0.664
BE18	-0.015	0.260	0.428	0.667
TR20	-0.025	0.491	0.111	0.710
CO7	0.009	0.576	-0.029	0.679
CO16	-0.127	0.694	0.066	0.500
SEC5	0.024	0.446	0.120	0.738
SEC14	0.103	0.426	0.137	0.716
PO2	0.645	0.067	-0.212	0.629
PO17	0.338	0.508	-0.161	0.644
AC4	0.519	0.183	0.012	0.655
AC13	0.680	0.208	-0.069	0.483
HE10	0.672	0.009	-0.035	0.563
HE21	0.589	0.021	0.085	0.603
ST6	0.462	-0.111	0.348	0.586
ST15	0.690	-0.300	0.091	0.478
Factors	Correl	ations between fa	actors	
Self-enhancement	_			
Conservation	0.184	_		
Self-transcendence	0.364	0.397	_	

Table A711 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, United Kingdom (first half-sample: n = 948)

		Subscale	
	Self-	Conservation	Self-
	enhancement		transcendence
Number of items	7	6	7
Mean (standard error)	3.43 (0.029)	2.80 (0.027)	2.26 (0.021)
95% Confidence interval	3.37-3.49	2.75-2.86	2.22-2.30
Standard deviation	0.905	0.834	0.644
Skewness (standard error)	-0.051 (0.079)	0.366 (0.079)	0.761 (0.079)
Kurtosis (standard error)	-0.437 (0.159)	-0.097 (0.159)	1.783 (0.159)
Cronbach's alpha reliability coeff.	0.811	0.719	0.704
Split-half reliability coefficient	0.845	0.711	0.653
Average inter-item correlations	0.380	0.300	0.262
Minimum-maximum correlations	0.224-0.570	0.170-0.422	0.119-0.394
Range of correlations	0.346	0.251	0.274
	Average inter-i	tem correlations be	etween subscales
Self-enhancement	_		
Conservation	0.223	_	
Self-transcendence	0.227	0.219	_

Table A712 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2004, United Kingdom (first half-sample: n = 948)

X7 ' 11	Principal axis factor a	TT '	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.389	0.070	0.826
SD11	0.295	0.224	0.820
UN3	0.129	0.284	0.880
UN8	0.072	0.367	0.844
UN19	-0.013	0.456	0.795
BE12	0.128	0.432	0.762
BE18	0.075	0.504	0.716
TR20	-0.057	0.553	0.711
CO7	-0.068	0.542	0.725
CO16	-0.196	0.726	0.525
SEC5	-0.001	0.515	0.736
SEC14	0.088	0.500	0.714
PO2	0.568	-0.075	0.698
PO17	0.227	0.381	0.748
AC4	0.502	0.169	0.666
AC13	0.630	0.140	0.528
HE10	0.665	-0.038	0.572
HE21	0.617	0.048	0.598
ST6	0.569	0.077	0.643
ST15	0.762	-0.272	0.478
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.317	_	

Table A713 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors-13 items): European Social Survey 2004, United Kingdom (first half-sample: n = 948)

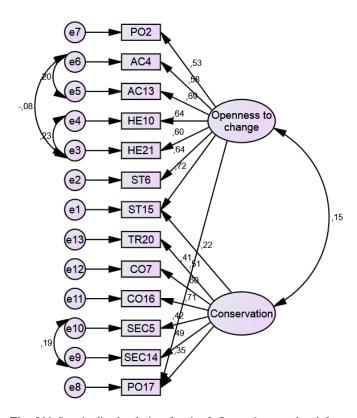

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
TR20	-0.014	0.520	0.733
CO7	-0.034	0.585	0.667
CO16	-0.151	0.733	0.496
SEC5	0.027	0.505	0.737
SEC14	0.127	0.473	0.729
PO2	0.559	-0.008	0.689
PO17	0.263	0.431	0.687
AC4	0.502	0.191	0.663
AC13	0.634	0.181	0.507
HE10	0.683	-0.027	0.542
HE21	0.635	0.033	0.584
ST6	0.550	0.025	0.689
ST15	0.747	-0.290	0.468
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.256	_	

Table A714 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2004, United Kingdom (second half-sample: n = 949)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.27	.075	.852	.875	.824	.067 (.062072)
2a	2 first-order correlated factors (20 items)-without cross-						
	loadings	6.03	.078	.797	.823	.793	.073 (.069077)
2b	2 first-order correlated factors						
	(20 items)-with cross-loadings	4.61	.059	.849	.877	.851	.062 (.057066)
2c	2 first-order correlated factors						
	(13 items)-without cross-	- 1-	004	0.50	0.50	0.40	004 (074 000)
2.1	loadings	7.17	.086	.863	.879	.842	.081 (.074088)
2d	2 first-order correlated factors	2.00	0.47	027	0.4.4	025	056 (040 , 062)
2.	(13 items)-with cross-loadings	2.88	.047	.927	.944	.925	.056 (.048063)
3a	3 first-order correlated factors-	c 20	002	705	012	792	075 (070 070)
3b	without cross-loadings 3 first-order correlated factors-	6.30	.083	.785	.812	.782	.075 (.070079)
30		4.64	.059	.847	.875	.850	062 (057 - 067)
4	with cross-loadings 2 first-order correlated factors	4.04	.039	.047	.673	.830	.062 (.057067)
4	of unified values	6.80	.067	.903	.915	.875	.078 (.066091)

a Higher values indicate better model fit

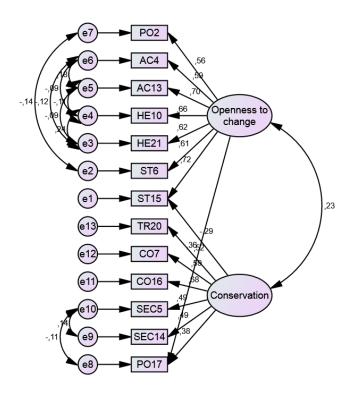

b Lower values indicate better model fit

Fig. 211 Standardized solution for the 2 first-order correlated factors (model 2d-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, United Kingdom (second half-sample: n = 949)

Table A715 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2004, United Kingdom (N = 1,897)

	Su	bscale
	Openness to change	Conservation
Number of items	7	6
Mean (standard error)	3.42 (0.021)	2.79 (0.019)
95% Confidence interval	3.38-3.46	2.75-2.83
Standard deviation	0.916	0.823
Skewness (standard error)	-0.073 (0.056)	0.328 (0.056)
Kurtosis (standard error)	-0.371 (0.112)	-0.104 (0.112)
Cronbach's alpha reliability coeff.	0.817	0.709
Split-half reliability coefficient	0.837	0.704
Average inter-item correlations	0.389	0.292
Minimum-maximum correlations	0.245-0.550	0.174-0.436
Range of correlations	0.305	0.262
	•	r-item correlations
Openness to change		ii buobouios
Conservation	0.292	_

Fig. 212 Standardized solution for the 2 first-order correlated factors (model 2d-13 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2004, United Kingdom (N = 1,897)

Table A716 Item analysis of Schwartz scale values of the European Social Survey, 2006: United Kingdom (first half-sample: n = 1,197)

_				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.73 (1.287)	2.65-2.80	16.6	34.3	21.4	12.8	11.4	1.5	2.0	0.54	-0.55	0.284
SD11	2.18 (1.064)	2.12-2.24	26.6	43.4	15.9	7.7	3.8	0.6	2.0	1.06	0.95	0.348
UN3	2.16 (1.046)	2.10-2.22	27.2	43.3	15.8	7.3	3.5	0.5	2.4	1.07	1.03	0.230
UN8	2.33 (0.988)	2.27-2.39	16.3	49.2	18.4	10.2	2.9	0.4	2.6	0.93	0.78	0.323
UN19	2.14 (1.055)	2.08-2.20	30.3	38.3	17.8	8.4	2.9	0.3	2.0	0.91	0.48	0.244
BE12	2.18 (0.922)	2.13-2.23	21.9	47.5	19.2	7.9	1.3	0.3	2.0	0.82	0.77	0.361
BE18	1.93 (0.834)	1.88-1.98	31.1	48.5	13.4	3.8	0.8	0.2	2.3	1.05	1.79	0.391
TR9	2.83 (1.261)	2.75-2.90	12.3	35.4	22.7	14.3	10.9	2.2	2.3	0.55	-0.44	0.135
TR20	2.84 (1.412)	2.76-2.92	17.6	31.7	18.5	12.3	13.8	3.6	2.5	0.51	-0.73	0.236
CO7	3.35 (1.441)	3.27-3.43	8.9	25.6	18.2	16.5	21.9	6.1	2.8	0.12	-1.09	0.286
CO16	2.66 (1.238)	2.59-2.73	16.5	37.3	19.7	14.8	8.0	1.7	2.1	0.62	-0.31	0.310
SEC5	2.41 (1.205)	2.34-2.48	22.5	40.0	15.9	12.4	5.8	1.3	2.1	0.86	0.13	0.280
SEC14	2.29 (1.155)	2.23-2.36	25.0	40.1	16.2	9.3	4.8	1.3	3.3	1.02	0.66	0.358
PO2	4.33 (1.233)	4.26-4.40	2.9	7.6	11.9	19.7	43.4	12.7	1.8	-0.86	0.16	0.214
PO17	3.30 (1.316)	3.23-3.38	6.9	25.0	23.6	18.9	19.9	3.5	2.3	0.14	-0.93	0.378
AC4	3.09 (1.292)	3.02-3.17	8.7	30.4	21.6	18.7	15.9	2.3	2.4	0.28	-0.86	0.456
AC13	3.44 (1.340)	3.36-3.51	6.5	22.5	20.6	20.9	22.9	4.1	2.5	-0.01	-1.00	0.465
HE10	3.33 (1.368)	3.25-3.41	8.8	23.2	21.1	19.6	21.3	3.8	2.1	0.05	-1.00	0.407
HE21	2.95 (1.269)	2.88-3.02	11.3	31.0	22.9	18.8	11.9	2.1	2.1	0.35	-0.68	0.418
ST6	2.97 (1.326)	2.90-3.05	12.9	30.2	20.1	16.9	16.1	1.4	2.4	0.28	-0.95	0.419
ST15	3.83 (1.418)	3.74-3.91	5.9	16.2	17.0	18.6	30.5	9.6	2.2	-0.33	-0.92	0.334

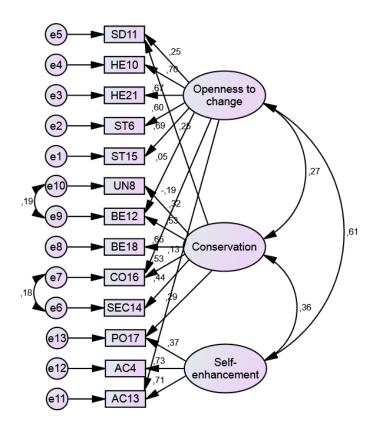
Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.071 and 0.141, respectively.

Table A717 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2006, United Kingdom (first half-sample: n = 1,197)

	Principal axis factor analysis (factors)								
	Factor I	Factor II	Factor III	Unique					
Item	Openness to	Conservation	Self-	variance					
	change		enhancement						
SD11	0.357	0.256	-0.054	0.824					
UN8	0.190	0.314	-0.040	0.874					
BE12	0.226	0.413	-0.070	0.799					
BE18	0.134	0.521	-0.009	0.710					
CO16	-0.265	0.586	0.186	0.543					
SEC14	0.044	0.460	0.013	0.781					
PO17	-0.141	0.227	0.557	0.619					
AC4	0.135	-0.043	0.625	0.527					
AC13	0.279	-0.104	0.604	0.428					
HE10	0.536	0.038	0.161	0.599					
HE21	0.696	0.174	-0.071	0.526					
ST6	0.661	0.093	-0.034	0.573					
ST15	0.686	-0.143	0.127	0.429					
Factors	Correl	ations between fa	ctors						
Openness to change	_								
Conservation	0.032	_							
Self-enhancement	0.466	0.296	_						

Table A718 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, United Kingdom (first half-sample: n = 1,197)

		Subscale	
	Openness to change	Conservation	Self- enhancement
Number of items	5	5	3
Mean (standard error)	3.05 (0.026)	2.28 (0.018)	3.28 (0.029)
95% Confidence interval	3.00-3.10	2.24-2.31	3.22-3.34
Standard deviation	0.912	0.634	1.017
Skewness (standard error)	0.076 (0.071)	0.421 (0.071)	0.182 (0.071)
Kurtosis (standard error)	-0.374 (0.141)	0.256 (0.141)	-0.564 (0.141)
Cronbach's alpha reliability coeff.	0.746	0.579	0.663
Split-half reliability coefficient	0.775	0.593	0.489
Average inter-item correlations	0.362	0.224	0.396
Minimum-maximum correlations	0.221-0.512	0.115-0.325	0.316-0.531
Range of correlations	0.291	0.210	0.215
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.182	_	
Self-enhancement	0.306	0.194	_


Table A719 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2006, United Kingdom (first half-sample: n = 1,197)

	Principal axis factor a		
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD11	0.298	0.149	0.868
UN8	0.133	0.239	0.911
BE12	0.140	0.306	0.867
BE18	0.073	0.451	0.776
CO16	-0.231	0.699	0.532
SEC14	0.001	0.421	0.822
PO17	0.155	0.490	0.701
AC4	0.482	0.239	0.658
AC13	0.612	0.158	0.557
HE10	0.630	0.030	0.593
HE21	0.623	0.017	0.607
ST6	0.624	-0.034	0.620
ST15	0.788	-0.188	0.412
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.230	_	

Table A720 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of six models: European Social Survey 2006, United Kingdom (second half-sample: n = 1,197)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	7.70	.058	.893	.905	.849	.075 (.068082)
2a	2 first-order correlated factors- without cross-loadings	7.35	.064	.886	.899	.857	.073 (.066080)
2b	2 first-order correlated factors- with cross-loadings	6.60	.057	.901	.914	.874	.068 (.062075)
3a	3 first-order correlated factors- without cross-loadings	7.85	.064	.867	.881	.846	.076 (.069082)
3b	3 first-order correlated factors- with cross-loadings	5.81	.045	.910	.923	.891	.063 (.057070)
4	2 first-order correlated factors of unified values	12.85	.081	.866	.874	.815	.100 (.089111)

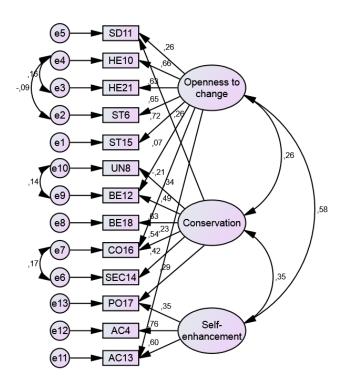

b Lower values indicate better model fit

Fig. 213 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, United Kingdom (second half-sample: n = 1,197)

Table A721 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2006, United Kingdom (N = 2,394)

		Subscale	
	Openness to change	Conservation	Self- enhancement
Number of items	5	5	3
Mean (standard error)	3.03 (0.018)	2.29 (0.013)	3.28 (0.021)
95% Confidence interval	3.00-3.07	2.26-2.32	3.24-3.32
Standard deviation	0.905	0.658	1.037
Skewness (standard error)	0.064 (0.050)	0.536 (0.050)	0.135 (0.050)
Kurtosis (standard error)	-0.437 (0.100)	0.551 (0.100)	-0.569 (0.100)
Cronbach's alpha reliability coeff.	0.742	0.601	0.682
Split-half reliability coefficient	0.765	0.617	0.507
Average inter-item correlations	0.357	0.242	0.417
Minimum-maximum correlations	0.212-0.508	0.118-0.362	0.342-0.554
Range of correlations	0.296	0.243	0.212
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.186	_	
Self-enhancement	0.310	0.208	_

Fig. 214 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2006, United Kingdom (N = 2,394)

Table A722 Item analysis of Schwartz scale values of the European Social Survey, 2008: United Kingdom (first half-sample: n = 1,176)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.57 (1.260)	2.50-2.64	21.9	32.7	21.6	12.6	8.5	1.2	1.5	0.60	-0.41	0.317
SD11	2.14 (1.082)	2.08-2.20	30.4	40.6	15.9	7.7	3.6	0.6	1.3	1.05	0.84	0.247
UN3	2.18 (1.102)	2.12-2.25	29.0	40.6	14.9	9.6	3.5	0.7	1.7	1.00	0.63	0.272
UN8	2.30 (1.022)	2.24-2.36	19.6	46.3	19.0	9.8	3.2	0.4	1.6	0.88	0.61	0.319
UN19	2.27 (1.086)	2.20-2.33	25.4	39.9	19.0	11.0	2.6	0.9	1.4	0.85	0.45	0.244
BE12	2.08 (0.951)	2.02-2.13	28.0	46.2	15.4	7.5	1.4	0.3	1.3	0.98	1.06	0.424
BE18	1.95 (0.877)	1.90-2.00	31.3	49.1	11.1	5.8	1.3	-	1.4	1.06	1.26	0.400
TR9	2.81 (1.266)	2.74-2.88	12.8	36.3	21.3	15.8	10.3	2.1	1.4	0.54	-0.49	0.226
TR20	2.83 (1.385)	2.75-2.91	16.7	33.4	18.4	14.5	12.3	3.4	1.3	0.52	-0.68	0.297
CO7	3.37 (1.439)	3.29-3.46	10.2	22.4	18.6	20.2	21.2	5.9	1.5	0.02	-1.05	0.340
CO16	2.63 (1.295)	2.55-2.70	18.0	39.6	16.5	12.7	10.0	1.9	1.3	0.70	-0.36	0.366
SEC5	2.51 (1.245)	2.44-2.58	20.2	39.5	17.8	11.4	8.6	1.3	1.4	0.78	-0.15	0.362
SEC14	2.43 (1.192)	2.36-2.50	20.9	40.4	16.8	12.0	6.2	1.2	2.5	0.85	0.11	0.415
PO2	4.29 (1.302)	4.22-4.37	4.7	7.4	11.3	18.8	43.5	12.8	1.4	-0.91	0.16	0.278
PO17	3.44 (1.291)	3.36-3.51	5.8	21.8	22.9	21.0	24.2	2.6	1.8	-0.05	-1.00	0.443
AC4	3.04 (1.379)	2.96-3.12	11.6	31.6	19.8	15.1	17.2	3.1	1.5	0.34	-0.93	0.447
AC13	3.48 (1.396)	3.40-3.56	7.8	21.5	19.2	20.6	24.3	5.2	1.4	-0.07	-1.04	0.494
HE10	3.43 (1.361)	3.35-3.50	8.2	21.5	19.0	23.0	23.3	3.7	1.4	-0.09	-1.02	0.375
HE21	2.94 (1.252)	2.87-3.02	11.6	30.2	23.6	20.2	11.6	1.5	1.4	0.29	-0.73	0.403
ST6	3.03 (1.368)	2.95-3.10	14.2	26.6	21.2	17.6	16.9	2.0	1.4	0.21	-0.99	0.441
ST15	3.75 (1.446)	3.67-3.83	8.2	16.3	14.8	19.6	32.7	7.2	1.3	-0.39	-0.96	0.321

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.071 and 0.143, respectively.

Table A723 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2008, United Kingdom (first half-sample: n = 1,176)

	Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique		
	Conservation	Achievement	Hedonism	Self-	variance		
				transcendence			
SD1	-0.118	0.251	-0.074	0.385	0.778		
UN8	0.060	-0.054	-0.118	0.591	0.689		
BE12	0.156	-0.086	0.025	0.588	0.608		
BE18	0.286	-0.101	0.087	0.379	0.723		
CO7	0.555	0.058	0.039	-0.025	0.677		
CO16	0.684	0.007	-0.073	0.052	0.516		
SEC5	0.497	0.137	-0.111	0.120	0.679		
SEC14	0.537	-0.047	0.146	0.070	0.666		
PO17	0.413	0.385	0.068	-0.118	0.633		
AC4	0.057	0.731	-0.072	0.022	0.492		
AC13	0.110	0.755	0.035	-0.075	0.396		
HE10	0.048	0.104	0.654	-0.128	0.541		
HE21	0.088	-0.169	0.847	-0.016	0.420		
ST6	-0.135	0.250	0.181	0.426	0.555		
ST15	-0.236	0.259	0.442	0.110	0.522		
Factors	Correlations between factors						
Conservation	_						
Achievement	0.180	_					
Hedonism	0.063	0.582	_				
Self-transcendence	0.233	0.352	0.420	_			

Table A724 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, United Kingdom (first half-sample: n = 1,176)

	Subscale					
	Conservation	Achievement	Hedonism	Self- transcendence		
Number of items	5	2	3	5		
Mean (standard error)	2.88 (0.026)	3.26 (0.036)	3.37 (0.031)	2.39 (0.027)		
95% Confidence interval	2.83-2.93	3.19-3.33	3.31-3.44	2.35-2.43		
Standard deviation	0.876	1.224	1.069	0.699		
Skewness (standard error)	0.321 (0.071)	0.107 (0.071)	-0.169 (0.071)	0.371 (0.071)		
Kurtosis (standard error)	-0.249 (0.143)	-0.839 (0.143)	-0.614 (0.143)	-0.093 (0.143)		
Cronbach's alpha reliability coeff.	0.704	0.715	0.696	0.617		
Split-half reliability coefficient	0.666	0.715	0.632	0.496		
Average inter-item correlations	0.323	0.556	0.438	0.257		
Minimum-maximum correlations	0.219-0.444	0.556-0.556	0.387-0.514	0.117-0.435		
Range of correlations	0.225	0.000	0.127	0.318		
	Averag	ge inter-item corre	lations between su	ıbscales		
Conservation	_					
Achievement	0.277	_				
Hedonism	0.200	0.370	_			
Self-transcendence	0.201	0.233	0.229	_		

Table A725 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2008, United Kingdom (first half-sample: n = 1,176)

	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Openness to	Conservation	Self-	variance				
	change		transcendence					
SD1	0.284	-0.045	0.237	0.894				
UN8	-0.012	0.078	0.509	0.724				
BE12	0.060	0.143	0.572	0.598				
BE18	0.023	0.258	0.415	0.715				
CO7	-0.016	0.554	0.034	0.690				
CO16	-0.165	0.694	0.109	0.521				
SEC5	-0.033	0.541	0.121	0.679				
SEC14	0.005	0.497	0.163	0.695				
PO17	0.313	0.475	-0.132	0.622				
AC4	0.576	0.198	-0.114	0.595				
AC13	0.669	0.238	-0.186	0.453				
HE10	0.590	-0.030	0.000	0.661				
HE21	0.517	-0.053	0.149	0.688				
ST6	0.521	-0.107	0.327	0.570				
ST15	0.708	-0.261	0.087	0.500				
Factors	Correlations between factors							
Openness to change	_							
Conservation	0.266	_						
Self-transcendence	0.242	0.180	_					

Table A726 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2008, United Kingdom (first half-sample: n = 1,176)

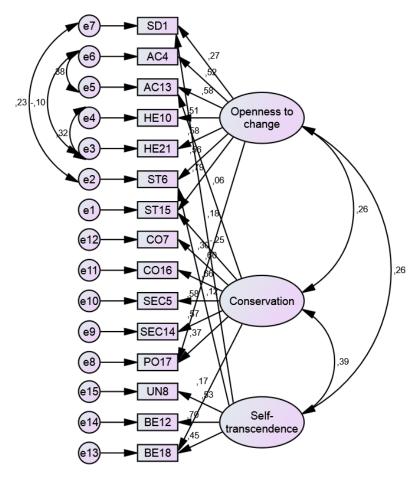

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.343	0. 012	0.880
BE12	0.203	0.250	0.866
BE18	0.123	0.341	0.844
CO7	-0.040	0.571	0.686
CO16	-0.176	0.725	0.519
SEC5	-0.033	0.573	0.681
SEC14	0.022	0.539	0.701
PO17	0.246	0.449	0.672
AC4	0.518	0.183	0.642
AC13	0.574	0.207	0.557
HE10	0.591	-0.016	0.655
HE21	0.561	-0.005	0.687
ST6	0.590	-0.019	0.658
ST15	0.749	-0.231	0.488
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.297	_	

Table A727 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2008, United Kingdom (second half-sample: n = 1,176)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.84	.058	.903	.917	.870	.064 (.058070)
2a	2 first-order correlated factors (14 items)-without cross-						
	loadings	7.36	.069	.861	.877	.843	.074 (.068080)
2b	2 first-order correlated factors						
2	(14 items)-with cross-loadings	6.35	.058	.884	.900	.868	.068 (.062074)
3a	3 first-order correlated factors - without cross-loadings	6.88	.067	.858	.875	.842	.071 (.065076)
3b	3 first-order correlated factors- with cross-loadings	4.76	.044	.909	.926	.899	.057 (.051062)
4a	4 first-order correlated factors- without cross-loadings	7.61	.078	.850	.867	.823	.075 (.069081)
4b	4 first-order correlated factors- with cross-loadings	4.81	.053	.913	.929	.898	.057 (.051063)
5	2 first-order correlated factors of unified values	8.89	.068	.907	.916	.877	.082 (.071094)

a Higher values indicate better model fit

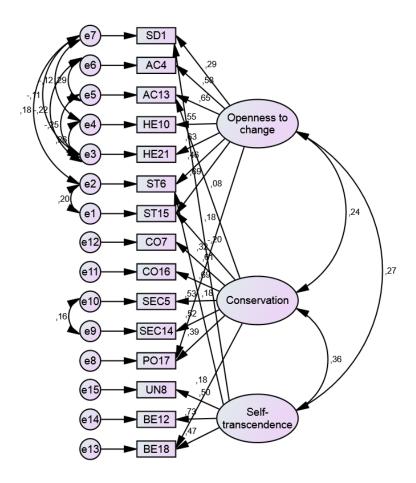

b Lower values indicate better model fit

Fig. 215 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, United Kingdom (second half-sample: n = 1,176)

Table A728 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2008, United Kingdom (N = 2,352)

		Subscale	
	Openness to change	Conservation	Self- transcendence
Number of items	7	5	3
Mean (standard error)	3.20 (0.018)	2.86 (0.018)	2.10 (0.014)
95% Confidence interval	3.16-3.24	2.82-2.89	2.07-2.13
Standard deviation	0.881	0.876	0.699
Skewness (standard error)	-0.034 (0.050)	0.359 (0.050)	0.709 (0.050)
Kurtosis (standard error)	-0.457 (0.101)	-0.279 (0.101)	0.685 (0.101)
Cronbach's alpha reliability coeff.	0.770	0.704	0.603
Split-half reliability coefficient	0.792	0.678	0.497
Average inter-item correlations	0.321	0.324	0.339
Minimum-maximum correlations	0.098-0.567	0.225-0.441	0.252-0.406
Range of correlations	0.469	0.216	0.154
	Average inter-it	tem correlations be	etween subscales
Openness to change	_		
Conservation	0.208	_	
Self-transcendence	0.229	0.242	_

Fig. 216 Standardized solution for the 3 first-order correlated factors (model 3b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2008, United Kingdom (N = 2,352)

Table A729 Item analysis of Schwartz scale values of the European Social Survey, 2010: United Kingdom (first half-sample: n = 1,211)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.68 (1.334)	2.60-2.75	20.2	33.2	17.1	14.9	10.5	1.9	2.2	0.55	-0.63	0.399
SD11	2.11 (1.114)	2.05-2.18	32.0	40.9	12.2	7.3	5.0	0.4	2.1	1.15	0.86	0.343
UN3	2.05 (1.051)	1.99-2.00	33.5	40.8	12.7	7.0	3.3	0.4	2.2	1.17	1.15	0.309
UN8	2.35 (1.054)	2.29-2.41	18.0	47.6	17.2	10.7	4.0	0.6	1.9	0.93	0.60	0.365
UN19	2.26 (1.133)	2.19-2.32	26.3	42.0	14.2	10.5	4.8	0.6	1.6	0.95	0.36	0.337
BE12	1.96 (0.902)	1.91-2.01	31.7	47.6	12.3	5.5	1.2	0.3	1.5	1.17	1.87	0.403
BE18	1.84 (0.849)	1.80-1.89	37.0	46.5	9.7	4.0	1.0	0.2	1.7	1.25	2.25	0.381
TR9	2.77 (1.280)	2.70-2.84	13.5	38.1	19.2	14.9	10.2	2.3	1.8	0.60	-0.44	0.156
TR20	2.78 (1.385)	2.70-2.86	17.1	35.7	17.7	11.1	14.0	2.8	1.6	0.59	-0.67	0.319
CO7	3.27 (1.389)	3.20-3.35	9.1	25.8	20.3	18.7	19.5	4.6	2.0	0.15	-1.00	0.305
CO16	2.60 (1.206)	2.53-2.67	15.9	41.5	18.1	14.2	7.3	1.4	1.5	0.71	-0.16	0.349
SEC5	2.24 (1.138)	2.18-2.31	25.8	44.2	13.5	8.3	5.8	0.7	1.7	1.07	0.66	0.319
SEC14	2.32 (1.151)	2.26-2.39	23.3	41.2	15.2	9.9	6.0	0.7	3.7	0.95	0.33	0.357
PO2	4.22 (1.309)	4.15-4.30	4.5	8.5	12.5	19.9	40.8	12.2	1.7	-0.80	-0.08	0.315
PO17	3.23 (1.361)	3.15-3.30	9.0	27.3	19.7	18.4	20.2	3.1	2.3	0.14	-1.04	0.474
AC4	3.01 (1.335)	2.94-3.09	11.2	31.1	21.6	14.1	17.5	2.0	2.4	0.33	-0.91	0.503
AC13	3.40 (1.413)	3.32-3.48	7.9	24.4	19.8	16.4	24.6	5.0	1.9	0.04	-1.12	0.521
HE10	3.39 (1.452)	3.30-3.47	10.2	23.8	16.4	18.3	25.1	4.7	1.6	-0.03	-1.17	0.428
HE21	2.93 (1.270)	2.86-3.00	10.7	34.3	21.4	17.2	13.4	1.6	1.6	0.39	-0.76	0.433
ST6	2.99 (1.394)	2.91-3.07	13.7	31.6	17.7	15.4	17.7	2.4	1.6	0.32	-1.02	0.478
ST15	3.76 (1.459)	3.68-3.85	6.9	17.6	17.2	17.3	29.6	9.8	1.6	-0.27	-1.03	0.376

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.070 and 0.140, respectively.

Table A730 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2010, United Kingdom (first half-sample: n = 1,211)

Principal axis factor analysis (factors)						
Item	Factor I	Factor II	Factor III	Factor IV	Unique	
	Conservation	Self-	Self-	Openness to	variance	
		enhancement	transcendence	change		
SD1	-0.133	0.313	0.405	-0.008	0.709	
SD11	-0.022	0.022	0.305	0.199	0.817	
UN3	-0.013	0.119	0.470	-0.132	0.788	
UN8	0.105	-0.039	0.548	-0.059	0.672	
UN19	0.139	-0.114	0.522	0.006	0.674	
BE12	0.069	-0.003	0.528	0.010	0.685	
BE18	0.212	-0.112	0.346	0.166	0.744	
TR20	0.401	-0.102	0.203	0.066	0.739	
CO7	0.581	0.063	-0.045	-0.010	0.669	
CO16	0.621	0.022	0.077	-0.077	0.570	
SEC5	0.443	0.135	0.074	-0.109	0.749	
SEC14	0.478	-0.067	0.108	0.109	0.713	
PO2	0.049	0.466	-0.233	0.249	0.617	
PO17	0.498	0.295	-0.052	0.085	0.610	
AC4	0.055	0.708	0.104	-0.067	0.492	
AC13	0.116	0.776	-0.027	-0.010	0.382	
HE10	0.103	0.101	-0.173	0.697	0.475	
HE21	0.036	-0.122	0.022	0.787	0.477	
ST6	-0.122	0.229	0.273	0.355	0.557	
ST15	-0.244	0.281	0.124	0.442	0.481	
Factors	Correlations between factors					
Conservation	_					
Self-enhancement	0.139	_				
Self-transcendence	0.395	0.280	_			
Openness to change	0.040	0.654	0.370	_		

Table A731 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, United Kingdom (first half-sample: n = 1,211)

	Subscale					
	Conservation	Self- enhancement	Self- transcendence	Openness to change		
Number of items	6	3	7	4		
Mean (standard error)	2.74 (0.023)	3.55 (0.031)	2.18 (0.018)	3.27 (0.031)		
95% Confidence interval	2.69-2.79	3.49-3.61	2.14-2.21	3.21-3.33		
Standard deviation	0.815	1.082	1.370	1.069		
Skewness (standard error)	0.381 (0.070)	-0.076 (0.070)	0.742 (0.070)	0.077(0.070)		
Kurtosis (standard error)	-0.111 (0.140)	-0.636 (0.140)	1.370 (0.140)	-0.708 (0.140)		
Cronbach's alpha reliability coeff.	0.710	0.719	0.676	0.765		
Split-half reliability coefficient	0.688	0.730	0.624	0.786		
Average inter-item correlations	0.293	0.458	0.239	0.450		
Minimum-maximum correlations	0.178-0.433	0.344-0.568	0.144-0.397	0.399-0.516		
Range of correlations	0.255	0.225	0.253	0.118		
	Averag	ge inter-item corre	lations between su	ibscales		
Conservation	_					
Self-enhancement	0.224	_				
Self-transcendence	0.201	0.198	_			
Openness to change	0.188	0.394	0.217			

Table A732 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2010, United Kingdom (first half-sample: n = 1,211)

-	Principal axis factor analysis (factors)							
	Factor I	Factor II	Factor III	Unique				
Item	Self-	Conservation	Self-	variance				
	enhancement		transcendence					
SD1	0.333	-0.047	0.294	0.756				
SD11	0.218	-0.046	0.324	0.816				
UN3	0.032	0.050	0.392	0.822				
UN8	-0.063	0.118	0.533	0.679				
UN19	-0.084	0.122	0.541	0.671				
BE12	0.033	0.076	0.517	0.688				
BE18	0.038	0.158	0.412	0.748				
TR20	-0.067	0.355	0.271	0.750				
CO7	-0.011	0.567	0.010	0.677				
CO16	-0.105	0.615	0.126	0.572				
SEC5	-0.009	0.471	0.079	0.748				
SEC14	-0.010	0.422	0.193	0.731				
PO2	0.648	0.089	-0.268	0.603				
PO17	0.302	0.518	-0.033	0.605				
AC4	0.600	0.192	-0.029	0.578				
AC13	0.695	0.243	-0.138	0.464				
HE10	0.653	-0.015	-0.025	0.586				
HE21	0.550	-0.114	0.180	0.627				
ST6	0.562	-0.135	0.272	0.549				
ST15	0.694	-0.263	0.121	0.466				
Factors	Correl	ations between fa	actors					
Self-enhancement	_							
Conservation	0.167	_						
Self-transcendence	0.304	0.339	_					

Table A733 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2010, United Kingdom (first half-sample: n = 1,211)

	Principal axis factor a		
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.397	0. 128	0.796
SD11	0.289	0.152	0.868
UN3	0.106	0.289	0.887
UN8	0.034	0.436	0.800
UN19	0.016	0.442	0.800
BE12	0.130	0.390	0.801
BE18	0.104	0.407	0.799
TR20	-0.053	0.514	0.749
CO7	-0.067	0.533	0.733
CO16	-0.148	0.666	0.593
SEC5	-0.046	0.499	0.762
SEC14	-0.020	0.529	0.726
PO2	0.574	-0.101	0.694
PO17	0.239	0.446	0.681
AC4	0.576	0.142	0.600
AC13	0.631	0.118	0.544
HE10	0.658	-0.055	0.585
HE21	0.604	-0.015	0.640
ST6	0.630	0.024	0.593
ST15	0.751	-0.198	0.484
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.294	_	

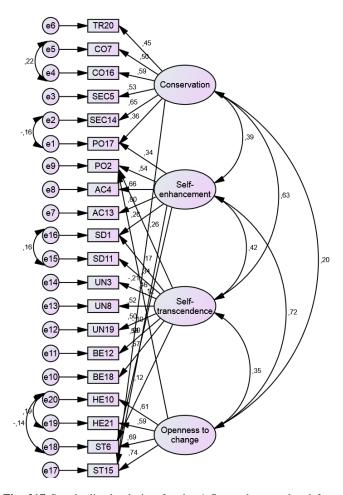

Note: Component and factor loadings >.22 are in boldface.

Table A734 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2010, United Kingdom (second half-sample: n = 1,211)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	5.28	.058	.875	.895	.846	.059 (.055064)
2a	2 first-order correlated factors- without cross-loadings	5.87	.064	.837	.860	.825	.063 (.059067)
2b	2 first-order correlated factors- with cross-loadings	5.42	.060	.850	.873	.841	.060 (.056065)
3a	3 first-order correlated factors- without cross-loadings	5.95	.064	.830	.854	.822	.064 (.060068)
3b	3 first-order correlated factors- with cross-loadings	4.99	.055	.863	.886	.856	.057 (.053062)
4a	4 first-order correlated factors- without cross-loadings	5.89	.065	.828	.852	.824	.064 (.060068)
4b	4 first-order correlated factors-						, ,
5	with cross-loadings 2 first-order correlated factors	4.39	.047	.879	.903	.878	.053 (.049057)
	of unified values	8.72	.067	.900	.910	.867	.080 (.069081)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

b Lower values indicate better model fit

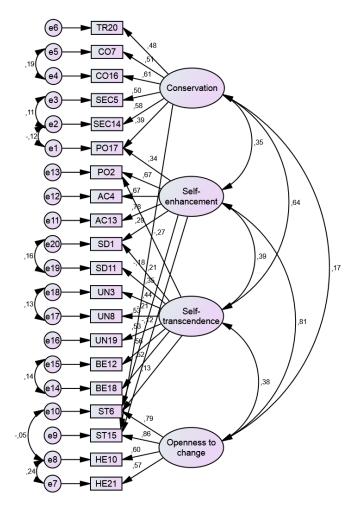


Fig. 217 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, United Kingdom (second half-sample: n = 1,211)

a Higher values indicate better model fit

Table A735 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2010, United Kingdom (N = 2,422)

•				
		Sub	scale	
	Conservation	Self-	Self-	Openness to
		enhancement	transcendence	change
Number of items	6	3	7	4
Mean (standard error)	2.74 (0.016)	3.55 (0.022)	2.18 (0.012)	3.28 (0.021)
95% Confidence interval	2.71-2.77	3.50-3.59	2.16-2.21	3.24-3.32
Standard deviation	0.809	1.065	0.608	1.042
Skewness (standard error)	0.371 (0.050)	-0.066 (0.050)	0.596 (0.050)	0.038 (0.050)
Kurtosis (standard error)	-0.371 (0.099)	-0.631 (0.099)	0.813 (0.099)	-0.667 (0.099)
Cronbach's alpha reliability coeff.	0.708	0.703	0.666	0.752
Split-half reliability coefficient	0.698	0.721	0.607	0.783
Average inter-item correlations	0.291	0.438	0.223	0.433
Minimum-maximum correlations	0.166-0.441	0.320-0.554	0.144-0.390	0.360-0.499
Range of correlations	0.275	0.234	0.246	0.139
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Self-enhancement	0.228	_		
Self-transcendence	0.203	0.195	_	
Openness to change	0.190	0.371	0.208	_

Fig. 218 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2010, United Kingdom (N = 2,422)

Table A736 Item analysis of Schwartz scale values of the European Social Survey, 2012: United Kingdom (first half-sample: n = 1,143)

			Frequency percent of response categories									
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.58 (1.281)	2.50-2.65	22.0	32.8	21.7	12.2	9.4	1.2	0.6	0.60	-0.46	0.337
SD11	2.02 (0.994)	1.97-2.08	33.1	42.9	13.8	7.2	2.1	0.3	0.7	1.07	1.00	0.380
UN3	1.98 (1.028)	1.92-2.04	36.7	40.8	12.2	5.8	3.6	0.1	0.9	1.20	1.17	0.280
UN8	2.24 (0.995)	2.18-2.30	20.5	49.8	17.1	8.5	3.1	0.3	0.7	0.98	0.92	0.293
UN19	2.17 (1.074)	2.11-2.23	29.3	39.9	18.0	8.8	2.5	0.8	0.6	0.96	0.73	0.341
BE12	1.94 (0.919)	1.89-2.00	34.6	44.3	13.7	5.1	1.5	0.2	0.7	1.10	1.38	0.397
BE18	1.83 (0.854)	1.78-1.88	39.4	43.3	11.2	4.8	0.3	0.2	0.8	1.10	1.41	0.452
TR9	2.56 (1.184)	2.49-2.63	16.5	41.6	20.1	12.0	8.0	0.9	1.0	0.72	-0.14	0.222
TR20	2.74 (1.408)	2.66-2.82	19.5	34.3	16.9	12.2	13.1	3.1	1.0	0.59	-0.68	0.354
CO7	3.15 (1.396)	3.07-3.23	11.0	28.3	20.4	16.9	18.8	3.6	1.0	0.22	-1.02	0.307
CO16	2.44 (1.250)	2.37-2.52	22.2	41.7	15.0	10.7	8.3	1.3	0.7	0.87	-0.01	0.370
SEC5	2.23 (1.160)	2.16-2.29	28.7	40.9	15.5	7.4	6.0	0.7	0.8	1.04	0.57	0.352
SEC14	2.18 (1.069)	2.12-2.24	27.6	42.1	16.5	8.4	3.1	0.7	1.5	1.02	0.86	0.447
PO2	4.21 (1.337)	4.13-4.29	3.9	10.8	12.0	19.4	40.4	13.0	0.4	-0.73	-0.33	0.253
PO17	3.15 (1.349)	3.07-3.23	9.6	28.8	21.5	17.4	19.0	2.6	1.0	0.21	-1.00	0.463
AC4	2.95 (1.305)	2.88-3.03	9.9	36.2	20.6	16.3	13.3	2.8	1.0	0.48	-0.69	0.472
AC13	3.27 (1.359)	3.19-3.35	9.0	24.9	22.1	20.0	19.2	3.8	0.9	0.11	-0.97	0.500
HE10	3.41 (1.415)	3.32-3.49	9.3	22.8	17.8	21.4	23.4	4.6	0.7	-0.05	-1.09	0.442
HE21	2.86 (1.253)	2.79-2.93	13.1	31.8	24.1	17.5	11.1	1.4	1.0	0.38	-0.67	0.475
ST6	2.92 (1.303)	2.85-3.00	12.4	33.4	19.9	18.1	14.1	1.4	0.6	0.34	-0.89	0.472
ST15	3.69 (1.439)	3.60-3.77	7.3	18.1	18.5	17.8	29.7	7.7	0.8	-0.23	-1.04	0.321

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.072 and 0.145, respectively.

Table A737 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2012, United Kingdom (first half-sample: n = 1,143)

	Pr				
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Openness to	Self-	Achievement	variance
		change	transcendence		
SD1	-0.187	-0.057	0.409	0.342	0.725
SD11	-0.054	0.192	0.348	0.049	0.779
UN19	0.095	-0.055	0.565	-0.077	0.671
BE12	0.072	0.038	0.503	-0.019	0.703
BE18	0.253	0.201	0.385	-0.148	0.657
TR20	0.447	0.083	0.219	-0.126	0.683
CO7	0.628	0.002	-0.101	0.046	0.630
CO16	0.587	-0.153	0.177	0.036	0.568
SEC5	0.384	-0.128	0.195	0.136	0.746
SEC14	0.310	-0.051	0.372	0.077	0.673
PO17	0.559	0.169	-0.153	0.241	0.547
AC4	0.170	0.009	-0.035	0.640	0.524
AC13	0.106	0.073	-0.059	0.723	0.390
HE10	0.102	0.743	-0.106	-0.041	0.511
HE21	0.046	0.682	0.091	-0.075	0.522
ST6	-0.116	0.382	0.269	0.169	0.596
ST15	-0.254	0.538	0.029	0.202	0.523
Factors		Correlations b	etween factors		
Conservation	_				
Openness to change	0.151	_			
Self-transcendence	0.364	0.411	_		
Achievement	0.205	0.610	0.265	_	

Table A738 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, United Kingdom (first half-sample: n = 1,143)

		Sub	scale	
	Conservation	Openness to change	Self- transcendence	Achievement
Number of items	5	4	6	2
Mean (standard error)	2.74 (0.026)	3.22 (0.030)	2.12 (0.018)	3.11 (0.035)
95% Confidence interval	2.69-2.79	3.16-3.28	2.09-2.16	3.04-3.18
Standard deviation	0.877	1.013	0.623	1.171
Skewness (standard error)	0.444 (0.072)	0.048 (0.072)	0.538 (0.072)	0.318 (0.072)
Kurtosis (standard error)	-0.118 (0.145)	-0.743 (0.145)	0.284 (0.145)	-0.634 (0.145)
Cronbach's alpha reliability coeff.	0.688	0.737	0.641	0.705
Split-half reliability coefficient	0.650	0.770	0.620	0.705
Average inter-item correlations	0.306	0.414	0.243	0.545
Minimum-maximum correlations	0.199-0.415	0.357-0.490	0.126-0.406	0.545-0.545
Range of correlations	0.216	0.133	0.280	0.000
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Openness to change	0.201	_		
Self-transcendence	0.218	0.232	_	
Achievement	0.265	0.368	0.218	_

Table A739 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2012, United Kingdom (first half-sample: n = 1,143)

	Principal a	xis factor analysis	s (factors)	
-	Factor I	Factor II	Factor III	Unique
Item	Openness to	Conservation	Self-	variance
	change		transcendence	
SD1	0.360	-0.054	0.183	0.830
SD11	0.327	-0.067	0.316	0.780
UN19	0.020	0.061	0.526	0.696
BE12	0.140	0.045	0.476	0.712
BE18	0.119	0.158	0.481	0.653
TR20	-0.060	0.370	0.340	0.694
CO7	-0.120	0.606	0.036	0.654
CO16	-0.195	0.586	0.247	0.566
SEC5	-0.044	0.422	0.192	0.752
SEC14	0.046	0.319	0.362	0.684
PO17	0.192	0.593	-0.060	0.557
AC4	0.469	0.359	-0.176	0.573
AC13	0.594	0.309	-0.210	0.467
HE10	0.583	0.010	0.066	0.638
HE21	0.585	-0.053	0.218	0.590
ST6	0.599	-0.108	0.224	0.589
ST15	0.744	-0.245	-0.004	0.508
Factors	Correl	ations between fa	ctors	
Openness to change	_			
Conservation	0.330	_		
Self-transcendence	0.173	0.286	_	

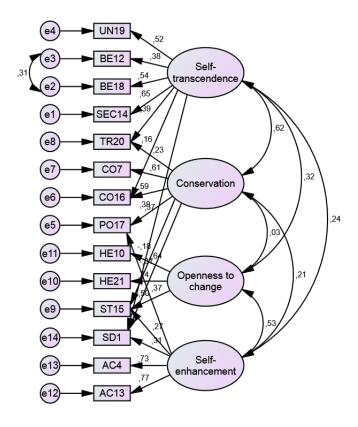
Table A740 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2012, United Kingdom (first half-sample: n = 1,143)

	Principal axis factor a	nalysis (factors)	
Variables			Unique
	Factor I	Factor II	variance
	Openness to change	Conservation	
SD1	0.375	0.034	0.849
SD11	0.349	0.101	0.843
UN19	0.063	0.346	0.861
BE12	0.175	0.305	0.839
BE18	0.163	0.412	0.757
TR20	-0.018	0.537	0.718
CO7	-0.087	0.574	0.698
CO16	-0.159	0.705	0.556
SEC5	-0.016	0.510	0.745
SEC14	0.086	0.502	0.711
PO17	0.218	0.477	0.653
AC4	0.465	0.193	0.684
AC13	0.574	0.124	0.606
HE10	0.607	0.005	0.630
HE21	0.610	0.039	0.610
ST6	0.617	-0.008	0.622
ST15	0.759	-0.287	0.494
	Correlations betw	veen factors	
Openness to change	_		
Conservation	0.349	_	

Note: Component and factor loadings >.22 are in boldface.

Table A741 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (4 factors-14 items): European Social Survey 2012, United Kingdom (first half-sample: n = 1,143)

	Pı	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Self-	Conservation	Openness to	Self-	variance
	transcendence		change	enhancement	
SD1	0.372	-0.239	-0.053	0.382	0.745
UN19	0.628	-0.032	-0.071	-0.011	0.648
BE12	0.495	-0.022	0.047	0.029	0.738
BE18	0.445	0.155	0.179	-0.094	0.662
TR20	0.329	0.372	0.056	-0.110	0.657
CO7	-0.049	0.660	-0.032	0.014	0.591
CO16	0.248	0.527	-0.161	0.028	0.571
SEC14	0.415	0.186	-0.015	0.088	0.700
PO17	-0.077	0.551	0.127	0.233	0.549
AC4	-0.033	0.168	0.002	0.626	0.541
AC13	-0.058	0.100	0.027	0.768	0.359
HE10	-0.086	0.083	0.778	-0.048	0.450
HE21	0.161	-0.034	0.645	-0.012	0.511
ST15	0.026	-0.232	0.441	0.273	0.593
Factors		Correlations be	etween factors		
Self-transcendence					
Conservation	0.436	_			
Openness to change	0.324	0.177	_		
Self-enhancement	0.232	0.244	0.601	_	


Table A742 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of nine models: European Social Survey 2012, United Kingdom (second half-sample: n = 1,143)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	6.49	.064	.877	.892	.830	.069 (.064075)
2a	2 first-order correlated factors- without cross-loadings	6.66	.070	.835	.855	.824	.070 (.066075)
2b	2 first-order correlated factors- with cross-loadings	6.19	.065	.848	.868	.839	.067 (.063072)
3a	3 first-order correlated factors- without cross-loadings	6.79	.072	.830	.851	.820	.071 (.066076)
3b	3 first-order correlated factors- with cross-loadings	5.61	.058	.870	.889	.857	.064 (.059069)
4a	4 first-order correlated factors- without cross-loadings	6.87	.075	.834	.854	.817	.072 (.067077)
4b	4 first-order correlated factors- with cross-loadings	5.64	.055	.886	.906	.876	.059 (.054064)
4c	4 first-order correlated factors- with cross-loadings	3.62	.039	.934	.951	.930	.048 (.041055)
5	2 first-order correlated factors of unified values	5.95	.074	.882	.892	.841	.089 (.078101)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

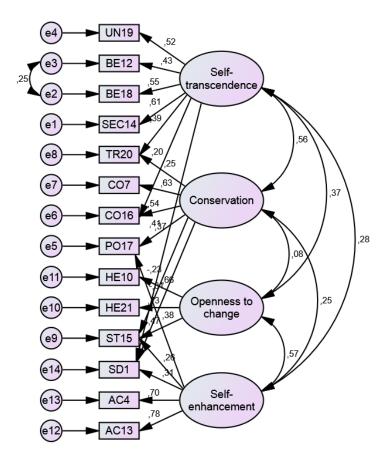

b Lower values indicate better model fit

Fig. 219 Standardized solution for the 4 first-order correlated factors (model 4c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, United Kingdom (second half-sample: n = 1,143)

Table A743 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2012, United Kingdom (N = 2,286)

		Sub	scale		
	Self-	Conservation	Openness to	Self-	
	transcendence		change	enhancement	
Number of items	4	4	3	3	
Mean (standard error)	2.02 (0.014)	2.88 (0.020)	3.34 (0.023)	2.93 (0.021)	
95% Confidence interval	1.99-2.04	2.84-2.92	3.29-3.38	2.89-2.98	
Standard deviation	0.669	0.953	1.084	0.998	
Skewness (standard error)	0.763 (0.051)	0.408 (0.051)	0.022 (0.051)	0.373 (0.051)	
Kurtosis (standard error)	0.945 (0.102)	-0.221 (0.102)	-0.694 (0.102)	-0.343 (0.102)	
Cronbach's alpha reliability coeff.	0.631	0.660	0.698	0.618	
Split-half reliability coefficient	0.649	0.641	0.604	0.645	
Average inter-item correlations	0.308	0.329	0.439	0.347	
Minimum-maximum correlations	0.248-0.425	0.281-0.422	0.402-0.482	0.235-0.554	
Range of correlations	0.177	0.141	0.080	0.319	
	Averag	ge inter-item corre	lations between su	ibscales	
Self-transcendence	_				
Conservation	0.263	_			
Openness to change	0.219	0.197	_		
Self-enhancement	0.214	0.223	0.322	_	

Fig. 220 Standardized solution for the 4 first-order correlated factors (model 4c-14 items) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2012, United Kingdom (N = 2,286)

Table A744 Item analysis of Schwartz scale values of the European Social Survey, 2014: United Kingdom (first half-sample: n = 1,132)

				Frequ	iency per	cent of re	esponse	categor	ies			
Item	Mean (SD)	95% CI	1	2	3	4	5	6	NA	Skew	Kurt.	CC
SD1	2.54 (1.283)	2.38-2.54	24.8	30.1	20.2	14.0	8.0	1.1	1.7	0.56	-0.53	0.313
SD11	2.11 (1.083)	2.05-2.17	32.3	39.5	14.3	7.9	4.2	0.2	1.7	1.03	0.57	0.301
UN3	2.03 (1.060)	1.97-2.09	35.4	39.0	12.9	8.0	2.5	0.6	1.7	1.15	1.11	0.294
UN8	2.32 (1.091)	2.26-2.38	22.3	42.1	19.4	9.9	4.1	0.7	1.5	0.88	0.47	0.358
UN19	2.15 (1.086)	2.08-2.21	30.9	38.7	16.8	8.2	3.3	0.6	1.5	1.00	0.71	0.317
BE12	2.06 (1.000)	2.00-2.12	31.5	42.1	14.3	8.7	1.4	0.4	1.5	1.00	0.87	0.476
BE18	1.90 (0.893)	1.85-1.95	35.3	46.4	9.7	6.0	1.0	0.2	1.4	1.18	1.64	0.443
TR9	2.63 (1.267)	2.56-2.71	18.0	37.0	19.2	13.3	9.1	1.7	1.8	0.65	-0.35	0.212
TR20	2.91 (1.470)	2.82-2.99	18.3	29.9	16.4	14.9	14.0	4.8	1.7	0.44	-0.88	0.318
CO7	3.35 (1.460)	3.26-3.43	11.6	22.3	17.0	18.3	24.0	4.7	2.2	-0.02	-1.15	0.312
CO16	2.63 (1.295)	2.56-2.71	19.9	35.3	17.3	14.1	10.4	1.1	1.8	0.57	-0.61	0.364
SEC5	2.29 (1.179)	2.22-2.36	26.8	40.3	14.7	9.4	7.0	0.4	1.6	0.92	0.12	0.365
SEC14	2.20 (1.144)	2.14-2.27	28.8	40.6	13.2	9.6	4.3	1.0	2.5	1.07	0.70	0.401
PO2	4.34 (1.257)	4.27-4.41	3.6	6.8	11.9	19.5	43.2	13.6	1.3	-0.89	0.24	0.289
PO17	3.44 (1.393)	3.35-3.52	8.0	22.7	19.3	18.7	25.4	4.2	1.7	-0.04	-1.10	0.434
AC4	3.26 (1.392)	3.18-3.35	9.6	26.0	19.3	18.8	20.6	3.9	1.9	0.11	-1.05	0.448
AC13	3.56 (1.394)	3.48-3.65	7.4	20.0	18.8	19.5	27.4	5.0	1.9	-0.18	-1.04	0.529
HE10	3.51 (1.360)	3.43-3.59	6.7	22.6	16.9	22.3	26.1	3.7	1.7	-0.16	-1.07	0.380
HE21	2.97 (1.249)	2.90-3.04	10.6	31.4	21.6	21.6	11.6	1.6	1.7	0.29	-0.76	0.469
ST6	3.11 (1.436)	3.03-3.20	14.5	25.6	17.8	18.0	19.3	3.2	1.6	0.15	-1.10	0.470
ST15	3.84 (1.425)	3.75-3.92	6.5	15.7	15.1	20.6	31.2	9.4	1.5	-0.39	-0.88	0.414

Notes: SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Kurt. = kurtosis; CC = corrected item-total correlation. Items were assigned the following response categories: 1 (very much like me), 2 (like me), 3 (somewhat like me), 4 (a little like me), 5 (not like me) and 6 (not like me at all). Standard errors for skewness and kurtosis were 0.073 and 0.145, respectively.

Table A745 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation: European Social Survey 2014, United Kingdom (first half-sample: n = 1,132)

	P	rincipal axis facto	r analysis (factor	rs)	
Item	Factor I	Factor II	Factor III	Factor IV	Unique
	Conservation	Self-	Self-	Openness to	variance
		transcendence	enhancement	change	
SD1	-0.126	0.512	0.229	-0.162	0.741
SD11	-0.034	0.460	0.025	-0.032	0.804
UN8	0.022	0.596	0.000	-0.140	0.710
UN19	0.220	0.454	-0.214	0.025	0.704
BE12	0.190	0.534	-0.048	0.019	0.622
BE18	0.298	0.404	-0.102	0.074	0.661
TR20	0.532	0.045	-0.070	0.084	0.687
CO7	0.551	-0.077	0.208	-0.082	0.679
CO16	0.651	0.035	0.037	-0.058	0.567
SEC5	0.500	-0.016	0.087	0.038	0.728
SEC14	0.471	0.140	0.030	0.037	0.697
PO17	0.371	-0.071	0.411	0.056	0.657
AC4	0.074	-0.010	0.741	-0.028	0.463
AC13	0.106	0.014	0.752	0.024	0.374
HE10	0.045	-0.220	0.129	0.651	0.587
HE21	0.046	-0.047	-0.104	0.847	0.398
ST6	-0.142	0.389	0.236	0.240	0.540
ST15	-0.237	0.282	0.284	0.317	0.510
Factors		Correlations b	etween factors		
Conservation	_				
Self-transcendence	0.305	_			
Self-enhancement	0.113	0.326	_		
Openness to change	0.167	0.552	0.577	_	

Table A746 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, United Kingdom (first half-sample: n = 1,132)

		Subs	scale	
	Conservation	Self- transcendence	Self- enhancement	Openness to change
Number of items	5	7	3	3
Mean (standard error)	2.68 (0.026)	2.31 (0.020)	3.42 (0.033)	3.44 (0.031)
95% Confidence interval	2.63-2.73	2.27-2.35	3.36-3.49	3.38-3.50
Standard deviation	0.882	0.673	1.109	1.046
Skewness (standard error)	0.375 (0.073)	0.581 (0.073)	0.011 (0.073)	-0.070 (0.073)
Kurtosis (standard error)	-0.240 (0.145)	0.587 (0.145)	-0.816 (0.145)	-0.585 (0.145)
Cronbach's alpha reliability coeff.	0.693	0.691	0.711	0.670
Split-half reliability coefficient	0.692	0.693	0.526	0.635
Average inter-item correlations	0.315	0.253	0.451	0.409
Minimum-maximum correlations	0.256-0.399	0.148-0.451	0.358-0.602	0.329-0.485
Range of correlations	0.142	0.304	0.243	0.156
	Averag	ge inter-item corre	lations between su	ıbscales
Conservation	_			
Self-transcendence	0.200	_		
Self-enhancement	0.257	0.219	_	
Openness to change	0.195	0.232	0.352	_

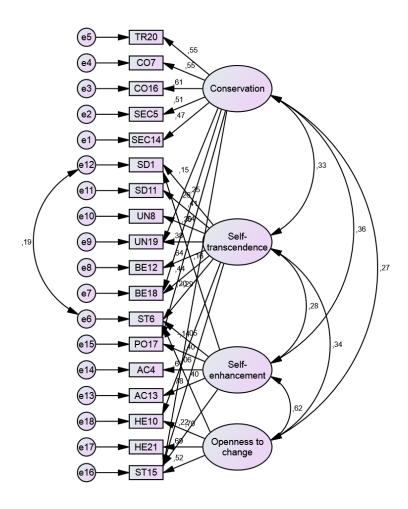
Table A747 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (3 factors): European Social Survey 2014, United Kingdom (first half-sample: n = 1,132)

-	Principal a	Principal axis factor analysis (factors)											
	Factor I	Factor II	Factor III	Unique									
Item	Self-	Conservation	Self-	variance									
	enhancement		transcendence										
SD1	0.198	-0.091	0.334	0.812									
SD11	0.063	-0.036	0.409	0.816									
UN8	-0.024	0.024	0.504	0.748									
UN19	-0.170	0.188	0.517	0.698									
BE12	0.009	0.170	0.545	0.621									
BE18	-0.034	0.269	0.467	0.657									
TR20	-0.053	0.501	0.149	0.700									
CO7	0.099	0.562	-0.088	0.679									
CO16	-0.057	0.643	0.081	0.566									
SEC5	0.066	0.492	0.037	0.728									
SEC14	0.031	0.455	0.194	0.697									
PO17	0.424	0.391	-0.107	0.652									
AC4	0.715	0.128	-0.174	0.518									
AC13	0.771	0.156	-0.139	0.413									
HE10	0.524	0.008	0.001	0.723									
HE21	0.450	-0.012	0.239	0.660									
ST6	0.477	-0.151	0.373	0.528									
ST15	0.579	-0.247	0.274	0.494									
Factors	Correl	ations between fa	actors										
Self-enhancement	_												
Conservation	0.185	_											
Self-transcendence	0.392	0.266	_										

Table A748 Factor loadings of exploratory factor analysis (principal axis factoring) with promax rotation (2 factors): European Social Survey 2014, United Kingdom (first half-sample: n = 1,132)

	Principal axis factor a	nalysis (factors)	
Variables	Factor I Openness to change	Factor II Conservation	Unique variance
SD1	0.364	-0.005	0.817
SD11	0.261	0.076	0.912
UN19	0.050	0.327	0.879
BE12	0.234	0.315	0.793
BE18	0.143	0.402	0.777
TR20	-0.070	0.571	0.697
CO7	-0.042	0.544	0.719
CO16	-0.135	0.698	0.561
SEC5	-0.006	0.526	0.725
SEC14	0.042	0.531	0.700
PO17	0.298	0.357	0.709
AC4	0.572	0.067	0.641
AC13	0.640	0.105	0.532
HE10	0.523	-0.004	0.728
HE21	0.571	0.043	0.655
ST6	0.666	-0.060	0.580
ST15	0.071	-0.195	0.498
	Correlations betw	veen factors	_
Openness to change	_		
Conservation	0.353	_	

Note: Component and factor loadings >.22 are in boldface.


Table A749 Confirmatory factor analysis (maximum likelihood), goodness-of-fit indices of eight models: European Social Survey 2014, United Kingdom (second half-sample: n = 1,132)

Models tested	Factor structure	χ^2/df	SRMR ^b	NFI ^a	CFI ^a	TLIª	RMSEA ^b (90 % CI)
1	1 first-order uncorrelated factor	4.05	.044	.913	.932	.882	.052 (.046058)
2a	2 first-order correlated factors						
21.	(17 items)-without cross-loadings	6.36	.065	.820	.843	.802	.069 (.064074)
2b	2 first-order correlated factors (17 items)-with cross-loadings	5.58	.057	.845	.868	.831	.064 (.059069)
3a	3 first-order correlated factors-	2.20	.057	.0.12	.000	.001	.001 (.03) .00)
	without cross-loadings	5.76	.060	.828	.852	.815	.065 (.060070)
3b	3 first-order correlated factors- with cross-loadings	4.77	.050	.865	.889	.854	.058 (.053063)
4a	4 first-order correlated factors-	1.77	.050	.005	.007	.05 1	.030 (.033 .003)
	without cross-loadings	6.85	.067	.785	.810	.772	.072 (.067076)
4b	4 first-order correlated factors-	1 15	0.45	071	906	966	055 (050 , 060)
5	with cross-loadings 2 first-order correlated factors	4.45	.045	.871	.896	.866	.055 (.050060)
5	of unified values	6.66	.056	.912	.924	.888	.071 (.059083)

df degrees of freedom; SRMR = standardized root mean square residual; NFI normed fit index; CFI comparative fit index; TLI Tucker-Lewis index; RMSEA root-mean-square error of approximation; CI confidence interval.

a Higher values indicate better model fit

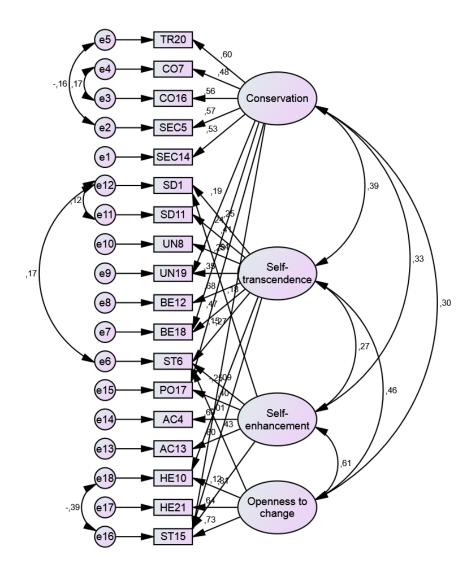

b Lower values indicate better model fit

Fig. 221 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, United Kingdom (second half-sample: n = 1,132)

Table A750 Descriptive statistics, reliability coefficients and internal consistencies of the subscales: European Social Survey 2014, United Kingdom (first half-sample: n = 2,264)

		Sub	scale			
	Conservation	Self- transcendence	Self- enhancement	Openness to change		
Number of items	5	7	3	3		
Mean (standard error)	2.68 (0.018)	2.30 (0.014)	3.40 (0.023)	3.43 (0.022)		
95% Confidence interval	2.64-2.71	2.28-2.33	3.36-3.45	3.39-3.48		
Standard deviation	0.867	0.654	1.100	1.055		
Skewness (standard error)	0.420 (0.051)	0.564 (0.051)	0.016 (0.051)	-0.063 (0.051)		
Kurtosis (standard error)	-0.132 (0.103)	0.919 (0.103)	-0.768 (0.103)	-0.602 (0.103)		
Cronbach's alpha reliability coeff.	0.680	0.671	0.697	0.672		
Split-half reliability coefficient	0.682	0.586	0.524	0.628		
Average inter-item correlations	0.301	0.236	0.434	0.410		
Minimum-maximum correlations	0.238-0.396	0.128-0.416	0.351-0.561	0.340-0.482		
Range of correlations	0.159	0.288	0.210	0.142		
	Averag	ge inter-item corre	lations between su	ıbscales		
Conservation	_					
Self-transcendence	0.187	_				
Self-enhancement	0.250	0.208				
Openness to change	0.187	0.214	0.341	_		

Fig. 222 Standardized solution for the 4 first-order correlated factors (model 4b) with cross-loadings based on CFA analysis. Observed variables are represented by rectangles and latent variables are enclosed in ellipses: European Social Survey 2014, United Kingdom (N = 2,264)

B. Wellbeing: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) Results

Table B1 Item analysis of the 2012 European Social Survey measurement of wellbeing for Belgium (first half-sample: n = 934)

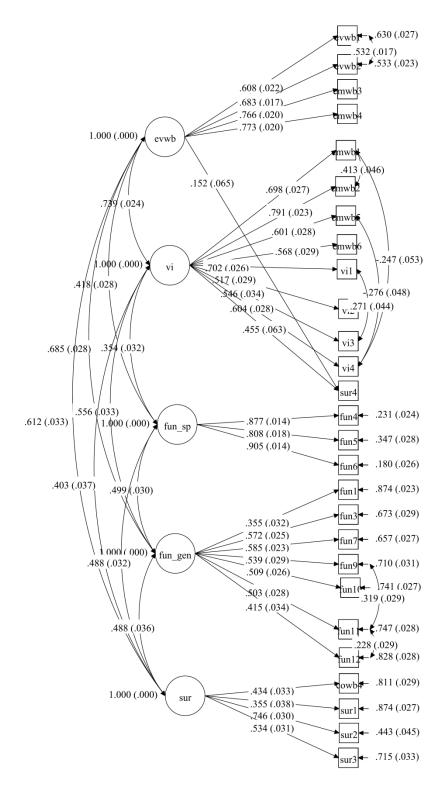
				Frequency percent of response categories														
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.98	0.678	3.94-4.03	0.5	0.1	1.3	1.9	2.4	6.0	7.9	20.8	33.8	18.5	6.6	0.1	-1.31	2.44	.572
Evwb2	4.09	0.610	4.05-4.13	0.2	0.3	0.5	1.4	1.0	4.4	5.9	21.6	34.5	21.7	8.5	-	-1.41	3.59	.630
Emwb1	4.27	0.887	4.21-4.33	-	1.8	4.8	40.0	53.1	-	-	-	-	-	-	0.2	-1.16	1.50	.572
Emwb2	4.42	0.907	4.36-4.48	-	2.0	4.7	28.7	64.5	-	-	-	-	-	-	0.1	-1.67	2.78	.629
Emwb3	3.69	1.059	3.63-3.76	-	4.3	18.0	49.0	28.6	-	-	-	-	-	-	0.1	-0.53	-0.12	.593
Emwb4	3.71	1.055	3.64-3.78	-	4.3	17.1	49.6	28.9	-	-	-	-	-	-	0.1	-0.58	0.01	.576
Emwb5	3.83	0.984	3.77-3.89	-	3.5	11.8	54.0	30.7	-	-	-	-	-	-	-	-0.71	0.59	.499
Emwb6	3.20	1.113	3.13-3.27	-	9.6	30.1	46.5	13.8	-	-	-	-	-	-	-	-0.25	-0.46	.465
Fun1	4.15	0.847	4.09-4.21	-	0.9	4.9	9.1	48.0	37.2	-	-	-	-	-	-	-1.13	1.46	.319
Fun2	3.16	1.110	3.09-3.23	_	7.3	25.2	20.3	39.0	7.9	-	_	-	_	-	0.3	-0.29	-0.93	.301
Fun3	3.85	0.726	3.80-3.90	-	0.3	4.8	18.5	62.0	14.0	-	-	_	-	-	0.3	-0.74	1.10	.436
Fun4	4.05	0.598	4.01-4.09	0.1	0.1	0.5	1.0	1.1	6.1	8.1	22.5	35.8	15.0	9.7	-	-0.93	2.01	.467
Fun5	4.04	0.616	4.00-4.08	0.1	0.1	0.6	0.9	1.9	6.5	8.5	21.1	33.9	16.9	9.4	-	-0.90	1.54	.425
Fun6	3.98	0.646	3.94-4.02	0.1	0.2	0.6	1.6	2.2	7.5	8.6	23.2	32.4	15.5	7.9	-	-0.94	1.45	.470
Fun7	3.98	0.678	3.94-4.03	-	0.6	2.9	11.8	66.9	17.5	-	-	_	-	-	0.3	-0.98	2.68	.421
Fun8	3.72	0.746	3.67-3.77	0.9	0.7	1.5	3.2	2.5	12.0	14.5	24.6	26.4	8.5	4.8	0.4	-0.97	1.43	.484
Fun9	3.61	0.972	3.55-3.67	-	1.7	14.6	19.3	48.9	15.5	_	_	_	_	_	_	-0.58	-0.28	.467
Fun10	3.74	0.718	3.70-3.79	_	0.3	6.2	21.3	62.7	9.1	_	_	_	_	_	0.3	-0.81	0.99	.359
Fun11	3.68	0.855	3.63-3.74	-	1.2	9.2	22.1	54.7	12.7	_	_	_	_	_	0.1	-0.72	0.42	.415
Fun12	3.88	1.066	3.81-3.95	_	1.4	13.6	13.3	37.6	34.2	_	_	_	_	_	_	-0.73	-0.42	.321
Fun13	3.35	1.070	3.28-3.42	_	5.8	19.6	18.7	45.5	10.2	_	_	_	_	_	0.2	-0.53	-0.59	.403
Fun14	3.33	0.718	3.28-3.38	1.1	0.6	3.3	6.4	9.2	19.1	19.2	24.6	12.5	2.9	1.0	0.1	-0.58	0.29	.434
Vi1	4.19	0.998	4.13-4.26	_	2.5	9.1	35.4	52.9	_	_	_	_	_	_	0.1	-1.12	0.80	.502
Vi2	3.86	1.156	3.78-3.93	_	5.8	14.8	38.9	40.6	_	_	_	_	_	_	_	-0.79	-0.09	.407
Vi3	4.32	0.889	4.27-4.38	_	1.5	5.2	36.0	57.2	_	_	_	_	_	_	0.1	-1.28	1.62	.469
Vi4	3.01	1.168	2.94-3.09	_	13.9	33.6	39.8	12.3	_	_	_	_	_	_	0.3	-0.10	-0.69	.461
Cowb1	3.04	0.845	2.98-3.09	4.0	2.8	5.0	11.5	10.5	21.3	14.3	19.5	9.5	1.4	0.2	-	-0.51	-0.27	.281

Table B1 (continued)

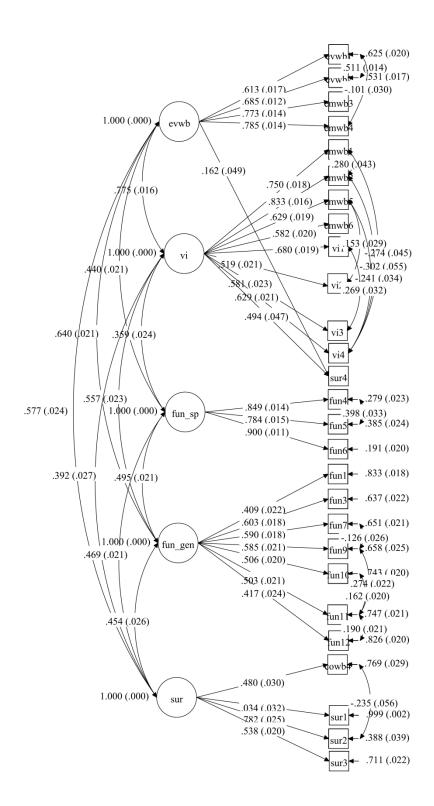
	Frequency percent of response categories																	
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb2	3.33	0.786	3.28-3.38	1.7	1.7	2.8	6.6	8.2	21.3	14.5	23.2	14.6	4.1	1.2	0.1	-0.59	0.23	.289
Cowb3	2.84	0.802	2.79-2.89	3.0	3.0	8.9	16.0	15.2	21.5	13.5	11.6	5.8	1.1	0.3	0.2	-0.09	-0.39	.201
Cowb4	3.45	0.970	3.38-3.51	4.1	4.2	11.5	20.8	27.2	23.0	8.2	-	-	_	_	1.1	-0.55	-0.07	.353
Cowb5	3.50	0.957	3.44-3.56	-	2.7	14.9	22.6	49.1	10.6	-	_	_	-	-	0.1	-0.61	-0.17	.242
Sur1	3.00	0.889	2.94-3.06	3.5	4.7	32.0	24.4	20.4	11.7	3.2	-	-	-	-	-	-0.11	-0.28	.303
Sur2	4.09	0.564	4.05-4.12	0.1	0.3	0.1	0.7	1.2	4.5	8.1	20.0	36.7	20.7	7.5	-	-1.17	2.99	.435
Sur3	4.20	0.829	4.15-4.25	1.3	1.7	2.4	7.2	16.3	38.5	32.3	-	-	-	-	0.3	-1.49	2.66	.332
Sur4	4.43	0.986	4.37-4.50	-	3.1	6.2	20.8	69.9	-	-	-	-	-	-	-	-1.83	2.85	.495

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.081 and 0.162, respectively.

Table B2 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Belgium (n = 934): Goodness-of-fit indices


Number of factors tested	χ^2/df	CFI	TLI	RMSEA (90% CI)
1	10.33	.690	.665	.100 (.097103)
2	7.25	.809	.775	.082 (.079085)
3	5.41	.877	.841	.069 (.065072)
4	3.90	.926	.896	.056 (.052059)
5	3.15	.950	.923	.048 (.044052)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered acceptable if $\chi^2/df < 3$, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.


Table B3 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Belgium (n = 934)

Item	Factor I EVWB	Factor II Vitality	Factor III FUN (specific)	Factor IV FUN (general)	Factor V SUR
Evwb1	.526	.023	.031	.006	.274
Evwb2	.650	027	.065	002	.286
Emwb1	.262	.646	.005	055	.012
Emwb2	.238	.683	.010	005	.030
Emwb3	.503	.254	013	.198	.003
Emwb4	.625	.216	.020	.045	.014
Emwb5	.096	.610	064	.114	027
Emwb6	.209	.438	066	.119	034
Fun1	.066	003	.055	.360	.097
Fun3	.017	.016	.185	.508	.073
Fun4	.004	.016	.855	.021	.042
Fun5	024	.008	.911	036	.030
Fun6	.114	004	.804	.032	039
Fun7	036	045	.175	.522	.141
Fun9	.267	.001	.001	.446	.022
Fun10	.016	.033	.109	.567	088
Fun11	.199	.014	062	.567	075
Fun12	048	.176	087	.405	.067
Vi1	038	.741	.087	032	.013
Vi2	032	.613	014	.021	004
Vi3	147	.663	.066	.177	.017
Vi4	.283	.312	.247	.020	144
Cowb4	.130	.004	.021	021	.387
Sur1	.112	.078	050	021	.323
Sur2	.020	.059	.181	.069	.465
Sur3	003	.019	036	.072	.595
Sur4	.310	.473	001	115	.135
Factors		Corre	lations between	factors	
EVWB		_			
Vitality	5	26	_		
FUN (specific)			233	_	
FUN (general)			367	.279	_
SUR			305	.300	.202 —

EVWB = evaluative wellbeing; FUN = Functioning; SUR: Supportive relationships. Factor loadings > .30 are in boldface. Goodness of fit indices for this model: $\chi^2/df = 3.15$, CFI = .950, TLI = .923, RMSEA (90% CI) = .048 (.044-.052).

Fig. B1 Standardized solution for the model with 5 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the second half-sample of Belgium (n = 935). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model: $\chi^2/df = 3.36$, CFI = .914, TLI = .902, RMSEA (90% CI) = .050 (.047-.054).

Fig. B2 Standardized solution for the model with 5 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the full sample of Belgium (N = 1,869). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices: $\chi^2/df = 5.46$, CFI = .927, TLI = .914, RMSEA (90% CI) = .049 (.047-.051).

Table B4 Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Belgium (N = 1,869)

			Subscale		
	Evaluative wellbeing	Vitality	Functioning (specific)	Functioning (general)	Supportive relationships
Number of items	4	9	3	7	4
Mean (standard error)	3.88 (0.016)	3.97 (0.015)	4.04 (0.013)	3.86 (0.012)	3.69 (0.012)
95% Confidence interval	3.85-3.91	3.94-4.00	4.01-4.06	3.83-3.88	3.66-3.71
Standard deviation	0.673	0.634	0.568	0.520	0.496
Skewness	-0.869	-1.021	-1.034	-0.593	-0.756
Kurtosis	1.088	1.378	2.592	0.821	1.257
Convergent validity	.515	.411	.715	.272	.283
Composite Reliability	.808	.860	.883	.719	.540
Average inter-item correl.	.506	.330	.756	.282	.151
Minmax. correlations	.382714	.207591	.732796	.179487	017424
Range of correlations	.332	.384	.064	.307	.441
	Average	inter-item corre	lations between	subscales	
Evaluative wellbeing	—				
Vitality	.337	_			
Functioning (specific)	.394	.287			
Functioning (general)	.281	.238	.279		
Supportive relationships	.245	.215	.255	.180	_
	Sqı	uared correlation	s between subsc	ales	
Evaluative wellbeing	_				_
Vitality	.114	_			
Functioning (specific)	.155	.082	_		
Functioning (general)	.079	.057	.078	_	
Supportive relationships	.060	.046	.065	.032	_

Standard errors for skewness and kurtosis were 0.057 and 0.114, respectively.

Table B5 Item analysis of the 2012 European Social Survey measurement of wellbeing for Denmark (first half-sample: n = 825)

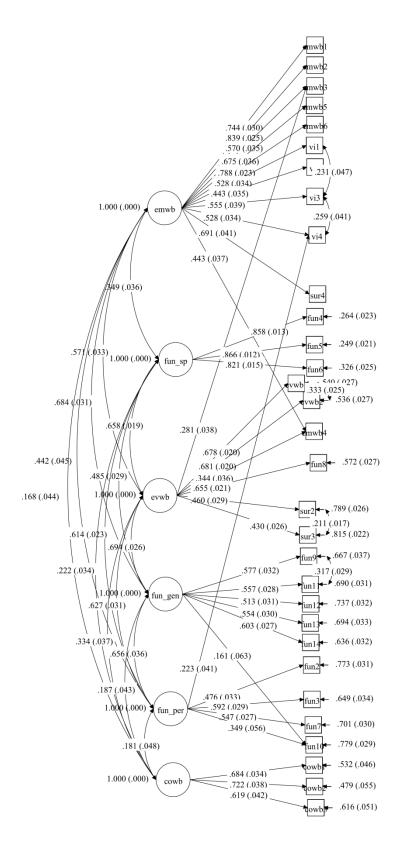
							Frequ	ency pe	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.45	0.569	4.40-4.49	0.5	0.4	0.1	0.1	1.0	2.1	1.8	8.6	23.9	32.7	28.7	0.1	-2.04	7.02	.631
Evwb2	4.36	0.608	4.31-4.40	0.1	0.4	0.1	0.7	0.6	2.1	4.1	10.5	28.8	32.4	19.8	0.4	-1.90	5.72	.590
Emwb1	4.58	0.735	4.52-4.63	-	0.8	1.3	26.3	71.3	-	-	-	-	-	-	0.2	-1.82	3.90	.524
Emwb2	4.69	0.724	4.64-4.74	-	1.0	1.1	16.1	81.5	-	-	-	-	-	-	0.4	-2.79	8.85	.579
Emwb3	3.82	1.091	3.74-3.90	-	3.3	19.5	43.3	33.7	-	-	-	-	-	-	0.2	-0.59	-0.35	.598
Emwb4	3.61	1.070	3.54-3.69	-	4.0	20.7	49.6	25.1	-	-	-	-	-	-	0.6	-0.45	-0.25	.556
Emwb5	4.67	0.698	4.62-4.72	-	0.7	1.6	16.8	80.0	-	-	-	-	-	-	0.8	-2.41	6.98	.431
Emwb6	3.79	1.060	3.71-3.86	-	2.9	16.8	44.2	35.6	-	-	-	-	-	-	0.4	-0.68	0.14	.545
Fun1	4.15	0.858	4.09-4.22	-	1.3	5.5	10.4	47.3	35.4	-	-	-	-	-	0.1	-1.20	1.73	.482
Fun2	3.83	1.015	3.76-3.90	-	3.4	11.3	14.2	49.1	21.3	-	-	-	-	-	0.7	-0.88	0.25	.434
Fun3	4.05	0.841	3.99-4.11	-	1.1	4.2	10.5	57.5	26.1	-	-	-	-	-	0.6	-1.14	1.88	.455
Fun4	4.20	0.579	4.16-4.24	0.2	0.5	-	0.5	0.7	3.9	4.7	18.2	36.0	21.2	13.5	0.6	-1.32	4.25	.485
Fun5	4.21	0.570	4.17-4.25	0.1	0.2	0.2	0.1	1.1	3.5	5.2	18.3	36.0	21.6	13.0	0.6	-1.51	5.28	.469
Fun6	3.98	0.685	3.93-4.03	0.1	0.4	0.6	1.5	3.0	7.9	10.3	23.9	29.5	14.5	7.4	1.0	-1.04	2.03	.503
Fun7	4.19	0.823	4.13-4.25	-	2.7	2.1	7.5	53.7	33.5	-	-	-	-	-	0.6	-1.59	3.90	.421
Fun8	4.16	0.742	4.11-4.22	0.8	0.2	0.7	1.5	1.8	6.8	6.2	15.0	28.7	17.7	19.6	0.8	-1.41	3.05	.528
Fun9	4.05	0.830	3.99-4.11	-	0.5	6.2	12.6	52.2	28.0	-	-	-	-	-	0.5	-0.98	1.17	.512
Fun10	4.17	0.676	4.13-4.22	-	0.5	1.8	6.5	65.5	25.5	-	-	-	-	-	0.2	-1.09	3.42	.374
Fun11	4.02	0.780	3.96-4.07	-	0.2	3.8	13.0	58.5	24.4	-	-	-	-	-	0.1	-0.87	1.24	.504
Fun12	3.57	1.085	3.50-3.65	-	1.1	22.1	14.5	42.5	19.4	-	-	-	_	-	0.4	-0.35	-1.01	.393
Fun13	3.84	0.932	3.78-3.91	-	2.3	9.2	13.3	57.0	17.5	-	-	-	_	-	0.7	-1.05	1.03	.501
Fun14	3.72	0.753	3.66-3.77	0.8	0.7	1.0	3.3	4.7	14.7	10.1	23.3	26.3	11.0	2.8	1.3	-0.85	0.65	.489
Vi1	4.21	0.949	4.14-4.27	-	2.8	5.3	38.5	52.7	-	-	-	-	-	-	0.6	-1.17	1.40	.428
Vi2	4.06	1.108	3.98-4.14	-	4.7	8.6	38.7	47.9	-	-	-	-	-	-	0.1	-1.17	0.90	.377
Vi3	4.39	0.874	4.32-4.45	-	1.6	3.9	32.5	61.6	-	-	-	-	-	-	0.5	-1.43	2.07	.430
Vi4	3.33	1.095	3.25-3.41	-	7.9	31.4	44.1	16.5	-	-	-	-	-	-	0.1	-0.23	-0.46	.543
Cowb1	3.79	0.743	3.74-3.84	0.6	0.4	1.7	3.2	3.8	11.3	9.9	21.0	30.9	11.4	5.6	0.4	-0.93	0.89	.317
Cowb2	3.92	0.688	3.87-3.97	0.2	0.6	0.5	1.9	2.1	9.5	8.0	21.1	34.8	13.6	7.5	0.2	-0.94	1.15	.330
Cowb3	3.43	0.744	3.38-3.49	0.4	0.7	2.1	5.8	8.1	18.2	17.5	21.1	16.8	6.1	3.2	0.1	-0.28	-0.19	.306

Table B5 (continued)

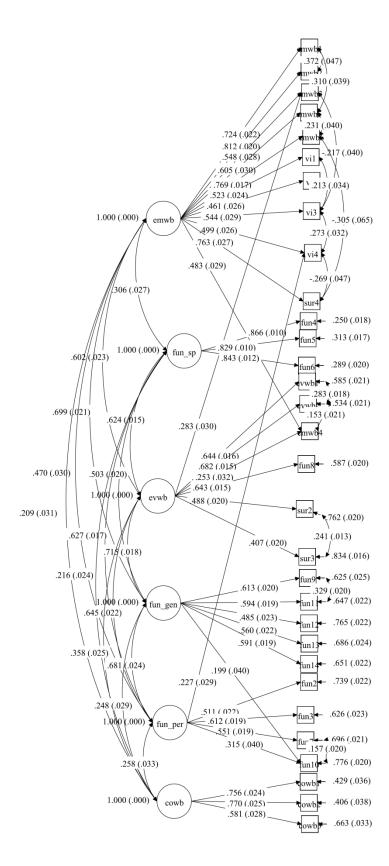
							Frequ	ency pe	rcent of	f respons	se catego	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.66	0.938	3.59-3.73	1.6	4.4	7.6	18.5	24.6	27.0	13.9	-	-	-	-	2.3	-0.57	-0.27	.309
Cowb5	3.45	1.024	3.38-3.52	-	4.1	14.9	23.8	46.3	10.3	_	-	-	-	-	0.6	-0.48	-0.45	.229
Sur1	3.25	0.966	3.18-3.32	2.8	9.6	13.9	18.1	38.2	9.1	7.9	-	-	_	-	0.5	-0.31	-0.32	.190
Sur2	4.39	0.538	4.36-4.43	0.1	0.2	-	0.7	0.2	2.2	3.3	9.8	28.5	30.8	23.5	0.6	-1.40	3.28	.416
Sur3	4.52	0.676	4.47-4.57	0.5	1.1	0.4	2.8	7.4	33.0	53.9	-	-	-	-	1.0	-2.18	6.40	.313
Sur4	4.74	0.678	4.69-4.79	-	0.8	1.2	14.4	83.5	-	-	-	-	-	-	-	-3.18	11.58	.475

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.090 and 0.179, respectively.

Table B6 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Denmark (n = 825): Goodness-of-fit indices


Number of actors tested	χ^2/df	CFI	TLI	RMSEA (90% CI)
1	8.75	.576	.546	.097 (.094100)
2	6.62	.714	.671	.083 (.080086)
3	5.52	.787	.735	.074 (.071077)
4	4.52	.846	.794	.065 (.062069)
5	3.62	.894	.847	.056 (.053060)
6	3.17	.920	.873	.051 (.048055)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered acceptable if $\chi^2/df < 3$, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.


Table B7 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Denmark (n = 825)

Item	Factor I EMWB	Factor II FUN (specific)	Factor III EVWB	Factor IV FUN (general)	Factor V FUN (personal)	Facto CO'	
Evwb1	.070	.089	.429	.166	048		.186
Evwb2	.046	.010	.622	.137	052		.120
Emwb1	.776	039	025	.114	006		.011
Emwb2	.803	008	.010	.076	.005		.065
Emwb3	.455	.025	.384	.019	.096		119
Emwb4	.413	010	.475	.017	.056		221
Emwb5	.791	.110	109	.015	218		.062
Emwb6	.683	023	.179	.024	047		092
Fun2	.074	.164	.011	.085	.318		.083
Fun3	.124	.192	003	007	.470		.042
Fun4	021	.855	011	.044	009		.001
Fun5	.018	.899	.012	096	.012		016
Fun6	.006	.754	.050	.017	.073		025
Fun7	.016	.128	009	.124	.496		.051
Fun8	106	.218	.404	.112	.207		.001
Fun9	.056	034	.123	.536	.104		020
Fun10	046	.004	047	.366	.410		.030
Fun11	.005	025	.074	.657	.028		008
Fun12	.151	.084	025	.403	038		038
Fun13	.125	.098	.076	.376	.089		009
Fun14	.025	.288	.032	.358	040		.112
Vi1	.552	019	004	.051	.029		.079
Vi2	.500	034	.020	.043	025		.003
Vi3	.618	025	005	137	.273		.019
Vi4	.525	.015	.120	013	.324		143
Cowb1	.004	.021	.027	.012	.038		.766
Cowb2	001	032	001	.014	.115		.788
Cowb3	.054	.001	.100	029	008		.522
Sur2	.018	.049	.401	030	.082		.179
Sur3	034	026	.571	086	072		.103
Sur4	.602	.096	.149	090	.013		.061
Factors			Correlation	s between fac	ctors		
EMWB	_	_					
FUN (specific)	.29	0	_				
EVWB	.44		441	_			
FUN (general)	.51			.457	_		
FUN (personal)	.24			.293	.277	_	
COWB	.23			.196	.141	.142	
		-					

EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = Functioning; COWB = Community wellbeing. Factor loadings > .30 are in boldface. Goodness of fit indices for this model: $\chi^2/df = 3.17$, CFI = .920, TLI = .873, RMSEA (90% CI) = .051 (.048-.055).

Fig. B3 Standardized solution for the model with 6 first-order correlated factors with four cross-loading items based on CFA analysis performed on the second half-sample of Denmark (n = 825). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model: $\chi^2/df = 3.02$, CFI = .893, TLI = .879, RMSEA (90% CI) = .050 (.046-.053).

Fig. B4 Standardized solution for the model with 6 first-order correlated factors with four cross-loading items based on CFA analysis performed on the full sample of Denmark (N = 1,650). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices: $\chi^2/df = 4.68$, CFI = .910, TLI = .895, RMSEA (90% CI) = .047 (.045-.049).

Table B8 Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Denmark (N = 1,650)

			Subscale			
	Emotional wellbeing	Functioning (specific)	Evaluative wellbeing	Functioning (general)	Functioning (personal)	Community wellbeing
Number of items	10	3	6	5	4	3
Mean (standard error)	4.22 (0.014)	4.14 (0.014)	4.25 (0.012)	3.83 (0.016)	4.04 (0.015)	3.74 (0.015)
95% Confidence interval	4.19-4.25	4.11-4.17	4.23-4.28	3.80-3.86	4.01-4.07	3.71-3.76
Standard deviation	0.561	0.544	0.472	0.608	0.577	.585
Skewness	-1.381	-1.244	-1.160	-0.659	-0.786	-0.682
Kurtosis	2.990	4.126	2.715	0.801	1.692	0.970
Convergent validity	.405	.716	.294	.325	.260	.501
Composite Reliability	.868	.883	.696	.706	.572	.748
Average inter-item correl.	.323	.712	.349	.345	.302	.489
Minmax. correlations	.198562	.684761	.230603	.275573	.242365	.435595
Range of correlations	.364	.077	.373	.298	.123	.160
	Average	inter-item corre	lations between	subscales	_	
Emotional wellbeing						
Functioning (specific)	.277	_				
Evaluative wellbeing	.279	.354	_			
Functioning (general)	.286	.329	.289	_		
Functioning (personal)	.251	.347	.262	.271	_	
Community wellbeing	.243	.316	.258	.229	.214	_
	Squ	ared correlation	s between subs	cales		
Emotional wellbeing	_				_	
Functioning (specific)	.077	_				
Evaluative wellbeing	.078	.125	_			
Functioning (general)	.082	.108	.084	_		
Functioning (personal)	.063	.120	.069	.073	_	
Community wellbeing	.059	.100	.067	.052	.046	_

Standard errors for skewness and kurtosis were 0.062 and 0.125, respectively.

Table B9 Item analysis of the 2012 European Social Survey measurement of wellbeing for Finland (first half-sample: n = 1,098)

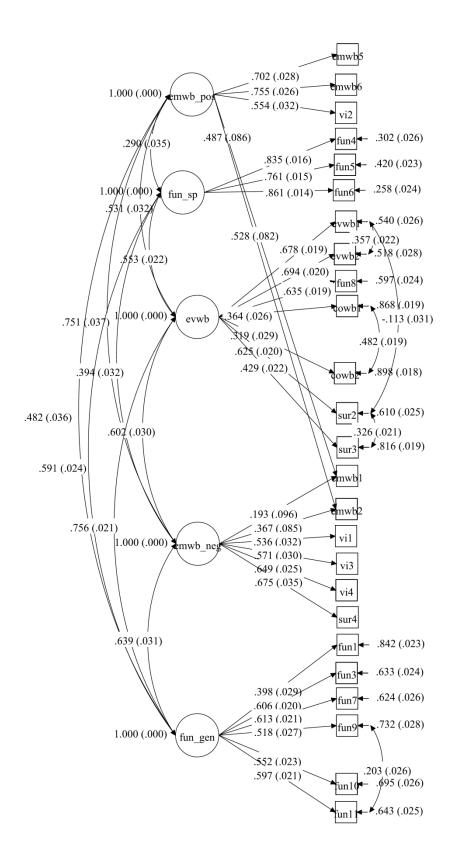
							Frequ	ency pe	rcent o	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.24	0.582	4.21-4.28	-	0.1	0.2	0.8	0.9	3.1	4.3	13.3	36.2	31.2	9.8	-	-1.79	5.25	.644
Evwb2	4.23	0.554	4.19-4.26	0.1	0.1	0.3	0.4	1.0	2.2	5.7	14.4	36.8	31.1	8.0	-	-1.64	4.64	.702
Emwb1	4.61	0.716	4.56-4.65	-	0.9	1.4	22.9	74.8	-	-	-	-	-	-	0.1	-1.95	4.50	.474
Emwb2	4.68	0.697	4.64-4.73	-	0.9	1.4	16.9	80.8	-	-	-	-	-	-	-	-2.50	7.17	.579
Emwb3	3.64	1.030	3.58-3.70	-	3.7	22.7	50.1	23.1	-	-	-	-	-	-	0.4	-0.45	-0.10	.569
Emwb4	3.53	0.999	3.47-3.59	-	4.6	23.9	55.2	16.2	-	-	-	-	-	-	0.2	-0.43	0.08	.588
Emwb5	4.45	0.814	4.40-4.50	-	0.8	2.9	31.2	64.4	-	-	-	-	-	-	0.6	-1.45	2.18	.404
Emwb6	3.33	1.015	3.27-3.40	-	5.8	28.9	52.4	12.7	-	-	-	-	-	-	0.3	-0.36	-0.08	.480
Fun1	4.19	0.872	4.14-4.24	-	0.6	5.5	8.9	43.3	41.6	-	-	-	-	-	0.1	-1.18	1.31	.391
Fun2	3.26	1.010	3.20-3.32	-	4.4	20.7	26.4	42.0	5.9	-	-	-	-	-	0.6	-0.35	-0.62	.307
Fun3	3.80	0.759	3.76-3.85	-	0.8	5.9	19.7	60.5	12.3	-	-	-	-	-	0.8	-0.77	1.16	.395
Fun4	4.13	0.549	4.10-4.17	-	0.2	0.2	0.5	1.3	3.7	6.3	20.8	37.1	22.4	6.9	0.6	-1.08	2.49	.581
Fun5	4.06	0.560	4.03-4.09	0.2	0.1	0.4	0.5	1.6	4.7	8.1	23.7	34.6	19.5	5.6	1.0	-1.15	2.72	.487
Fun6	4.01	0.594	3.97-4.04	0.2	0.3	0.5	0.7	1.4	4.8	11.2	24.2	32.6	17.9	5.3	0.9	-1.08	2.51	.541
Fun7	4.01	0.673	3.97-4.05	-	0.1	1.8	14.6	63.3	19.9	-	-	-	-	-	0.4	-0.58	1.27	.447
Fun8	3.91	0.687	3.87-3.95	0.3	0.2	0.5	1.9	3.3	5.7	8.1	24.9	35.2	15.6	4.1	0.4	-1.24	2.16	.499
Fun9	3.89	0.855	3.84-3.95	-	0.5	7.3	15.4	56.5	20.2	-	-	-	-	-	0.2	-0.74	0.32	.522
Fun10	3.83	0.734	3.79-3.88	-	0.4	4.0	16.3	65.3	13.5	-	-	-	-	-	0.5	-0.82	1.35	.399
Fun11	3.96	0.753	3.92-4.01	-	0.7	4.1	11.1	64.8	19.0	-	-	-	-	-	0.3	-1.07	2.13	.588
Fun12	2.55	1.044	2.49-2.61	-	9.4	51.2	17.7	16.4	4.9	-	-	-	-	-	0.5	0.76	-0.17	.310
Fun13	3.60	0.939	3.55-3.66	-	3.0	12.9	16.8	54.8	11.7	-	-	-	-	-	0.7	-0.89	0.42	.415
Fun14	3.75	0.699	3.71-3.79	0.4	0.5	0.8	2.5	4.8	8.7	11.6	28.7	30.3	9.3	1.7	0.7	-1.09	1.40	.554
Vi1	4.37	0.908	4.31-4.42	-	2.1	5.2	32.2	60.4	-	-	-	-	-	-	0.1	-1.47	2.15	.454
Vi2	4.09	1.037	4.03-4.15	-	3.6	8.9	40.6	46.6	-	-	-	-	-	-	0.2	-1.04	0.71	.356
Vi3	4.21	0.930	4.15-4.27	-	2.2	5.2	42.4	49.5	-	-	-	-	-	-	0.6	-1.16	1.47	.437
Vi4	3.07	1.009	3.00-3.13	-	6.8	39.7	45.7	7.3	-	-	-	-	_	-	0.5	-0.11	-0.32	.477
Cowb1	3.61	0.744	3.57-3.66	0.4	0.6	1.7	4.8	4.9	12.3	13.9	28.1	26.0	5.6	1.5	-	-0.80	0.44	.343
Cowb2	3.71	0.714	3.66-3.75	0.3	0.4	1.5	2.8	4.9	11.0	12.5	28.0	27.9	8.9	1.6	0.3	-0.90	0.73	.331
Cowb3	3.20	0.751	3.26-3.35	0.2	0.6	3.7	7.2	11.7	19.7	17.0	21.2	13.6	4.4	0.7	-	-0.35	-0.35	.240

Table B9 (continued)

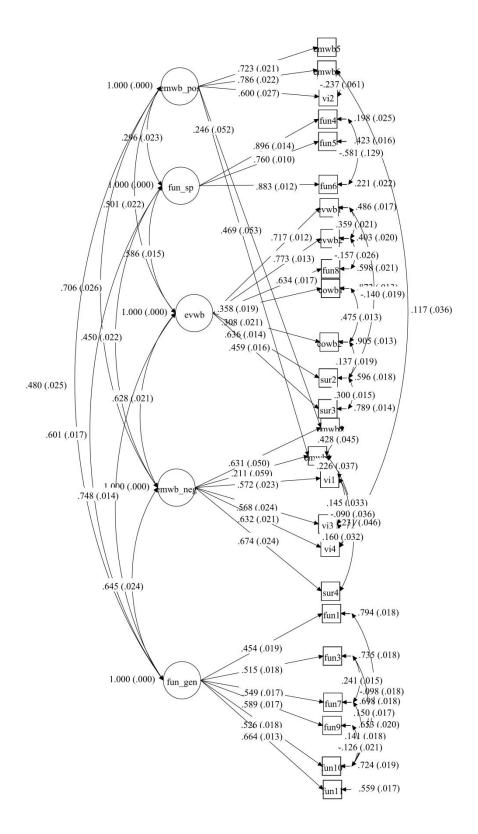
							Frequ	ency pe	rcent of	f respons	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.32	0.924	3.26-3.38	2.1	5.4	13.8	24.4	27.2	18.9	6.9	-	-	_	-	1.3	-0.33	-0.21	.266
Cowb5	3.47	0.940	3.42-3.53	-	2.8	12.8	28.2	44.3	10.9	-	-	-	-	-	0.9	-0.57	-0.01	.283
Sur1	2.92	0.879	2.86-2.97	2.6	12.2	22.8	29.3	25.9	3.9	3.1	_	-	_	-	0.3	0.07	-0.32	.281
Sur2	4.08	0.641	4.04-4.12	0.2	0.3	0.6	0.8	1.4	4.0	7.0	19.6	32.3	26.5	6.6	0.7	-1.45	3.17	.564
Sur3	4.37	0.667	4.33-4.41	0.2	0.7	1.5	3.8	13.6	44.7	35.2	-	-	-	-	0.4	-1.59	3.90	.433
Sur4	4.62	0.801	4.58-4.67	-	1.4	3.3	19.6	75.7	_	_	_	_	_	_	0.1	-2.49	6.71	.485

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.076 and 0.151, respectively.

Table B10 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Finland (n = 1,098): Goodness-of-fit indices


Number of factors tested	χ^2/df	CFI	TLI	RMSEA (90% CI)
1	13.05	.638	.605	.105 (.102108)
2	9.36	.771	.726	.087 (.084090)
3	7.53	.837	.786	.077 (.074081)
4	5.85	.891	.841	.066 (.063070)
5	5.30	.913	.859	.063 (.059066)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered acceptable if $\chi^2/df < 3$, CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.


Table B11 Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Finland (n = 1,098)

Item	Factor I EMWB (+)	Factor II FUN (specific)	Factor III EVWB	Factor IV EMWB (-)	Factor V FUN (general)
Evwb1	.015	.020	.588	.174	.074
Evwb2	019	.042	.635	.214	.087
Emwb1	.467	.009	.025	.481	095
Emwb2	.330	.028	.038	.674	012
Emwb5	.838	.034	041	003	.021
Emwb6	.540	.109	016	.160	.054
Fun1	.115	.002	.158	007	.306
Fun3	063	.080	046	.048	.559
Fun4	.011	.716	.118	.059	.040
Fun5	.097	.843	010	029	035
Fun6	011	.727	.059	.040	.080
Fun7	.029	.070	.016	092	.628
Fun8	.066	.156	.362	045	.179
Fun9	.213	.052	.143	031	.376
Fun10	079	.072	.029	.084	.482
Fun11	.172	139	.192	.030	.586
Vi1	.136	016	.040	.601	019
Vi2	.413	151	.012	.255	.077
Vi3	008	.024	068	.629	.143
Vi4	029	.156	047	.545	.137
Cowb1	.018	052	.582	038	108
Cowb2	.042	.022	.600	051	242
Sur2	065	.206	.554	.048	.005
Sur3	026	.005	.479	.056	.057
Sur4	.248	043	.161	.466	009
Factors		Co	rrelations betwe	en factors	
EMWB (+)		_			
FUN (specific)		.179	_		
EVWB		.404	.449	_	
EMWB (-)		.423	.346	.371	_
FUN (general)		.229	.521	.482	.409 —
```					

EVWB = evaluative wellbeing; EMWB = emotional wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 5.30$ , CFI = .913, TLI = .859, RMSEA (90% CI) = .063 (.059-.066).



**Fig. B5** Standardized solution for the model with 5 first-order correlated factors and two cross-loading items based on CFA analysis performed on the second half-sample of Finland (n = 1,099). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.77$ , CFI = .921, TLI = .908, RMSEA (90% CI) = .050 (.047-.054).



**Fig. B6** Standardized solution for the model with 5 first-order correlated factors and two cross-loading items based on CFA analysis performed on the full sample of Finland (N = 2,197). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 6.10$ , CFI = .932, TLI = .916, RMSEA (90% CI) = .048 (.046-.051).

**Table B12** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Finland (N = 2,197)

			Subscale		
	Emotional wellb. (+)	Functioning (specific)	Evaluative wellbeing	Emotional wellb. (-)	Functioning (general)
Number of items	3	3	7	6	6
Mean (standard error)	3.98 (0.015)	4.08 (0.011)	4.04 (0.009)	4.27 (0.012)	3.96 (0.011)
95% Confidence interval	3.95-4.01	4.06-4.10	4.03-4.06	4.25-4.30	3.94-3.98
Standard deviation	0.710	0.490	0.413	0.548	0.493
Skewness	-0.927	-1.088	-1.146	-1.653	-0.812
Kurtosis	1.043	2.695	2.689	4.230	1.639
Convergent validity	.500	.720	.336	.324	.306
Composite Reliability	.748	.885	.765	.727	.723
Average inter-item correl.	.362	.672	.342	.329	.315
Minmax. correlations	.303436	.658692	.180711	.210499	.161461
Range of correlations	.133	.034	.531	.289	.299
	Average	inter-item corre	lations between	subscales	
Emotional wellbeing (+)	_				
Functioning (specific)	.302	_			
Evaluative wellbeing	.269	.331			
Emotional wellbeing (-)	.307	.294	.263	_	
Functioning (general)	.245	.327	.275	.250	_
	Squ	ared correlation	s between subsc	ales	
Emotional wellbeing (+)	_				_
Functioning (specific)	.091	_			
Evaluative wellbeing	.072	.110	_		
Emotional wellbeing (-)	.094	.086	.069	_	
Functioning (general)	.060	.107	.076	.063	_

Standard errors for skewness and kurtosis were 0.053 and 0.106, respectively.

**Table B13** Item analysis of the 2012 European Social Survey measurement of wellbeing for France (first half-sample: n = 984)

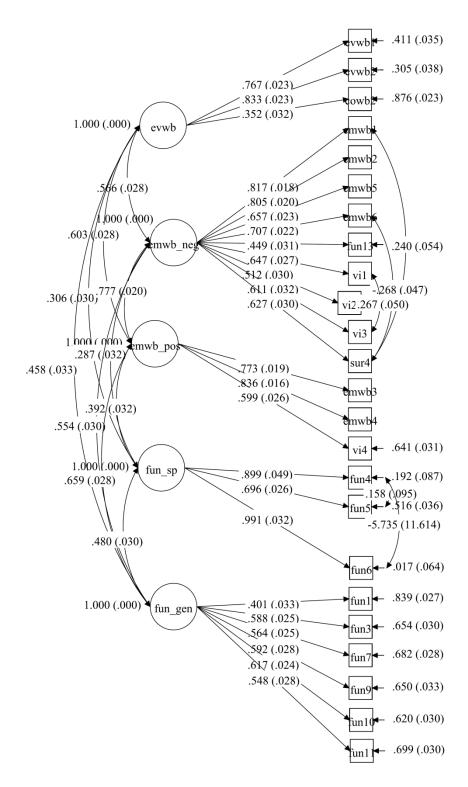
							Frequ	ency pe	rcent o	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.59	0.981	3.53-3.65	3.5	1.2	3.7	5.4	5.7	13.7	11.0	17.4	20.9	8.8	8.6	0.1	-0.82	0.15	.488
Evwb2	3.86	0.705	3.82-3.91	0.2	0.1	0.5	1.3	2.4	13.5	11.1	21.7	29.4	11.7	8.0	-	-0.73	0.92	.568
Emwb1	4.16	0.933	4.10-4.22	-	2.4	5.2	46.0	46.2	-	-	-	-	-	-	0.1	-1.12	1.58	.566
Emwb2	4.32	0.946	4.26-4.38	-	2.1	5.6	35.2	57.1	-	-	-	-	-	-	-	-1.46	2.12	.572
Emwb3	3.86	1.067	3.79-3.92	-	3.5	17.2	41.1	38.3	-	-	-	-	-	-	-	-0.65	-0.14	.605
Emwb4	3.57	1.094	3.50-3.64	-	3.5	24.9	44.6	27.0	-	-	-	-	-	-	-	-0.38	-0.41	.557
Emwb5	3.78	1.043	3.71-3.85	-	5.6	11.4	55.1	27.8	-	-	-	-	-	-	0.1	-0.84	0.71	.513
Emwb6	3.10	1.171	3.03-3.18	-	11.1	34.7	38.1	16.2	-	-	-	-	-	-	-	-0.07	-0.70	.508
Fun1	4.28	0.918	4.22-4.34	-	1.5	6.3	6.4	34.2	51.5	-	-	-	-	-	-	-1.44	1.80	.352
Fun2	2.74	1.141	2.67-2.82	-	11.2	39.6	20.1	19.8	8.9	-	-	-	-	-	0.3	0.37	-0.83	.229
Fun3	3.82	0.855	3.77-3.88	-	0.9	7.0	17.5	55.2	19.3	-	-	-	-	-	0.1	-0.78	0.70	.424
Fun4	4.01	0.641	3.97-4.05	0.1	0.1	0.4	0.4	1.5	6.5	12.3	24.1	30.2	12.1	12.3	-	-0.74	1.66	.468
Fun5	4.01	0.669	3.97-4.05	-	0.1	0.4	0.8	2.7	7.2	10.2	21.3	31.3	12.2	13.5	0.2	-0.67	0.79	.405
Fun6	3.84	0.720	3.80-3.89	0.2	0.5	1.0	1.7	3.0	11.0	14.9	20.8	25.1	11.4	10.1	0.2	-0.55	0.68	.417
Fun7	4.06	0.732	4.02-4.11	-	0.1	2.6	10.0	60.6	25.7	-	-	-	-	-	0.1	-0.99	2.16	.406
Fun8	3.71	0.832	3.66-3.77	0.9	0.4	2.2	2.7	2.9	13.1	13.0	20.2	22.4	11.0	10.7	0.4	-0.69	0.47	.488
Fun9	3.50	1.112	3.43-3.57	-	5.7	13.8	19.5	43.3	17.5	-	-	-	-	-	0.2	-0.65	-0.33	.508
Fun10	3.88	0.834	3.83-3.93	-	0.5	7.6	13.0	57.8	20.9	-	-	-	-	-	0.1	-0.95	1.16	.448
Fun11	3.55	0.998	3.49-3.62	-	3.4	12.2	24.7	43.6	16.1	-	-	-	-	-	0.1	-0.62	-0.07	.460
Fun12	4.19	1.089	4.12-4.26	-	1.9	8.9	11.5	23.3	54.2	-	-	-	-	-	0.2	-1.22	0.42	.460
Fun13	3.30	1.286	3.22-3.38	-	10.0	22.3	12.0	35.2	20.4	-	-	-	-	-	0.2	-0.30	-1.13	.447
Fun14	3.21	0.765	3.16-3.26	1.3	1.6	4.7	7.4	10.8	24.9	17.9	17.5	9.3	2.2	2.1	0.2	-0.28	0.03	.439
Vi1	4.15	1.076	4.08-4.22	-	3.9	9.8	37.6	48.7	-	-	-	-	-	-	0.1	-1.22	0.94	.532
Vi2	3.80	1.296	3.72-3.89	-	10.7	17.0	31.3	41.1	-	-	-	-	-	-	-	-0.78	-0.48	.331
Vi3	4.55	0.860	4.49-4.60	-	2.4	3.7	23.6	70.2	-	-	-	-	-	-	0.1	-2.16	4.91	.459
Vi4	3.37	1.162	3.29-3.44	-	8.5	28.8	40.1	22.5	-	-	-	-	-	-	0.1	-0.26	-0.63	.490
Cowb1	2.77	0.831	2.72-2.83	6.6	3.4	7.2	14.7	12.2	27.4	10.7	10.0	6.0	1.2	0.5	0.1	-0.26	-0.22	.267
Cowb2	3.33	0.831	3.27-3.38	2.8	0.9	2.5	6.4	6.7	24.6	14.0	18.2	16.2	4.4	3.3	-	-0.56	0.47	.362
Cowb3	2.88	0.844	2.83-2.94	3.4	2.9	8.4	12.2	13.8	25.1	13.1	9.9	7.6	1.7	1.8	-	-0.02	-0.26	.294

**Table B13** (continued)

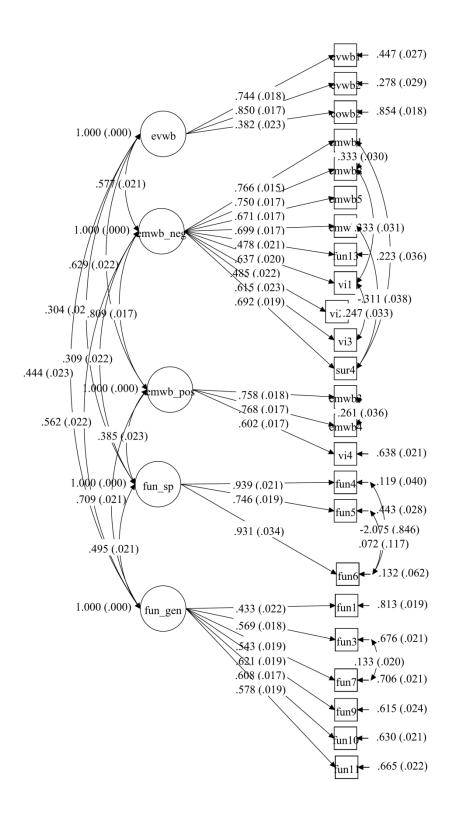
							Frequ	ency per	rcent of	f respons	se catego	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.31	1.107	3.24-3.38	7.9	4.8	13.0	19.8	21.5	22.1	9.7	-	-	-	-	1.2	-0.39	-0.63	.284
Cowb5	3.55	1.110	3.48-3.62	-	6.3	14.3	18.2	42.3	18.9	-	-	-	-	-	-	-0.64	-0.31	.236
Sur1	3.14	0.698	3.10-3.19	-	8.6	17.0	22.2	49.0	3.3	-	_	-	-	-	-	-0.73	-0.49	.045
Sur2	4.21	0.587	4.17-4.25	0.2	0.1	0.2	0.3	0.6	5.5	6.7	17.2	35.6	17.1	16.1	0.5	-0.90	1.95	.331
Sur3	4.38	0.822	4.33-4.43	1.3	2.2	2.2	4.7	8.8	31.5	45.9	-	-	-	-	3.3	-1.81	3.52	.261
Sur4	4.21	1.179	4.14-4.29	_	6.3	8.1	23.9	61.7	_	_	_	_	_	_	_	-1.47	1.23	.549

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.080 and 0.160, respectively.

**Table B14** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first split-half sample of France (n = 984): Goodness-of-fit indices


Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	13.39	.626	.590	.112 (.109116)
2	8.82	.786	.742	.089 (.086093)
3	6.32	.868	.824	.074 (.070077)
4	4.47	.923	.885	.059 (.055064)
5	2.96	.961	.935	.045 (.040049)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered acceptable if  $\chi^2/df < 3$ , CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.


**Table B15** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of France (n = 984)

Item	Factor I EVWB	Factor II EMWB (-)	Factor III EMWB (+)	Factor IV FUN (specific)	Factor V FUN (general)
Evwb1	.750	.070	.022	034	.005
Evwb2	.738	028	.177	.069	.008
Emwb1	.044	.766	.069	068	008
Emwb2	.008	.864	.049	015	084
Emwb3	.077	.097	.661	001	.121
Emwb4	.123	.008	.827	025	013
Emwb5	.051	.688	062	037	.064
Emwb6	115	.486	.170	.064	.131
Fun1	.098	.023	058	035	.487
Fun3	.021	077	.071	.045	.589
Fun4	.125	.017	028	.765	.059
Fun5	017	.041	009	.914	058
Fun6	003	039	.083	.797	.031
Fun7	002	035	.038	.125	.495
Fun9	.224	.069	.037	033	.456
Fun10	010	.001	.017	.042	.613
Fun11	059	.129	.019	017	.570
Fun13	.064	.397	116	.047	.198
Vi1	016	.744	.005	.065	061
Vi2	.004	.627	213	003	.033
Vi3	021	.495	.128	.054	048
Vi4	063	.121	.450	.068	.152
Cowb2	.379	.068	082	.108	.011
Sur4	.163	.538	.140	.014	.000
Factors			Correlation	s between fac	tors
EVWB	_				
EMWB (-)	.454	_			
EMWB (+)	.385	.574	_		
FUN (specific)	.177	.257	.246	_	
FUN (general)	.252	.409	.506	.456	_

EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = Functioning.. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 2.96$ , CFI = .961, TLI = .935, RMSEA (90% CI) = .045 (.040-.049).



**Fig. B7** Standardized solution for the model with 5 first-order correlated factors and no cross-loading items based on CFA analysis performed on the second half-sample of France (n = 984). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.57$ , CFI = .926, TLI = .914, RMSEA (90% CI) = .051 (.047-.055).



**Fig. B8** Standardized solution for the model with 5 first-order correlated factors and no cross-loading items based on CFA analysis performed on the full sample of France (N = 1,968). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 5.74$ , CFI = .934, TLI = .922, RMSEA (90% CI) = .049 (.047-.052).

**Table B16** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: France (N = 1,968)

			Subscale		
	Evaluative Wellbeing	Emotional Wellbeing (negative)	Emotional Wellbeing (positive)	Functioning (specific)	Functioning (general)
Number of items	3	9	3	3	6
Mean (standard error)	3.58 (0.015)	3.91 (0.016)	3.59 (0.021)	3.96 (0.013)	3.86 (0.013)
95% Confidence interval	3.55-3.61	3.88-3.95	3.55-3.63	3.93-3.98	3.84-3.89
Standard deviation	0.657	0.700	0.907	0.595	0.593
Skewness	-0.642	-0.998	-0.385	-0.544	-0.717
Kurtosis	0.514	1.175	-0.243	0.936	0.945
Convergent validity	.474	.424	.509	.767	.316
Composite Reliability	.712	.866	.755	.908	.732
Average inter-item correl.	.413	.349	.485	.676	.316
Minmax. correlations	.285651	.175588	.425602	.614713	.200397
Range of correlations	.366	.413	.177	.099	.197
	Average	inter-item corre	lations between	subscales	
Evaluative Wellbeing	_				
Emotional Wellbeing					
(negative)	.304	_			
Emotional Wellbeing					
(positive)	.342	.341	_		
Functioning (specific)	.326	.287	.370	_	
Functioning (general)	.249	.261	.306	.307	_
	Squ	ared correlation	s between subs	cales	
Evaluative Wellbeing	_				
Emotional Wellbeing					
(negative)	.092				
Emotional Wellbeing					
(positive)	.117	.116	_		
Functioning (specific)	.106	.082	.137	_	
Functioning (general)	.062	.068	.094	.094	_

Standard errors for skewness and kurtosis were 0.055 and 0.111, respectively.

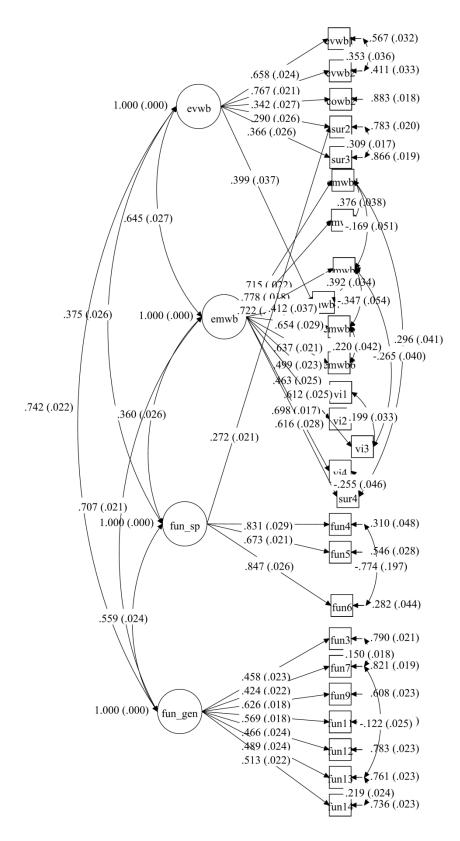
**Table B17** Item analysis of the 2012 European Social Survey measurement of wellbeing for Germany (first half-sample: n = 1,479)

			_					ency pe	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.99	0.815	3.94-4.03	1.1	0.7	1.3	3.1	2.0	8.0	6.2	16.6	27.0	19.4	14.6	0.1	-1.22	1.67	.546
Evwb2	4.03	0.729	4.00-4.07	0.5	0.7	0.5	1.6	1.4	6.5	7.1	17.7	30.6	20.1	13.0	0.1	-1.24	2.14	.609
Emwb1	4.41	0.852	4.36-4.45	-	1.5	4.1	32.1	62.3	-	-	-	-	-	-	-	-1.48	2.43	.512
Emwb2	4.39	0.887	4.35-4.44	-	1.7	5.1	31.6	61.5	-	-	-	-	-	-	0.1	-1.55	2.57	.553
Emwb3	3.41	1.148	3.35-3.47	-	6.7	28.1	40.6	24.5	-	-	-	-	-	-	0.1	-0.24	-0.66	.538
Emwb4	3.54	1.036	3.49-3.60	-	4.4	22.7	50.6	22.0	-	-	-	-	-	-	0.3	-0.30	-0.35	.552
Emwb5	4.68	0.686	4.65-4.72	-	1.0	1.8	16.6	80.6	-	-	-	-	-	-	-	-2.42	6.64	.359
Emwb6	3.60	1.039	3.54-3.65	-	5.1	18.1	54.4	22.4	-	-	-	-	-	-	-	-0.52	0.05	.471
Fun1	4.02	0.778	3.98-4.07	-	0.7	4.1	9.9	60.1	25.0	-	-	-	-	-	0.2	-0.99	1.78	.430
Fun2	3.52	1.013	3.47-3.57	-	2.8	14.1	18.2	51.6	12.8	-	-	-	-	-	0.5	-0.59	-0.38	.388
Fun3	3.97	0.661	3.94-4.01	-	0.5	3.0	10.1	68.4	17.6	-	-	-	-	-	0.5	-1.02	3.11	.391
Fun4	4.21	0.718	4.18-4.25	-	0.1	0.4	0.7	2.0	6.6	7.0	16.3	24.8	12.6	28.9	0.5	-0.93	1.01	.424
Fun5	4.05	0.691	4.02-4.09	0.4	0.1	0.3	1.4	2.4	6.8	8.7	19.7	30.6	15.0	14.2	0.3	-1.02	1.80	.338
Fun6	3.93	0.732	3.89-3.97	0.3	0.1	1.1	2.4	2.6	9.9	10.9	19.4	29.3	11.3	12.4	0.2	-0.73	0.61	.394
Fun7	3.98	0.646	3.95-4.01	-	0.4	2.2	12.5	66.8	17.2	-	-	-	-	-	0.8	-0.68	1.78	.339
Fun8	3.97	0.801	3.92-4.01	0.9	0.3	1.0	2.4	1.6	7.8	8.9	19.4	28.3	12.8	15.3	1.1	-1.10	1.69	.398
Fun9	3.95	0.767	3.91-3.99	-	0.6	4.3	13.8	61.6	19.4	-	-	-	-	-	0.3	-0.89	1.50	.493
Fun10	4.02	0.599	3.99-4.05	-	0.3	2.1	10.1	72.3	14.9	-	-	-	-	-	0.3	-1.04	4.34	.233
Fun11	4.08	0.584	4.05-4.11	-	0.1	2.2	7.4	71.3	18.8	-	-	-	-	-	0.2	-0.79	3.43	.446
Fun12	3.90	0.981	3.85-3.95	-	0.5	13.7	12.2	44.7	28.4	-	-	_	-	-	0.5	-0.70	-0.37	.403
Fun13	3.51	1.003	3.46-3.56	-	2.6	16.8	21.2	45.8	13.0	-	-	-	-	-	0.7	-0.54	-0.36	.401
Fun14	3.38	0.832	3.34-3.43	1.8	1.5	3.7	7.8	6.7	19.9	15.3	18.6	16.6	5.1	2.5	0.5	-0.53	0.00	.454
Vi1	3.86	1.040	3.80-3.91	-	4.3	13.3	45.4	36.8	-	-	-	_	-	-	0.2	-0.72	0.21	.386
Vi2	3.87	1.202	3.81-3.93	-	7.1	13.0	38.7	41.2	-	-	-	_	-	-	0.1	-0.89	-0.01	.349
Vi3	4.37	0.897	4.32-4.41	-	1.2	5.6	33.5	59.4	-	-	-	_	-	-	0.2	-1.43	1.99	.441
Vi4	3.39	1.096	3.33-3.44	-	7.1	28.9	44.8	19.2	-	-	-	-	_	-	-	-0.29	-0.42	.536
Cowb1	2.98	0.890	2.93-3.02	5.7	2.1	4.7	12.3	12.4	23.2	12.2	15.8	9.2	1.4	0.8	0.1	-0.35	-0.28	.297
Cowb2	3.37	0.811	3.33-3.41	2.0	0.8	3.0	5.2	8.3	23.1	14.1	20.5	16.5	3.9	2.6	0.1	-0.51	0.16	.355
Cowb3	3.07	0.820	3.03-3.12	2.6	1.1	5.5	12.0	12.4	26.1	13.1	13.8	9.0	2.5	1.7	0.1	-0.18	-0.16	.266

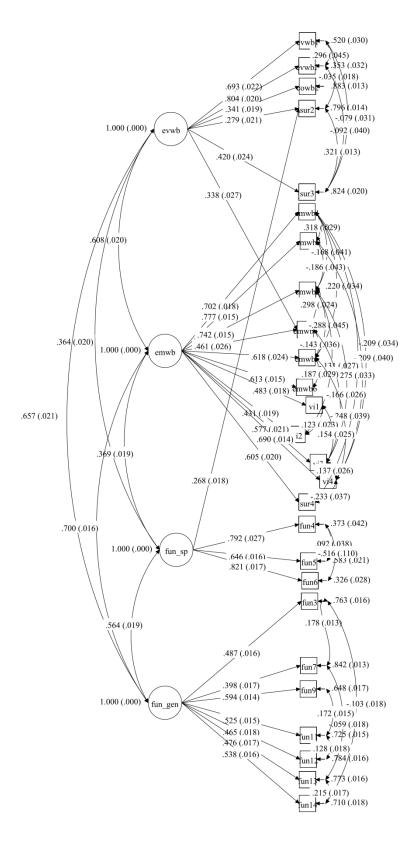
**Table B17** (continued)

							Frequ	ency per	rcent of	f respons	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.57	0.986	3.51-3.62	3.0	4.0	9.4	20.6	24.7	26.2	11.4	-	-	-	-	0.5	-0.58	-0.14	.298
Cowb5	3.69	0.866	3.65-3.74	-	2.0	9.0	22.4	54.1	12.2	-	-	-	-	-	0.3	-0.84	0.81	.265
Sur1	3.30	0.836	3.26-3.34	1.2	5.8	13.5	26.3	37.3	9.7	6.0	-	-	-	-	0.2	-0.15	0.02	.263
Sur2	4.32	0.598	4.29-4.35	0.1	0.1	0.1	0.5	1.2	3.7	3.9	11.0	29.1	25.5	24.2	0.6	-1.37	3.33	.366
Sur3	4.51	0.652	4.48-4.55	0.4	0.5	1.2	4.1	8.2	33.8	51.5	-	-	-	-	0.2	-1.80	4.13	.320
Sur4	4.60	0.850	4.55-4.64	_	1.8	3.1	18.0	76.9	_	_	_	_	_	_	0.2	-2.44	6.22	.426

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.065 and 0.130, respectively.


**Table B18** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Germany (n = 1,479): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	12.58	.715	.690	.088 (.086091)
2	9.11	.817	.783	.074 (.071077)
3	7.51	.866	.826	.066 (.064069)
4	5.57	.915	.878	.056 (.053059)


**Table B19** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Germany (n = 1,479)

Item	Factor I EVWB	Factor II EMWB	Factor III FUN (specific)	Factor IV FUN (general)
Evwb1	.643	.042	032	.119
Evwb2	.714	.028	.013	.147
Emwb1	.125	.778	049	095
Emwb2	.026	.770	035	.029
Emwb3	.228	.500	.105	.054
Emwb4	.365	.405	.031	.099
Emwb5	082	.676	020	.005
Emwb6	022	.574	.042	.087
Fun3	.084	.001	.166	.412
Fun4	.033	.032	.701	.007
Fun5	044	.060	.668	014
Fun6	.021	.010	.609	.140
Fun7	.037	127	.214	.411
Fun9	.195	.033	070	.561
Fun11	005	.013	.029	.608
Fun12	.010	.213	012	.346
Fun13	008	.206	013	.361
Fun14	022	.265	.102	.314
Vi1	.049	.509	.061	074
Vi2	.031	.445	051	018
Vi3	071	.432	.174	.115
Vi4	012	.416	.231	.175
Cowb2	.354	.058	.003	051
Sur2	.360	044	.346	029
Sur3	.414	028	.275	074
Sur4	.289	.490	014	068
Factors		Correlatio	ns between factors	
EVWB		_		
EMWB		.437	_	
FUN (specific)		.223	.239	_
FUN (general)		.306	.425	.381 —

EMWB = emotional wellbeing; EVWB = Evaluative wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 5.57$ , CFI = .915, TLI = .878, RMSEA (90% CI) = .056 (.053-.059).



**Fig. B9** Standardized solution for the model with 4 first-order correlated factors and two cross-loading items based on CFA analysis performed on the second half-sample of Germany (n = 1,479). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 4.25$ , CFI = .934, TLI = .922, RMSEA (90% CI) = .047 (.044-.050).



**Fig. B10** Standardized solution for the model with 4 first-order correlated factors and two cross-loading items based on CFA analysis performed on the full sample of Germany (N = 2,958). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 7.05$ , CFI = .939, TLI = .924, RMSEA (90% CI) = .045 (.043-.047).

**Table B20** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Germany (N = 2,958)

		Su	bscale	
	Evaluative	Emotional	Functioning	Functioning
	wellbeing	wellbeing	(specific)	(general)
Number of items	5	11	3	7
Mean (standard error)	4.05 (0.008)	4.02 (0.011)	4.07 (0.011)	3.83 (0.009)
95% Confidence interval	4.04-4.07	4.00-4.05	4.04-4.09	3.81-3.85
Standard deviation	0.436	0.593	0.584	0.475
Skewness	-0.962	-1.104	-0.821	-0.528
Kurtosis	1.814	1.746	1.327	0.905
Convergent validity	.358	.383	.573	.251
Composite Reliability	.629	.869	.799	.698
Average inter-item correl.	.214	.307	.521	.265
Minmax. correlations	007683	.187553	.471556	.144426
Range of correlations	.690	.365	.085	.282
	Average inte	r-item correlations b	between subscales	
Evaluative wellbeing	_			
Emotional wellbeing	.234	_		
Functioning (specific)	.222	.259	_	
Functioning (general)	.198	.245	.256	_
	Squared	l correlations betwe	en subscales	
Evaluative wellbeing	_			
Emotional wellbeing	.055	_		
Functioning (specific)	.049	.067	_	
Functioning (general)	.039	.060	.066	_

Standard errors for skewness and kurtosis were 0.046 and 0.092, respectively.

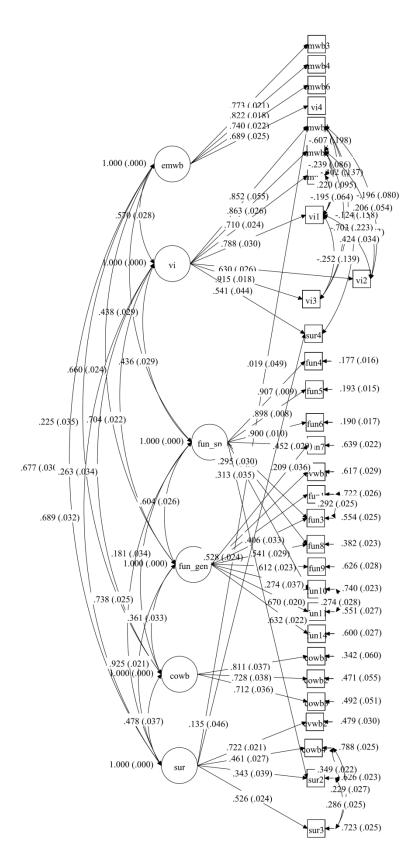
**Table B21** Item analysis of the 2012 European Social Survey measurement of wellbeing for Hungary (first half-sample: n = 1,007)

							Frequ	ency pe	rcent o	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.29	0.933	3.23-3.35	4.0	2.5	5.2	9.9	7.2	16.1	12.9	16.5	14.4	5.4	4.7	1.3	-0.47	-0.29	.571
Evwb2	3.51	0.876	3.46-3.57	1.3	1.8	4.7	5.0	7.4	17.3	13.5	18.3	17.8	6.8	6.0	0.3	-0.50	-0.12	.649
Emwb1	3.92	0.984	3.86-3.99	-	2.9	11.6	48.4	35.8	-	-	-	-	-	-	1.3	-0.81	0.72	.587
Emwb2	3.80	1.010	3.74-3.87	-	4.4	14.5	48.9	31.6	-	-	-	-	-	-	0.7	-0.58	0.05	.646
Emwb3	3.15	1.107	3.07-3.22	-	9.7	35.7	39.5	13.1	-	-	-	-	-	-	1.9	-0.09	-0.54	.544
Emwb4	3.37	1.073	3.30-3.44	-	5.3	26.6	48.5	18.8	-	-	-	-	-	-	0.9	-0.34	-0.28	.589
Emwb5	3.79	0.978	3.73-3.86	-	3.6	13.5	51.8	29.6	-	-	-	-	-	-	1.5	-0.58	0.27	.493
Emwb6	3.35	0.997	3.29-3.42	-	4.7	27.4	52.6	14.7	-	-	-	-	-	-	0.6	-0.23	-0.20	.517
Fun1	3.77	0.938	3.71-3.83	-	4.3	7.6	21.9	44.5	21.3	-	-	-	-	-	0.4	-0.87	0.88	.434
Fun2	3.01	1.087	2.93-3.08	-	5.7	32.8	26.0	23.1	11.3	-	-	-	-	-	1.1	0.20	-0.78	.247
Fun3	3.75	0.936	3.69-3.82	-	3.7	7.4	23.0	45.5	19.5	-	-	-	-	-	0.9	-0.76	0.50	.583
Fun4	4.04	0.858	3.98-4.10	0.7	0.5	1.5	2.7	3.9	11.3	8.2	13.5	20.6	11.5	24.8	0.8	-0.88	0.37	.650
Fun5	4.07	0.857	4.01-4.12	0.5	0.8	1.6	2.7	3.7	10.0	6.7	14.8	20.5	12.7	25.4	0.7	-0.94	0.57	.630
Fun6	3.92	0.920	3.85-3.98	0.8	0.9	2.7	2.9	4.2	11.9	7.8	16.6	18.3	12.3	21.0	0.7	-0.86	0.44	.646
Fun7	3.77	0.900	3.71-3.83	-	3.7	6.2	23.4	46.3	17.8	-	-	-	-	-	2.7	-0.71	0.56	.509
Fun8	3.79	0.936	3.72-3.85	2.2	1.7	3.3	4.0	5.0	12.8	9.2	15.1	21.4	8.6	15.3	1.4	-0.81	0.34	.656
Fun9	3.46	1.051	3.39-3.53	-	7.9	11.7	29.5	35.8	14.4	-	-	-	-	-	0.6	-0.54	-0.17	.536
Fun10	3.62	0.906	3.56-3.68	-	2.8	9.0	24.7	50.1	12.4	-	-	-	-	-	0.9	-0.71	0.40	.501
Fun11	3.52	0.909	3.46-3.58	-	4.7	9.1	31.0	43.3	11.5	-	-	-	-	-	0.4	-0.61	0.25	.632
Fun12	3.83	1.055	3.76-3.90	-	1.7	10.5	21.1	35.7	30.1	-	-	-	-	-	1.0	-0.67	-0.28	.514
Fun13	3.40	1.079	3.33-3.47	-	4.6	18.5	28.4	31.3	16.5	-	-	-	-	-	0.8	-0.22	-0.76	.449
Fun14	3.16	0.902	3.10-3.22	4.4	2.8	7.1	6.7	7.0	23.5	12.2	18.6	12.5	2.3	2.8	0.3	-0.61	-0.03	.506
Vi1	3.80	1.133	3.72-3.87	-	4.9	17.3	39.1	38.1	-	-	-	-	-	-	0.6	-0.62	-0.37	.570
Vi2	3.56	1.063	3.49-3.63	-	6.1	20.9	47.6	25.1	-	-	-	-	-	-	0.4	-0.48	-0.09	.520
Vi3	3.97	1.024	3.91-4.04	-	4.4	13.3	41.1	40.4	-	-	-	-	-	-	0.8	-0.75	0.06	.652
Vi4	2.91	1.152	2.84-2.99	-	15.6	34.8	37.0	11.2	-	-	-	-	-	-	1.4	-0.04	-0.68	.464
Cowb1	2.95	0.926	2.89-3.01	6.4	4.4	6.4	11.5	11.9	18.7	12.4	15.1	9.6	2.9	0.5	0.3	-0.37	-0.56	.358
Cowb2	3.05	0.879	2.99-3.11	4.6	2.1	5.2	10.3	13.0	23.0	12.9	13.5	10.0	4.0	0.7	0.7	-0.29	-0.25	.309
Cowb3	2.93	0.893	2.87-2.99	4.8	4.4	8.1	11.8	10.4	20.2	14.0	16.6	6.9	2.5	0.4	-	-0.32	-0.56	.300

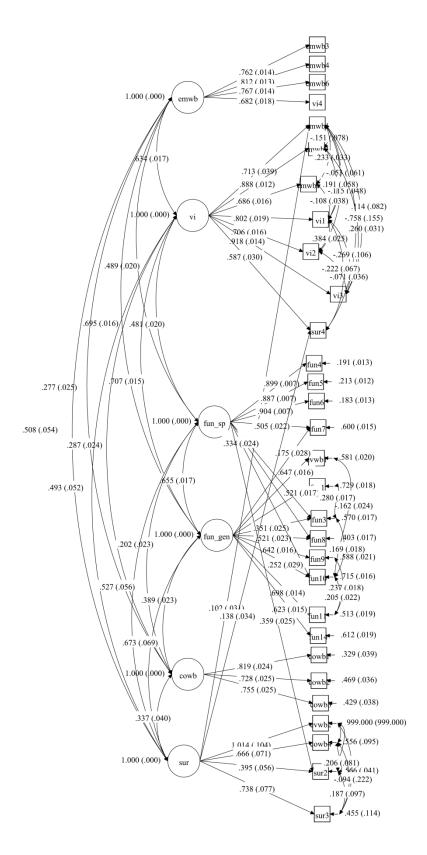
Table B21 (continued)

				Frequency percent of response categories														
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.88	0.901	3.82-3.94	2.1	2.8	6.4	15.4	21.7	28.1	23.3	-	-	-	-	0.2	-0.74	0.38	.425
Cowb5	3.78	1.025	3.72-3.85	-	3.6	7.7	21.4	40.9	26.2	-	-	-	_	-	0.2	-0.70	-0.02	.279
Sur1	2.54	0.854	2.48-2.59	2.2	2.5	13.6	20.1	30.7	24.8	5.3	_	-	-	-	0.9	0.52	-0.06	.287
Sur2	4.01	0.755	3.96-4.06	0.6	0.2	0.7	1.6	1.9	10.3	10.0	19.2	23.6	13.4	17.5	1.0	-0.76	0.73	.520
Sur3	4.33	0.778	4.28-4.39	0.9	1.4	2.7	7.3	12.8	28.7	46.0	_	_	_	_	0.2	-1.33	1.74	.489
Sur4	4.17	1.132	4.09-4.24	-	4.9	10.4	28.3	55.6	-	-	-	-	-	-	0.8	-1.21	0.55	.525

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.082 and 0.164, respectively.


**Table B22** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Hungary (n = 1,007): Goodness-of-fit indices

Number of actors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	13.83	.628	.600	.113 (.110116)
2	10.20	.752	.713	.096 (.093098)
3	9.20	.796	.745	.090 (.087093)
4	7.40	.853	.801	.080 (.077083)
5	6.14	.891	.840	.071 (.068075)
6	5.14	.920	.871	.064 (.061067)


**Table B23** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Hungary (n = 1,007)

Item	Factor I EMWB	Factor II Vitality	Factor III FUN (specific)	Factor IV FUN (general)	Factor V COWB	Factor VI SUR
Evwb1	.107	.066	100	.337	.258	.276
Evwb2	.195	.064	029	.264	.166	.370
Emwb1	001	.685	.056	069	073	.381
Emwb2	.108	.687	007	.220	.004	.024
Emwb3	.800	078	.019	.080	.007	027
Emwb4	.734	.001	.003	.014	005	.150
Emwb5	.074	.590	056	014	009	.282
Emwb6	.596	.173	003	007	033	.157
Fun1	047	035	.119	.523	062	.098
Fun3	.008	.004	.344	.463	105	.034
Fun4	010	.035	.877	010	.045	.051
Fun5	.022	.022	.924	028	.008	.006
Fun6	.066	.017	.822	.032	.059	005
Fun7	.050	007	.458	.323	122	014
Fun8	.062	018	.319	.428	.052	.115
Fun9	.107	013	.023	.644	.039	.007
Fun10	020	.069	.358	.371	126	049
Fun11	.084	.102	.136	.535	.006	.015
Fun14	.046	.071	.097	.319	.228	.077
Vi1	072	.803	014	.257	.094	080
Vi2	062	.711	009	.227	.073	047
Vi3	.072	.614	.086	.075	.010	.219
Vi4	.629	.069	.132	.021	.088	200
Cowb1	.011	012	.048	006	.805	026
Cowb2	.042	.000	.024	055	.719	.001
Cowb3	040	003	.010	.034	.757	.031
Cowb4	002	014	.152	.099	.118	.409
Sur2	035	079	.334	.113	.009	.489
Sur3	063	.024	.169	.070	.065	.569
Sur4	.105	.529	.048	051	058	.318
Factors				Correlations betwee	n factors	
EMWB	_					
Vitality	.526		_			
FUN (specific)	.420	.353	3 –	_		
FUN (general)	.560	.422		7 <u> </u>		
COWB	.291	.254			_	
SUR	.378	.256			.183	

EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = Functioning; COWB = Community wellbeing; SUR = Supportive relationships. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 5.14$ , CFI = .920, TLI = .871, RMSEA (90% CI) = .064 (.061-.067).



**Fig. B11** Standardized solution for the model with 6 first-order correlated factors and seven cross-loading items based on CFA analysis performed on the second half-sample of Hungary (n = 1,007). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 4.27$ , CFI = .899, TLI = .880, RMSEA (90% CI) = .057 (.054-.060).



**Fig. B12** Standardized solution for the model with 6 first-order correlated factors and seven cross-loading items based on CFA analysis performed on the full sample of Hungary (N = 2,014). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 7.44$ , CFI = .911, TLI = .892, RMSEA (90% CI) = .057 (.055-.059).

**Table B24** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Hungary (N = 2,014)

			Subscale			
	Emotional	Vitality	Functioning	Functioning	Community	Supportive
	Wellbeing		(specific)	(general)	wellbeing	relationships
Number of items	4	7	4	8	3	4
Mean (standard error)	3.18 (0.020)	3.84 (0.019)	3.94 (0.018)	3.53 (0.016)	2.98 (0.018)	3.92 (0.015)
95% Confidence interval	3.14-3.22	3.81-3.88	3.90-3.98	3.50-3.56	2.94-3.01	3.89-3.95
Standard deviation	0.855	0.811	0.782	0.663	0.770	.646
Skewness	-0.064	-0.871	-0.763	-0.635	-0.261	-0.807
Kurtosis	-0.436	0.610	0.330	0.411	-0.280	0.853
Convergent validity	.573	.585	.667	.304	.590	.521
Composite Reliability	.843	.906	.884	.765	.812	.812
Average inter-item correl.	.494	.516	.690	.400	.589	.430
Minmax. correlations	.442575	.371675	.495899	.200572	.557619	.327523
Range of correlations	.133	.304	.405	.371	.062	.196
	Average	inter-item corre	lations between	subscales	_	
Emotional wellbeing	_					
Vitality	.413	_				
Functioning (specific)	.420	.429	_			
Functioning (general)	.361	.381	.432	_		
Community wellbeing	.311	.355	.359	.312	_	
Supportive relationships	.358	.392	.458	.316	•	_
	Squ	ared correlation	s between subs	cales	_	
Emotional wellbeing						
Vitality	.171					
Functioning (specific)	.176	.184	_			
Functioning (general)	.130	.145	.187	_		
Community wellbeing	.097	.126	.129	.097	_	
Supportive relationships	.128	.154	.210	.139	.100	_

Standard errors for skewness and kurtosis were 0.057 and 0.115, respectively.

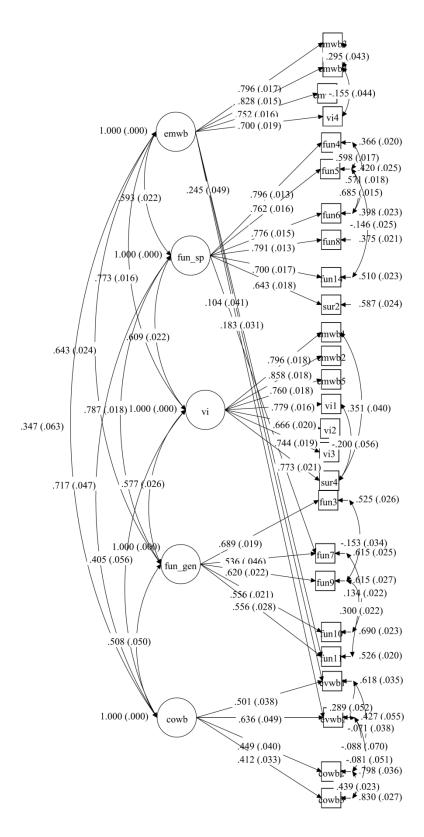
**Table B25** Item analysis of the 2012 European Social Survey measurement of wellbeing for Ireland (first half-sample: n = 1,314)

			_					ency pe	rcent o	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.67	0.901	3.62-3.72	1.4	1.3	2.1	4.4	5.7	13.4	11.1	16.9	24.2	10.1	8.8	0.5	-0.70	0.10	.574
Evwb2	3.79	0.811	3.75-3.84	0.8	0.5	1.1	2.4	5.0	12.2	9.2	20.9	25.4	14.2	7.8	0.5	-0.83	0.68	.622
Emwb1	4.39	0.865	4.34-4.44	-	1.6	3.6	33.3	61.1	-	-	-	-	-	-	0.4	-1.49	2.47	.597
Emwb2	4.51	0.861	4.46-4.56	-	2.4	2.7	23.4	71.0	-	-	-	-	-	-	0.6	-2.04	4.59	.581
Emwb3	3.75	1.077	3.68-3.81	-	3.2	20.2	43.8	32.6	-	-	-	-	-	-	0.2	-0.45	-0.50	.633
Emwb4	3.77	1.054	3.71-3.83	-	2.7	18.6	44.8	33.6	-	-	-	-	-	-	0.3	-0.46	-0.46	.621
Emwb5	4.29	0.923	4.24-4.35	-	2.1	4.6	36.5	56.5	-	-	-	-	-	-	0.3	-1.33	1.84	.570
Emwb6	3.43	1.139	3.36-3.49	-	5.5	29.7	40.4	24.0	-	-	-	-	-	-	0.4	-0.15	-0.79	.575
Fun1	4.12	0.843	4.08-4.17	-	1.0	5.9	7.5	51.5	33.7	-	-	-	-	-	0.3	-1.11	1.39	.440
Fun2	3.25	1.097	3.18-3.31	-	4.7	27.5	21.2	36.5	9.4	-	-	-	-	-	0.6	-0.22	-0.97	.468
Fun3	3.80	0.850	3.75-3.85	-	0.8	9.2	17.2	56.4	15.8	-	-	-	-	-	0.5	-0.81	0.63	.587
Fun4	3.88	0.796	3.84-3.93	0.6	0.4	0.8	2.3	4.1	10.8	12.3	17.7	25.5	12.9	12.4	0.2	-0.67	0.34	.719
Fun5	3.87	0.816	3.82-3.91	0.6	0.2	0.8	3.1	4.9	10.9	11.9	17.5	21.6	14.7	13.6	0.2	-0.63	0.10	.672
Fun6	3.86	0.827	3.81-3.90	0.6	0.3	1.2	2.7	4.9	12.3	11.3	17.5	21.8	14.5	12.8	0.2	-0.68	0.16	.701
Fun7	4.05	0.790	4.00-4.09	-	1.4	3.9	10.3	59.8	24.5	-	-	-	-	-	0.1	-1.12	2.18	.566
Fun8	3.72	0.859	3.67-3.77	1.3	1.1	1.7	3.7	5.9	13.2	11.6	18.9	22.3	9.9	9.7	0.5	-0.72	0.44	.692
Fun9	3.86	0.863	3.81-3.91	-	1.5	8.6	15.8	55.9	17.7	-	-	-	-	-	0.4	-0.94	1.08	.518
Fun10	4.06	0.638	4.02-4.10	-	0.2	1.7	9.9	67.8	20.4	-	-	-	-	-	-	-0.79	2.41	.463
Fun11	3.95	0.754	3.91-3.99	-	0.8	5.7	12.3	63.5	17.5	-	-	-	-	-	0.1	-0.94	1.52	.619
Fun12	3.77	1.010	3.71-3.82	-	1.1	13.2	13.2	47.6	24.6	-	_	-	-	-	0.3	-0.66	-0.36	.552
Fun13	3.45	1.006	3.39-3.50	-	3.5	19.6	19.7	46.3	10.1	-	-	-	-	-	0.8	-0.52	-0.53	.537
Fun14	3.48	0.762	3.44-3.53	1.4	0.3	1.7	5.6	6.7	18.9	16.3	22.7	17.6	6.3	2.1	0.5	-0.73	0.89	.649
Vi1	4.24	0.947	4.19-4.30	_	2.7	6.4	36.1	54.3	-	-	-	-	-	-	0.5	-1.28	1.72	.534
Vi2	4.18	1.020	4.12-4.24	-	3.8	8.8	34.8	52.1	_	-	_	-	-	-	0.5	-1.21	1.13	.451
Vi3	4.34	0.911	4.29-4.39	_	2.5	3.5	34.6	58.8	-	-	-	-	-	-	0.5	-1.47	2.33	.471
Vi4	3.29	1.150	3.22-3.35	_	7.3	31.7	40.9	20.1	-	-	-	-	-	-	0.1	-0.09	-0.74	.523
Cowb1	3.02	0.965	2.96-3.07	6.0	4.6	6.8	8.6	10.1	18.2	13.8	15.9	10.6	2.5	2.7	0.2	-0.24	-0.52	.250
Cowb2	3.33	0.881	3.28-3.38	2.1	2.6	4.1	7.3	9.1	17.8	14.3	20.8	15.0	2.0	4.7	0.2	-0.38	-0.18	.317
Cowb3	3.31	0.878	3.26-3.36	3.0	1.6	4.5	6.9	10.4	18.4	13.7	19.3	15.5	3.1	3.6	-	-0.37	-0.14	.327

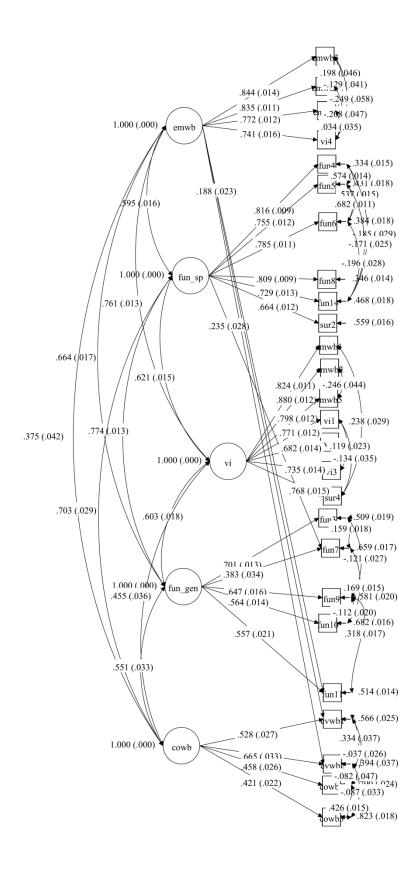
**Table B25** (continued)

	Frequency percent of response categories																	
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.79	1.013	3.74-3.85	3.0	2.6	7.2	17.7	21.5	23.1	23.1	-	-	-	-	2.3	-0.72	0.01	.409
Cowb5	3.66	0.990	3.60-3.72	-	2.7	12.1	19.6	48.4	16.9	-	-	-	-	-	0.3	-0.72	0.06	.355
Sur1	2.79	0.937	2.48-2.59	4.0	18.7	22.0	22.6	22.3	5.3	3.8	_	-	-	_	1.4	0.20	-0.56	.126
Sur2	3.95	0.818	3.90-3.99	0.4	0.5	1.1	2.5	3.7	8.8	10.9	16.8	24.9	15.0	14.8	0.7	-0.91	0.86	.581
Sur3	4.30	0.866	4.25-4.34	0.9	1.8	2.7	7.7	14.5	27.9	42.9	-	-	-	-	1.7	-1.49	2.11	.425
Sur4	4.47	0.867	4.09-4.24	_	1.9	3.0	25.3	69.6	_	_	_	_	_	_	0.3	-1.78	3.30	.537

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.071 and 0.142, respectively.


**Table B26** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Ireland (n = 1,314): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	20.33	.594	.559	.121 (.119124)
2	13.40	.761	.717	.097 (.094100)
3	9.81	.845	.799	.082 (.079085)
4	7.75	.892	.846	.072 (.069075)
5	5.93	.929	.888	.061 (.058065)


**Table B27** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Ireland (n = 1,314)

Item	Factor I EMWB	Factor II FUN (specific)	Factor III Vitality	Factor IV FUN (general)	Factor V COWB
Evwb1	.359	.081	011	.048	.454
Evwb2	.334	.175	007	.033	.445
Emwb1	.102	.030	.778	033	.013
Emwb2	.142	006	.732	018	.127
Emwb3	.837	.000	.030	013	.070
Emwb4	.855	.003	.053	029	029
Emwb5	.049	.054	.720	005	.062
Emwb6	.585	.017	.216	.079	129
Fun3	.054	.238	.051	.500	.009
Fun4	.029	.882	.011	023	.032
Fun5	051	.944	025	.009	037
Fun6	008	.917	033	.034	024
Fun7	005	.310	.023	.412	.019
Fun8	.101	.572	.015	.114	.171
Fun9	.260	021	046	.509	.154
Fun10	051	.295	.107	.369	097
Fun11	.321	.020	.001	.496	.088
Fun14	.206	.335	.128	011	.182
Vi1	016	020	.806	.043	013
Vi2	034	.031	.740	.045	100
Vi3	022	026	.763	.065	007
Vi4	.417	.002	.290	.201	177
Cowb2	113	013	.159	.030	.575
Cowb3	059	.004	.096	.035	.507
Sur2	.041	.500	.117	047	.189
Sur4	.033	.030	.689	031	.143
Factors			Correlation	s between facto	ors
EMWB	_				
FUN (specific)	.516	_			
Vitality	.663	.520			
FUN (general)	.469	.486	.424		
COWB	.250	.401	.278	.280	_

COWB = Community wellbeing; EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 5.93$ , CFI = .929, TLI = .888, RMSEA (90% CI) = .061 (.058-.065).



**Fig. B13** Standardized solution for the model with 5 first-order correlated factors and four cross-loading items based on CFA analysis performed on the second half-sample of Ireland (n = 1,314). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.72$ , CFI = .945, TLI = .933, RMSEA (90% CI) = .045 (.042-.049).



**Fig. B14** Standardized solution for the model with 5 first-order correlated factors and four cross-loading items based on CFA analysis performed on the full sample of Ireland (N = 2,628). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 5.93$ , CFI = .953, TLI = .942, RMSEA (90% CI) = .043 (.041-.045).

**Table B28** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Ireland (N = 2,628)

			Subscale		
	Emotional Wellbeing	Functioning (specific)	Vitality	Functioning (general)	Community Wellbeing
Number of items	4	6	7	5	4
Mean (standard error)	3.60 (0.018)	3.81 (0.012)	4.36 (0.013)	3.95 (0.011)	3.53 (0.013)
95% Confidence interval	3.56-3.63	3.79-3.84	4.33-4.38	3.92-3.97	3.51-3.56
Standard deviation	0.888	0.599	0.676	0.567	0.634
Skewness	-0.315	-0.689	-1.634	-0.737	-0.516
Kurtosis	-0.342	0.519	3.850	1.565	0.203
Convergent validity	.639	.580	.611	.337	.277
Composite Reliability	.876	.892	.916	.710	.598
Average inter-item correl.	.532	.457	.475	.423	.381
Minmax. correlations	.460675	.038870	.380575	.292616	.257669
Range of correlations	.215	.832	.196	.324	.412
	Average	inter-item corre	lations between	subscales	
Emotional wellbeing	_				
Functioning (specific)	.373	_			
Vitality	.424	.362	_		
Functioning (general)	.389	.385	.363	_	
Community wellbeing	.327	.353	.338	.313	_
	Squ	ared correlation	s between subs	cales	
Emotional wellbeing	_				<del>_</del>
Functioning (specific)	.139	_			
Vitality	.180	.131	_		
Functioning (general)	.151	.148	.132	_	
Community wellbeing	.107	.125	.114	.098	_

Standard errors for skewness and kurtosis were 0.049 and 0.098, respectively.

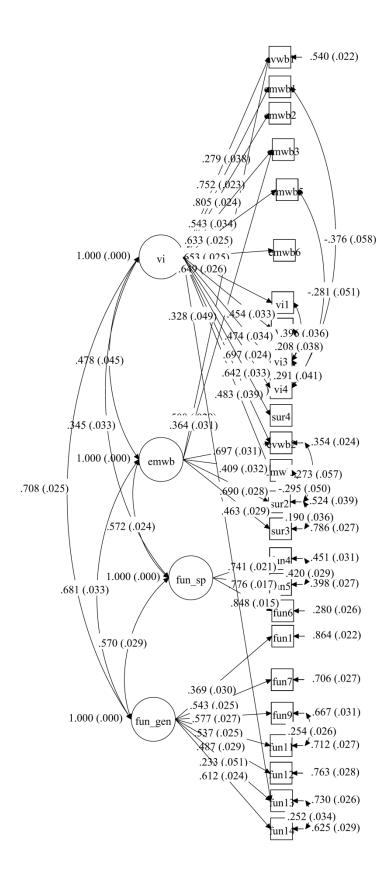
**Table B29** Item analysis of the 2012 European Social Survey measurement of wellbeing for the Netherlands (first half-sample: n = 922)

			_					ency pe	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.10	0.614	4.06-4.15	0.5	0.2	0.9	1.2	1.2	4.3	6.7	17.2	36.3	21.9	9.4	-	-1.48	3.84	.606
Evwb2	4.12	0.566	4.08-4.15	-	0.2	0.8	1.2	1.2	3.1	5.6	19.2	40.8	19.2	8.6	0.1	-1.31	3.44	.678
Emwb1	4.33	0.864	4.28-4.39	-	2.0	4.3	40.7	53.0	-	-	-	-	-	-	-	-1.30	2.00	.491
Emwb2	4.52	0.804	4.46-4.57	-	1.4	3.7	26.9	67.9	-	-	-	-	-	-	0.1	-1.77	3.43	.545
Emwb3	3.79	1.047	3.72-3.86	-	5.1	14.9	47.7	32.2	-	-	-	-	-	-	0.1	-0.58	-0.10	.590
Emwb4	3.74	1.044	3.67-3.81	-	3.8	16.9	48.3	30.9	-	-	-	-	-	-	0.1	-0.51	-0.17	.601
Emwb5	3.85	0.977	3.78-3.91	-	4.1	10.4	56.0	29.4	-	-	-	-	-	-	0.1	-0.71	0.61	.484
Emwb6	3.54	1.079	3.47-3.61	-	6.1	19.6	51.1	23.2	-	-	-	-	-	-	-	-0.52	-0.05	.499
Fun1	4.21	0.781	4.16-4.26	-	0.8	4.8	6.7	52.5	35.2	-	-	-	-	-	-	-1.20	2.17	.310
Fun2	3.58	0.998	3.51-3.64	-	2.2	16.7	16.3	52.6	11.7	-	-	-	-	-	0.5	-0.69	-0.18	.379
Fun3	3.70	0.786	3.65-3.76	-	0.7	8.6	17.0	63.7	10.0	-	-	-	-	-	0.1	-0.86	0.64	.477
Fun4	4.10	0.532	4.07-4.14	-	-	0.2	0.8	0.4	3.9	7.8	24.2	37.1	16.2	9.4	-	-0.84	2.21	.451
Fun5	4.15	0.516	4.12-4.19	-	0.1	0.2	0.2	0.8	2.9	5.5	23.3	39.4	18.7	8.8	0.1	-1.02	3.08	.411
Fun6	4.06	0.538	4.03-4.10	-	0.2	0.5	0.1	1.0	4.6	8.7	26.9	35.8	15.5	6.6	0.1	-0.92	2.56	.470
Fun7	3.98	0.703	3.93-4.03	-	0.1	3.7	9.9	67.8	18.3	-	-	-	-	-	0.2	-0.98	2.13	.499
Fun8	3.66	0.701	3.62-3.71	1.3	1.2	1.6	2.3	3.1	13.8	12.0	30.3	23.1	6.3	2.6	2.4	-1.00	1.67	.308
Fun9	3.66	0.932	3.60-3.72	-	0.7	14.0	16.9	53.8	14.3	-	-	-	_	-	0.3	-0.60	-0.21	.549
Fun10	3.70	0.712	3.65-3.75	-	0.1	6.5	23.6	63.1	6.5	-	-	-	-	-	0.1	-0.75	0.72	.294
Fun11	3.77	0.781	3.72-3.83	-	0.7	8.0	15.1	66.2	10.0	-	-	-	_	-	0.1	-0.87	0.94	.444
Fun12	3.86	1.006	3.80-3.93	-	0.5	14.4	11.6	47.6	25.8	-	_	_	-	-	-	-0.70	-0.46	.378
Fun13	3.45	1.023	3.38-3.52	-	4.7	17.5	17.2	51.8	8.5	-	-	-	-	-	0.3	-0.72	-0.28	.514
Fun14	3.45	0.721	3.40-3.50	1.1	0.8	3.0	5.0	8.8	15.4	16.9	27.3	18.3	2.4	1.0	-	-0.78	0.46	.496
Vi1	4.29	0.941	4.23-4.36	-	2.2	7.5	35.0	55.3	-	-	-	_	-	-	-	-1.28	1.35	.522
Vi2	3.98	1.116	3.90-4.05	-	4.2	14.3	37.4	44.0	-	-	_	_	-	-	-	-0.92	0.21	.342
Vi3	4.10	1.010	4.04-4.17	-	2.7	9.2	41.2	46.9	-	-	_	-	-	-	-	-1.03	0.76	.381
Vi4	3.24	1.129	3.16-3.32	-	9.9	25.3	47.6	17.1	-	-	_	-	-	-	0.1	-0.31	-0.46	.509
Cowb1	3.41	0.804	3.36-3.46	2.4	1.6	3.8	6.9	7.3	15.0	13.7	28.5	16.4	2.9	1.3	0.2	-0.91	0.45	.340
Cowb2	3.59	0.693	3.55-3.64	1.7	0.2	2.0	3.3	5.7	12.8	14.8	34.6	20.2	3.1	1.3	0.3	-1.09	1.62	.376
Cowb3	3.23	0.720	3.18-3.28	1.4	1.5	2.6	9.1	12.6	18.8	16.7	23.9	11.3	1.6	0.5	-	-0.45	0.12	.249

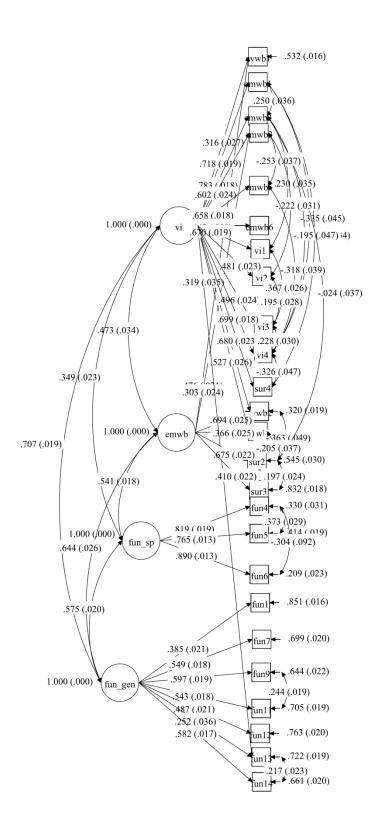
Table B29 (continued)

		Frequency percent of response categories																
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.62	0.971	3.56-3.69	3.4	4.1	9.8	15.5	26.0	28.3	12.3	-	-	_	-	0.7	-0.81	0.29	.287
Cowb5	3.43	0.962	3.36-3.49	-	2.8	16.4	24.3	48.0	8.2	-	_	-	-	_	0.2	-0.58	-0.23	.269
Sur1	3.22	0.925	3.16-3.28	2.6	8.4	14.3	22.6	37.4	7.6	6.9	-	_	_	0.2	1.4	-0.15	-0.20	.273
Sur2	4.13	0.539	4.09-4.17	-	0.1	0.3	0.7	0.7	2.8	5.3	20.0	42.2	19.0	9.0	-	-1.40	4.53	.467
Sur3	4.36	0.743	4.31-4.41	1.1	0.7	1.6	6.1	11.8	38.5	39.4	-	-	-	0.9	1.7	-1.61	3.31	.326
Sur4	4.56	0.825	4.51-4.62	_	1.5	5.0	21.9	71.6	-	-	-	-	-	-	0.3	-2.06	4.33	.435

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.083 and 0.166, respectively.


**Table B30** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of the Netherlands (n = 922): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	11.89	.711	.684	.109 (.105112)
2	6.91	.857	.829	.080 (.077084)
3	5.48	.901	.870	.070 (.066074)
4	4.46	.931	.900	.061 (.057065)


**Table B31** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of the Netherlands (n = 922)

Item	Factor I Vitality	Factor II EMWB	Factor III FUN (specific)	Factor IV FUN (general)
Evwb1	.342	.335	.065	.148
Evwb2	.345	.380	.134	.149
Emwb1	.772	024	066	.039
Emwb2	.758	.041	006	.069
Emwb3	.504	.502	.016	008
Emwb4	.524	.599	026	065
Emwb5	.550	.029	190	.246
Emwb6	.446	.138	107	.233
Fun1	099	.073	.044	.472
Fun4	.008	.045	.813	.050
Fun5	005	023	.940	057
Fun6	.047	.034	.712	.106
Fun7	.018	.200	.186	.314
Fun9	.041	.132	030	.598
Fun11	.030	020	.029	.598
Fun12	.163	047	001	.405
Fun13	.340	110	.041	.347
Fun14	.199	111	.133	.390
Vi1	.843	027	.044	106
Vi2	.561	116	.005	.016
Vi3	.694	195	.025	008
Vi4	.510	.101	.136	.010
Sur2	034	.348	.200	.218
Sur3	023	.363	001	.125
Sur4	.646	.083	.050	.018
Factors		Correlations be	etween factors	
Vitality EMWB FUN (specific) FUN (general)	.3			

EMWB = emotional wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 4.46$ , CFI = .931, TLI = .900, RMSEA (90% CI) = .061 (.057-.065).



**Fig. B15** Standardized solution for the model with 4 first-order correlated factors and five cross-loading items based on CFA analysis performed on the second half-sample of the Netherlands (n = 923). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.52$ , CFI = .936, TLI = .924, RMSEA (90% CI) = .052 (.049-.056).



**Fig. B16** Standardized solution for the model with 4 first-order correlated factors and five cross-loading items based on CFA analysis performed on the full sample of the Netherlands (N = 1,845). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 6.06$ , CFI = .940, TLI = .926, RMSEA (90% CI) = .052 (.050-.055).

**Table B32** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Netherlands (N = 1,845)

		Su	bscale	
	Vitality	Emotional	Functioning	Functioning
		wellbeing	(specific)	(general)
Number of items	11	4	3	7
Mean (standard error)	4.04 (0.014)	4.11 (0.012)	4.10 (0.011)	3.77 (0.011)
95% Confidence interval	4.01-4.06	4.08-4.13	4.08-4.12	3.75-3.80
Standard deviation	0.604	0.528	0.463	0.484
Skewness	-1.133	-1.086	-0.737	-0.683
Kurtosis	1.556	1.945	2.001	0.588
Convergent validity	.380	.310	.683	.249
Composite Reliability	.866	.625	.865	.687
Average inter-item correl.	.341	.365	.697	.215
Minmax. correlations	.203518	.249529	.647764	019492
Range of correlations	.316	.279	.117	.511
	Average inter	r-item correlations b	between subscales	
Vitality	_			
Emotional wellbeing	.320	_		
Functioning (specific)	.296	.366	_	
Functioning (general)	.260	.224	.240	_
	Squared	l correlations betwe	en subscales	
Vitality	_			
Emotional wellbeing	.102	_		
Functioning (specific)	.088	.134	_	
Functioning (general)	.068	.050	.058	_

Standard errors for skewness and kurtosis were 0.058 and 0.115, respectively.

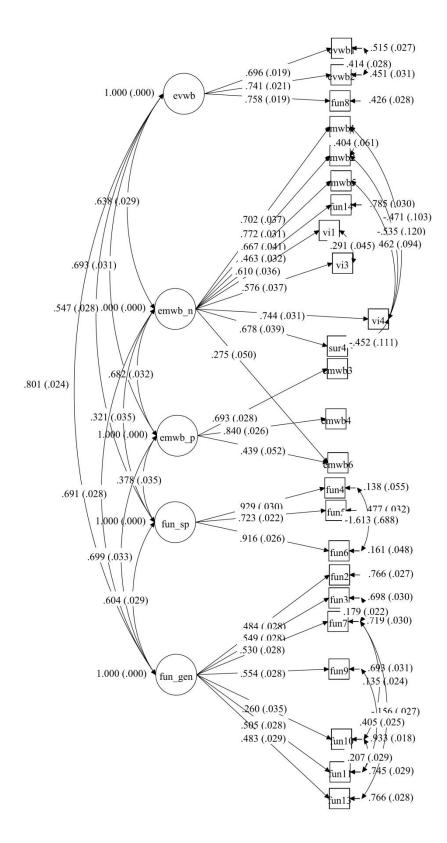
**Table B33** Item analysis of the 2012 European Social Survey measurement of wellbeing for Norway (first half-sample: n = 812)

			_					ency per	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.26	0.635	4.21-4.30	0.4	0.1	0.2	1.1	1.2	4.2	3.7	11.3	32.0	27.1	18.3	0.2	-1.50	3.32	.643
Evwb2	4.26	0.576	4.22-4.30	-	0.2	0.2	0.5	1.5	2.7	3.7	12.7	31.7	28.6	17.6	0.6	-1.36	3.14	.685
Emwb1	4.62	0.690	4.57-4.67	-	0.9	1.8	24.6	72.0	-	-	-	-	-	-	0.6	-1.96	4.89	.523
Emwb2	4.69	0.660	4.64-4.74	-	0.4	2.0	18.2	78.8	-	-	-	-	-	-	0.6	-2.24	5.38	.502
Emwb3	4.03	0.991	3.96-4.10	-	1.5	11.5	41.0	45.3	-	-	-	-	-	-	0.7	-0.69	-0.20	.493
Emwb4	3.67	0.995	3.60-3.74	-	3.1	19.8	50.2	25.9	-	-	-	-	-	-	1.0	-0.35	-0.26	.528
Emwb5	4.73	0.635	4.69-4.78	-	0.1	2.0	16.3	80.9	-	-	-	-	-	-	0.7	-2.44	5.66	.434
Emwb6	3.73	1.013	3.66-3.81	-	2.7	15.6	52.5	28.4	-	-	-	-	-	-	0.7	-0.54	0.06	.505
Fun1	4.27	0.763	4.21-4.32	-	0.5	2.5	6.8	48.4	41.1	-	-	-	-	-	0.7	-1.21	2.24	.338
Fun2	3.78	0.931	3.72-3.85	-	2.2	10.7	17.1	50.0	19.2	-	-	-	-	-	0.7	-0.85	0.45	.408
Fun3	3.95	0.696	3.90-4.00	-	0.5	3.8	12.8	65.6	16.4	-	-	-	-	-	0.9	-0.82	1.63	.473
Fun4	4.03	0.558	3.99-4.07	0.2	0.1	0.1	0.7	1.4	4.8	7.9	25.9	34.2	15.1	8.4	1.1	-0.66	1.16	.531
Fun5	3.60	0.788	3.55-3.66	0.5	0.5	2.1	5.3	6.9	14.7	15.0	20.0	20.4	7.9	4.9	1.8	-0.48	-0.06	.364
Fun6	3.67	0.727	3.62-3.73	0.2	0.7	1.4	3.3	5.4	12.9	15.1	22.3	23.5	8.6	4.8	1.6	-0.50	0.12	.475
Fun7	4.06	0.655	4.02-4.11	-	0.7	1.6	10.2	65.0	21.4	-	-	-	-	-	1.0	-0.99	3.53	.473
Fun8	4.06	0.644	4.02-4.11	-	0.1	0.6	1.4	0.9	6.8	6.4	19.3	33.1	19.6	10.5	1.4	-1.07	1.75	.620
Fun9	3.92	0.838	3.86-3.98	-	1.0	6.0	16.3	53.4	22.7	-	-	-	-	-	0.6	-0.86	1.05	.542
Fun10	3.97	0.601	3.93-4.01	-	0.2	2.1	12.7	71.1	13.3	-	-	-	-	-	0.6	-0.83	2.88	.320
Fun11	3.80	0.777	3.74-3.85	-	0.5	5.5	20.3	59.7	13.3	-	-	-	-	-	0.6	-0.79	0.94	.483
Fun12	3.48	1.084	3.40-3.55	-	1.6	25.2	12.8	43.2	16.5	-	-	_	-	-	0.6	-0.36	-0.95	.419
Fun13	3.79	0.878	3.73-3.85	-	1.0	9.9	15.9	54.4	17.7	-	-	-	-	-	1.1	-0.83	0.62	.457
Fun14	3.49	0.675	3.44-3.54	0.1	0.5	1.1	4.4	7.6	22.4	13.9	24.5	17.1	5.3	1.6	1.4	-0.37	0.11	.460
Vi1	4.46	0.806	4.41-4.52	-	0.9	3.7	28.9	65.5	-	-	-	_	-	-	1.0	-1.43	1.96	.454
Vi2	4.19	0.997	4.12-4.26	-	3.3	6.8	35.5	53.8	-	-	-	_	-	-	0.6	-1.24	1.38	.274
Vi3	4.44	0.829	4.38-4.49	-	0.9	3.3	32.6	62.4	-	-	-	-	_	-	0.7	-1.44	2.07	.446
Vi4	3.21	1.050	3.13-3.28	-	6.8	34.5	44.7	13.4	-	-	-	-	_	-	0.6	-0.09	-0.43	.493
Cowb1	3.71	0.672	3.66-3.76	0.4	0.5	1.1	3.6	3.7	16.9	9.9	26.0	26.8	7.5	3.3	0.4	-0.84	1.12	.251
Cowb2	3.81	0.688	3.76-3.85	0.5	0.5	0.7	2.5	3.8	11.7	10.8	25.5	28.8	9.6	5.0	0.5	-0.94	1.39	.273
Cowb3	3.46	0.707	3.41-3.51	0.6	0.1	2.8	5.5	6.8	21.1	17.6	20.1	17.7	4.4	2.8	0.4	-0.32	-0.02	.251

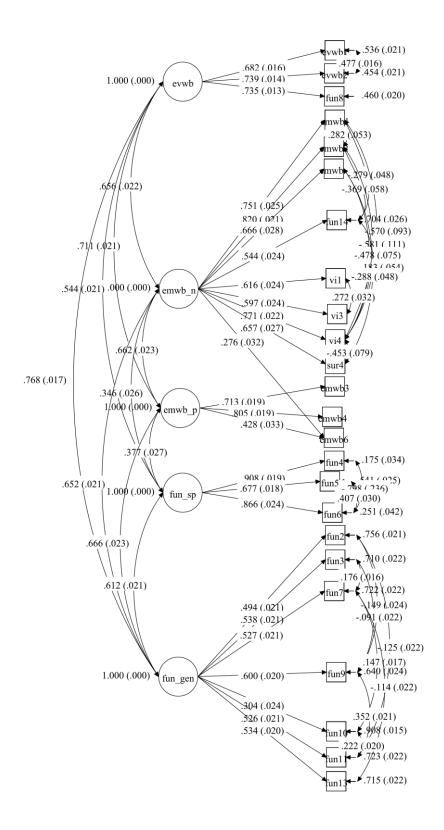
**Table B33** (continued)

	Frequency percent of response categories																	
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	-0.74 0.54 -0.92 0.59 -0.03 -0.40 -0.99 1.86	CC
Cowb4	3.79	0.827	3.73-3.85	1.2	2.0	5.3	18.0	27.1	31.8	13.3	-	-	-	_	1.4	-0.74	0.54	.298
Cowb5	3.73	0.879	3.67-3.79	-	1.8	9.6	15.8	58.7	13.3	-	-	-	-	-	0.7	-0.92	0.59	.257
Sur1	3.09	0.898	3.03-3.16	4.9	7.1	32.2	22.2	18.7	12.1	2.0	_	-	_	-	0.7	-0.03	-0.40	.154
Sur2	4.39	0.507	4.35-4.43	-	_	0.1	0.2	0.7	1.4	3.1	10.6	28.4	30.5	23.6	1.2	-0.99	1.86	.473
Sur3	4.48	0.625	4.43-4.52	0.2	0.5	0.9	3.1	8.9	37.7	47.8	_	-	_	_	1.0	-1.83	5.07	.392
Sur4	4.73	0.646	4.69-4.78	_	0.4	1.4	16.4	81.3	_	_	_	_	_	-	0.6	-2.82	9.42	.449

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.087 and 0.174, respectively.


**Table B34** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Norway (n = 812): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	10.23	.628	.593	.107 (.103110)
2	6.44	.801	.760	.082 (.078086)
3	5.49	.851	.802	.074 (.070079)
4	4.45	.897	.848	.065 (.061070)
5	3.57	.932	.886	.056 (.051061)


**Table B35** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Norway (n = 812)

Item	Factor I EVWB	Factor II EMWB (-)	Factor III EMWB (+)	Factor IV FUN (specific)	Factor V FUN (general)
Evwb1	.801	.077	.006	030	.006
Evwb2	.875	026	.035	.048	.033
Emwb1	.142	.676	.078	010	065
Emwb2	.061	.827	.135	074	070
Emwb3	.071	005	.756	.070	022
Emwb4	.218	.079	.522	026	.053
Emwb5	020	.755	025	075	.066
Emwb6	003	.302	.436	008	.065
Fun2	.038	.246	111	.047	.316
Fun3	.057	.028	.073	.122	.369
Fun4	.020	.107	010	.707	.061
Fun5	027	004	.011	.861	082
Fun6	.032	025	.030	.813	.041
Fun7	.052	056	.078	.158	.445
Fun8	.386	.017	009	.198	.286
Fun9	.137	.097	.116	.002	.402
Fun10	094	117	.064	019	.645
Fun11	.029	.069	.128	013	.473
Fun13	.039	.290	037	015	.404
Fun14	.072	.309	132	.127	.262
Vi1	055	.696	.009	.018	.050
Vi3	041	.595	010	.124	.092
Vi4	108	.395	.299	.101	.153
Sur4	.108	.630	.033	.063	124
Factors			Correlation	s between fac	tors
EVWB	_				
EMWB (-)	.532	_			
EMWB (+)	.421	.494	_		
FUN (specific)	.320	.227	.266	_	
FUN (general)	.371	.344	.394	.504	_

EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 3.57$ , CFI = .932, TLI = .886, RMSEA (90% CI) = .057 (.051-.061).



**Fig. B17** Standardized solution for the model with 5 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the second half-sample of Norway (n = 812). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.65$ , CFI = .896, TLI = .875, RMSEA (90% CI) = .057 (.053-.061).



**Fig. B18** Standardized solution for the model with 5 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the full sample of Norway (N = 1,624). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 6.47$ , CFI = .901, TLI = .875, RMSEA (90% CI) = .058 (.055-.061).

**Table B36** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Norway (N = 1,624)

			Subscale		
	Evaluative Wellbeing	Emotional Wellb. (-)	Emotional Wellb. (+)	Functioning (specific)	Functioning (general)
Number of items	3	8	3	3	7
Mean (standard error)	4.20 (0.013)	4.29 (0.011)	3.81 (0.020)	3.77 (0.015)	3.89 (0.010)
95% Confidence interval	4.17-4.23	4.27-4.31	3.77-3.85	3.74-3.80	3.87-3.91
Standard deviation	0.523	0.449	0.782	0.614	0.391
Skewness	-1.346	-1.808	-0.390	-0.523	-0.357
Kurtosis	3.461	5.477	-0.129	0.683	0.592
Convergent validity	.517	.467	.446	.676	.261
Composite Reliability	.762	.873	.695	.861	.706
Average inter-item correl.	.594	.260	.417	.657	.138
Minmax. correlations	.513739	018535	.397458	.615736	038559
Range of correlations	.226	.553	.061	.121	.598
	Average	inter-item corre	lations between	subscales	_
Evaluative wellbeing	_				
Emotional wellbeing (-)	.279	_			
Emotional wellbeing (+)	.404	.258	_		
Functioning (specific)	.444	.226	.341	_	
Functioning (general)	.154	.138	.134	.154	_
	Squ	ared correlation	s between subs	cales	
Evaluative wellbeing					_
Emotional wellbeing (-)	.078	_			
Emotional wellbeing (+)	.163	.067	_		
Functioning (specific)	.197	.051	.116	_	
Functioning (general)	.024	.019	.018	.024	_

Standard errors for skewness and kurtosis were 0.062 and 0.123, respectively.

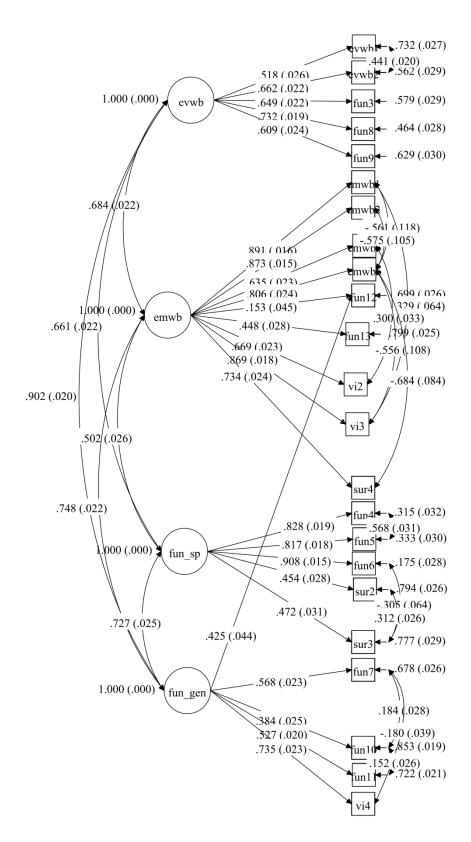
**Table B37** Item analysis of the 2012 European Social Survey measurement of wellbeing for Portugal (first half-sample: n = 1,075)

		Frequency percent of response categories																
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.40	0.847	3.35-3.46	1.3	1.1	4.4	7.8	8.7	17.6	15.3	17.2	16.0	6.7	3.0	0.8	-0.39	-0.23	.472
Evwb2	3.58	0.770	3.53-3.63	0.3	0.9	2.0	5.4	5.7	18.0	16.4	19.2	20.2	7.3	4.2	0.7	-0.38	-0.02	.619
Emwb1	4.13	0.958	4.07-4.19	-	2.7	7.9	42.3	47.1	-	-	-	-	-	-	-	-0.97	0.80	.690
Emwb2	4.25	0.990	4.19-4.32	-	2.7	8.5	31.3	57.3	-	-	-	-	-	-	0.2	-1.26	1.16	.642
Emwb3	3.22	1.195	3.15-3.30	-	10.0	37.9	32.2	19.7	-	-	-	-	-	-	0.3	0.02	-0.87	.619
Emwb4	3.46	1.174	3.39-3.54	-	7.3	30.3	36.4	25.6	-	-	-	-	-	-	0.5	-0.19	-0.86	.639
Emwb5	4.01	1.011	3.95-4.08	-	2.9	10.1	48.0	39.0	-	-	-	-	-	-	-	-0.97	0.85	.445
Emwb6	3.16	1.198	3.08-3.24	-	9.0	41.7	31.7	17.6	-	-	-	-	-	-	-	0.08	-0.86	.616
Fun1	3.87	0.806	3.82-3.92	-	0.9	8.3	15.7	55.4	19.1	-	-	-	-	-	0.6	-0.65	0.28	.365
Fun2	2.90	1.035	2.84-2.97	-	6.6	35.0	25.8	27.7	3.9	-	-	-	-	-	1.0	0.03	-1.01	.338
Fun3	3.63	0.868	3.58-3.69	-	1.0	12.6	19.3	57.3	9.5	-	-	-	-	-	0.3	-0.66	0.00	.588
Fun4	3.81	0.760	3.76-3.86	-	0.3	1.2	2.1	4.5	13.6	15.3	18.8	21.8	9.3	12.4	0.8	-0.33	-0.22	.595
Fun5	3.80	0.765	3.75-3.85	0.2	0.1	1.2	2.4	4.3	14.2	14.9	19.0	22.3	9.3	11.2	0.9	-0.46	0.16	.588
Fun6	3.74	0.790	3.69-3.79	0.1	0.8	1.8	3.3	5.2	15.2	16.7	18.8	18.2	9.3	10.1	0.6	-0.42	0.12	.622
Fun7	3.96	0.698	3.91-4.00	-	0.6	3.6	12.2	66.8	16.4	-	-	-	-	-	0.5	-1.16	3.13	.519
Fun8	3.48	0.848	3.43-3.54	1.0	1.2	2.7	4.8	7.0	20.0	15.9	14.8	17.1	6.6	7.3	1.6	-0.30	-0.04	.631
Fun9	3.39	0.977	3.33-3.46	-	2.3	22.4	23.5	42.5	8.9	-	-	-	-	-	0.3	-0.39	-0.72	.555
Fun10	4.08	0.587	4.05-4.12	-	0.2	1.7	8.9	70.0	19.0	-	-	-	-	-	0.3	-0.63	2.30	.327
Fun11	4.00	0.694	3.95-4.00	-	0.3	2.6	11.5	67.1	18.4	-	-	-	-	-	0.1	-0.91	2.14	.480
Fun12	3.95	0.980	3.89-4.02	-	1.0	11.1	9.8	45.9	32.1	-	-	-	-	-	0.2	-0.84	-0.08	.503
Fun13	3.18	0.989	3.12-3.25	-	3.8	24.6	23.4	43.3	4.6	-	-	-	-	-	0.3	-0.32	-0.85	.398
Fun14	3.04	0.727	2.99-3.09	0.8	2.9	5.9	10.2	13.1	30.2	16.4	9.6	7.6	1.7	0.7	0.9	-0.06	-0.01	.411
Vi1	3.41	1.354	3.33-3.50	-	14.9	23.6	30.0	31.1	-	-	-	-	-	-	0.4	-0.37	-0.99	.283
Vi2	4.16	1.039	4.09-4.23	-	3.0	9.3	36.7	50.8	-	-	-	-	-	-	0.2	-1.18	0.95	.504
Vi3	4.07	0.966	4.01-4.13	-	2.6	10.0	45.2	42.2	-	-	-	-	-	-	-	-0.80	0.27	.682
Vi4	2.99	1.259	2.90-3.07	-	17.8	37.3	27.7	17.2	-	-	-	-	-	-	-	0.10	-0.90	.602
Cowb1	2.41	0.924	2.35-2.47	13.7	7.0	15.6	13.8	13.9	16.7	7.3	5.9	4.8	0.7	0.7	-	0.29	-0.43	.256
Cowb2	2.93	0.838	2.87-2.98	4.7	1.3	7.9	12.3	13.3	25.3	12.4	11.1	8.7	2.0	0.6	0.5	-0.20	-0.15	.238
Cowb3	2.52	0.872	2.46-2.58	10.0	4.7	12.2	18.5	15.9	19.7	8.8	5.7	3.0	0.5	0.4	0.6	0.15	-0.23	.207

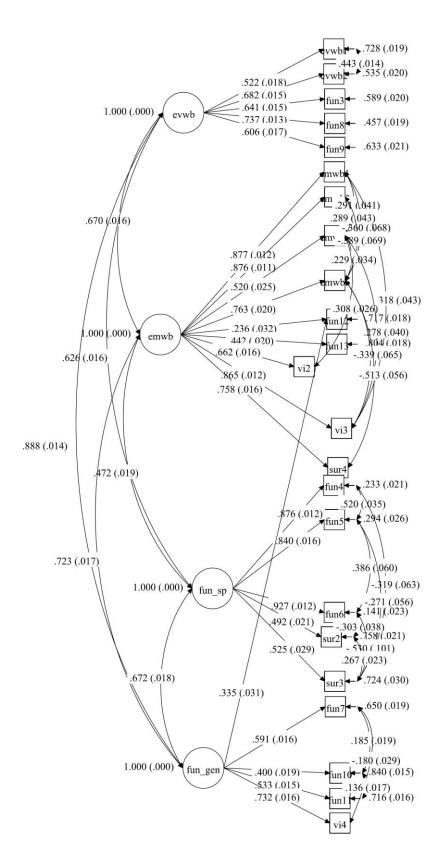
**Table B37** (continued)

	Frequency percent of response categories																	
Item Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	t. CC	
Cowb4	3.48	0.888	3.42-3.54	1.4	4.2	11.9	24.7	27.2	20.0	7.6	-	-	-	-	3.1	-0.25	-0.32	.249
Cowb5	3.76	0.826	3.70-3.81	_	1.6	9.0	20.1	56.7	12.6	-	-	-	-	-	0.1	-0.79	0.83	.122
Sur1	2.69	0.866	2.64-2.75	5.5	18.8	25.2	23.1	20.1	2.2	2.3	-	-	-	-	2.8	0.19	-0.33	.247
Sur2	3.97	0.773	3.92-4.02	0.1	0.6	0.7	2.2	4.2	9.6	10.3	18.4	25.0	10.9	17.6	0.4	-0.61	0.16	.349
Sur3	4.15	0.791	4.10-4.20	0.2	1.0	3.6	12.4	18.7	30.9	30.5	-	-	-	-	2.7	-0.72	-0.22	.308
Sur4	4.39	0.973	4.32-4.45	-	3.4	6.8	25.1	64.6	-	-	-	_	_	_	0.1	-1.60	2.09	.506

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.080 and 0.161, respectively.


**Table B38** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Portugal (n = 1,075): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	17.46	.660	.626	.124 (.120127)
2	9.92	.833	.797	.091 (.088095)
3	6.43	.909	.877	.071 (.067075)
4	5.52	.932	.897	.065 (.061069)


**Table B39** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Portugal (n = 1,075)

I	Factor I	Factor II	Factor III	Factor IV
Item	EVWB	EMWB	FUN (specific)	FUN (general)
Evwb1	.737	024	006	058
Evwb2	.705	.084	.064	009
Emwb1	.099	.887	.039	120
Emwb2	.064	.810	033	.080
Emwb5	153	.748	093	.045
Emwb6	.077	.571	054	.147
Fun3	.364	.034	.083	.282
Fun4	.032	.006	.891	.049
Fun5	.030	029	.912	.036
Fun6	.107	011	.813	.063
Fun7	.139	.035	.174	.440
Fun8	.461	.056	.253	.112
Fun9	.496	.005	032	.253
Fun10	129	029	.155	.618
Fun11	.205	.112	022	.386
Fun12	.024	.332	033	.330
Fun13	145	.467	.133	.007
Vi2	054	.690	.010	.033
Vi3	.025	.878	.035	026
Vi4	.242	.227	.082	.305
Sur2	209	.288	.513	064
Sur3	030	.277	.364	132
Sur4	.061	.647	.058	.059
Factors		Correlations be	etween factors	
EVWB	_			
EMWB	.525	_		
FUN (specific)	.421	.339		
FUN (general)	.449	.407	.414	_

EMWB = emotional wellbeing; EVWB = Evaluative wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 5.52$ , CFI = .932, TLI = .897, RMSEA (90% CI) = .065 (.061-.069).



**Fig. B19** Standardized solution for the model with 4 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the second half-sample of Portugal (n = 1,076). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 4.66$ , CFI = .939, TLI = .927, RMSEA (90% CI) = .058 (.055-.062).



**Fig. B20** Standardized solution for the model with 5 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the full sample of Portugal (N = 2,151). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 8.87$ , CFI = .933, TLI = .916, RMSEA (90% CI) = .060 (.058-.063).

**Table B40** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Portugal (N = 2,151)

		Su	bscale	
	Evaluative	Emotional	Functioning	Functioning
	wellbeing	wellbeing	(specific)	(general)
Number of items	5	9	5	4
Mean (standard error)	3.49 (0.013)	3.92 (0.015)	3.89 (0.014)	3.75 (0.013)
95% Confidence interval	3.46-3.51	3.85-3.95	3.87-3.92	3.72-3.77
Standard deviation	0.565	0.654	0.612	0.584
Skewness	-0.289	-0.792	-0.319	-0.243
Kurtosis	-0.208	0.437	-0.128	0.113
Convergent validity	.411	.489	.570	.332
Composite Reliability	.776	.887	.862	.656
Average inter-item correl.	.276	.344	.519	.321
Minmax. correlations	008632	018729	.315874	.282373
Range of correlations	.640	.747	.559	.091
	Average inte	r-item correlations b	between subscales	
Evaluative wellbeing	_			
Emotional wellbeing	.270	_		
Functioning (specific)	.308	.298	_	
Functioning (general)	.271	.292	.348	_
	Squared	d correlations betwe	en subscales	
Evaluative wellbeing	_			
Emotional wellbeing	.055	_		
Functioning (specific)	.049	.067	_	
Functioning (general)	.039	.060	.066	_

Standard errors for skewness and kurtosis were 0.055 and 0.110, respectively.

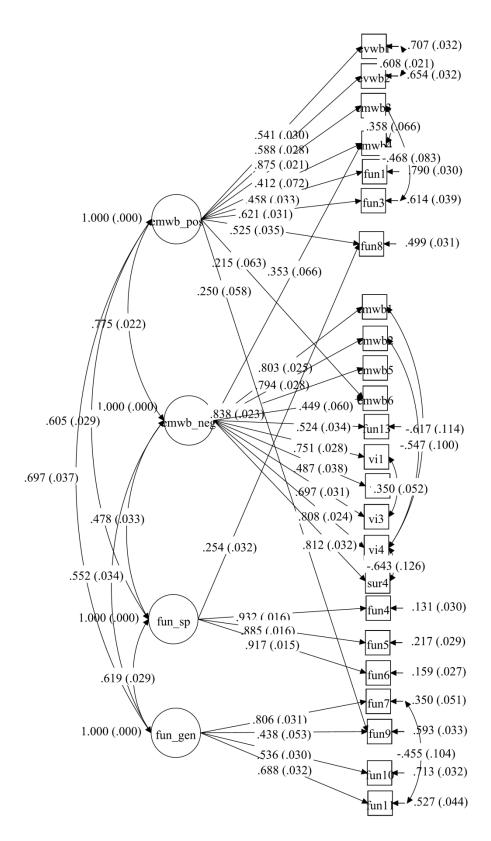
**Table B41** Item analysis of the 2012 European Social Survey measurement of wellbeing for Slovenia (first half-sample: n = 628)

							Frequ	ency pe	rcent o	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.80	0.859	3.73-3.87	1.0	0.8	1.4	3.5	15.3	8.1	15.6	23.1	11.9	15.3	0.5	0.5	-0.70	0.19	.513
Evwb2	3.92	0.764	3.86-3.98	0.8	0.2	1.0	2.2	2.9	13.9	7.6	16.7	25.3	13.7	15.4	0.3	-0.65	0.17	.597
Emwb1	4.40	0.851	4.33-4.47	-	1.6	4.3	36.6	57.3	-	-	-	-	-	-	0.2	-1.50	2.59	.555
Emwb2	4.56	0.756	4.50-4.62	-	0.3	3.8	25.3	70.2	-	-	-	-	-	-	0.3	-1.69	2.75	.517
Emwb3	3.79	0.901	3.72-3.87	-	1.8	14.3	56.1	27.2	-	-	-	-	-	-	0.6	-0.36	0.05	.636
Emwb4	3.83	0.840	3.76-3.90	-	1.3	14.0	55.1	28.8	-	-	-	-	-	-	0.8	-0.27	0.16	.614
Emwb5	4.58	0.769	4.52-4.65	-	1.3	4.5	21.8	72.1	-	-	-	-	-	-	0.3	-1.85	3.15	.561
Emwb6	3.71	0.981	3.63-3.79	-	3.7	14.6	55.9	25.3	-	-	-	-	-	-	0.5	-0.61	0.49	.460
Fun1	4.09	0.801	4.02-4.15	-	1.3	3.7	9.4	52.4	33.0	-	-	-	-	-	0.3	-1.06	1.74	.355
Fun2	3.40	1.071	3.31-3.49	-	5.6	21.7	20.4	37.1	14.2	-	-	-	-	-	1.1	-0.34	-0.79	.324
Fun3	3.79	0.843	3.72-3.86	-	1.8	6.5	16.2	57.6	17.2	-	-	-	-	-	0.6	-0.73	0.54	.618
Fun4	3.97	0.768	3.91-4.03	0.6	0.2	0.5	1.8	3.2	9.9	11.3	18.6	25.3	11.3	15.6	1.8	-0.84	0.99	.616
Fun5	3.90	0.769	3.83-3.96	0.5	0.3	0.6	2.4	3.5	12.7	10.5	20.9	25.5	8.0	13.2	1.9	-0.71	0.57	.577
Fun6	3.87	0.819	3.81-3.94	0.8	0.3	0.8	2.1	3.0	13.5	10.2	19.3	22.5	11.5	14.3	1.8	-0.78	0.61	.595
Fun7	4.06	0.749	4.00-4.13	-	1.8	1.9	11.8	59.2	24.7	-	-	-	-	-	0.6	-1.12	2.84	.503
Fun8	3.74	0.813	3.67-3.81	1.1	0.6	1.6	3.8	4.6	12.7	13.1	20.7	23.2	11.0	6.8	0.6	-0.76	0.61	.664
Fun9	3.88	0.913	3.81-3.96	-	1.3	5.6	18.6	50.3	23.2	-	-	-	-	-	1.0	-0.76	0.42	.592
Fun10	3.96	0.657	3.90-4.01	-	1.4	1.9	13.7	65.9	16.1	-	-	-	-	-	1.0	-1.05	3.32	.368
Fun11	4.10	0.691	4.04-4.16	-	0.2	1.9	8.0	64.3	25.3	-	-	-	-	-	0.3	-0.82	1.86	.495
Fun12	4.00	0.941	3.92-4.08	-	0.2	10.8	12.3	41.6	34.7	-	-	-	-	-	0.5	-0.86	0.08	.494
Fun13	3.34	1.068	3.25-3.43	-	4.9	20.1	23.1	42.4	9.1	-	-	-	-	-	0.5	-0.33	-0.73	.482
Fun14	3.58	0.790	3.51-3.64	1.4	0.6	1.6	4.1	5.3	20.7	13.7	23.1	18.8	6.1	4.5	0.2	-0.46	0.27	.537
Vi1	4.37	0.897	4.30-4.45	-	2.1	5.1	29.0	63.4	-	-	-	-	-	-	0.5	-1.35	1.49	.592
Vi2	4.13	1.089	4.04-4.22	-	4.5	12.7	30.9	51.8	-	-	-	-	-	-	0.2	-1.14	0.66	.388
Vi3	4.26	0.963	4.19-4.34	-	1.9	7.6	34.6	55.6	-	-	-	-	-	-	0.3	-1.31	1.57	.515
Vi4	3.65	0.904	3.58-3.73	-	3.7	16.4	59.1	20.2	-	-	-	-	-	-	0.6	-0.50	0.68	.563
Cowb1	2.84	1.001	2.76-2.92	8.6	6.1	6.7	12.4	10.0	20.2	9.9	12.7	9.7	1.6	1.8	0.3	-0.21	-0.84	.247
Cowb2	3.06	0.980	2.98-3.14	3.8	4.1	7.8	9.1	7.5	23.9	9.9	13.5	13.5	3.3	2.9	0.6	-0.33	-0.52	.206
Cowb3	3.01	0.951	2.93-3.09	3.7	4.1	8.0	10.8	9.4	22.5	10.2	15.0	12.6	2.5	1.3	-	-0.23	-0.70	.246

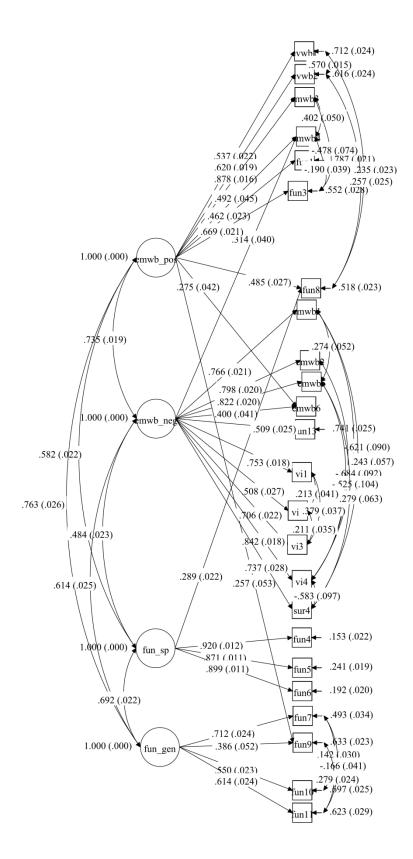
**Table B41** (continued)

				Frequency percent of response categories														
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.52	1.064	3.43-3.60	4.5	4.0	10.7	21.0	22.5	22.0	13.7	-	-	-	-	1.8	-0.46	-0.53	.297
Cowb5	3.43	0.980	3.35-3.51	-	3.5	13.2	23.4	49.0	10.5	-	_	-	-	-	0.3	-0.61	-0.21	.164
Sur1	2.67	0.897	2.60-2.75	5.6	24.4	22.5	23.6	19.3	3.0	1.8	_	-	-	-	-	0.15	-0.65	.221
Sur2	4.10	0.652	4.04-4.15	-	0.3	0.6	0.5	2.4	8.9	6.5	17.3	30.1	17.4	15.3	0.8	-0.63	0.29	.458
Sur3	4.50	0.722	4.44-4.56	0.6	1.0	1.3	5.9	9.2	27.7	54.0	-	-	-	-	0.3	-1.88	4.32	.379
Sur4	4.64	0.764	4.58-4.70	_	1.4	3.7	16.6	78.0	_	_	_	-	_	_	0.3	-2.36	5.85	.548

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.103 and 0.205, respectively.


**Table B42** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Slovenia (n = 628): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	9.44	.686	.657	.116 (.112120)
2	6.17	.825	.789	.091 (.086095)
3	3.91	.911	.882	.068 (.063073)
4	3.28	.937	.907	.060 (.055066)


**Table B43** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Slovenia (n = 628)

Item	Factor I EMWB (+)	Factor II EMWB (-)	Factor III FUN (specific)	Factor IV FUN (general)
Evwb1	.660	052	.048	005
Evwb2	.628	.043	.126	018
Emwb1	.019	.814	.051	198
Emwb2	.041	.778	107	.086
Emwb3	.727	.265	050	.029
Emwb4	.698	.302	052	019
Emwb5	.077	.881	.027	258
Emwb6	.335	.382	.029	030
Fun1	.344	058	.059	.265
Fun3	.360	029	.246	.297
Fun4	.017	.040	.791	.072
Fun5	063	.004	.944	010
Fun6	.043	013	.872	016
Fun7	.113	.107	.265	.371
Fun8	.443	.065	.328	.040
Fun9	.366	004	.037	.476
Fun10	.036	.137	.198	.403
Fun11	.282	.091	.008	.384
Fun13	015	.376	.090	.127
Vi1	158	.844	010	.211
Vi2	002	.705	146	009
Vi3	160	.864	.024	.056
Vi4	.271	.435	.079	.117
Sur4	.080	.705	.052	180
Factors		Correlations be	etween factors	
EMWB (+)	_			
EMWB (-)	.555	_		
FUN (specific)	.438	.461	_	
FUN (general)	.283	.324	.433	_

EMWB = emotional wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 3.28$ , CFI = .937, TLI = .907, RMSEA (90% CI) = .060 (.055-.066).



**Fig. B21** Standardized solution for the model with 4 first-order correlated factors and four cross-loading items based on CFA analysis performed on the second half-sample of Slovenia (n = 629). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.16$ , CFI = .922, TLI = .908, RMSEA (90% CI) = .059 (.054-.063).



**Fig. B22** Standardized solution for the model with 4 first-order correlated factors and four cross-loading items based on CFA analysis performed on the full sample of Slovenia (N = 1,257). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 5.08$ , CFI = .932, TLI = .915, RMSEA (90% CI) = .057 (.054-.060).

**Table B44** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Slovenia (N = 1,257)

		Sul	bscale	
	Emotional wellbeing (positive)	Emotional wellbeing (negative)	Functioning (specific)	Functioning (general)
N. 1 C'		10	2	
Number of items	7	10	3	4
Mean (standard error)	3.85 (0.017)	4.15 (0.017)	3.91 (0.021)	4.00 (0.016)
95% Confidence interval	3.82-3.88	4.11-4.18	3.87-3.96	3.97-4.03
Standard deviation	0.592	0.595	0.718	0.539
Skewness	-0.660	-1.303	-0.596	-0.709
Kurtosis	0.719	2.333	0.376	1.734
Convergent validity	.369	.489	.804	.334
Composite Reliability	.795	.902	.925	.658
Average inter-item correl.	.416	.385	.808	.399
Minmax. correlations	.248709	.197592	.775846	.323526
Range of correlations	.460	.395	.070	.202
	Average inter-	item correlations b	etween subscales	
Emotional wellbeing				_
(positive)	_			
Emotional wellbeing				
(negative)	.344	_		
Functioning (specific)	.408	.357	_	
Functioning (general)	.362	.319	.433	_
	Squared	correlations between	en subscales	
Evaluative wellbeing	-			_
(positive)	_			
Emotional wellbeing				
(negative)	.118	_		
Functioning (specific)	.166	.127	_	
Functioning (general)	.131	.102	.187	_

Standard errors for skewness and kurtosis were 0.072 and 0.144, respectively.

**Table B45** Item analysis of the 2012 European Social Survey measurement of personal and social wellbeing for Spain (first half-sample: n = 944)

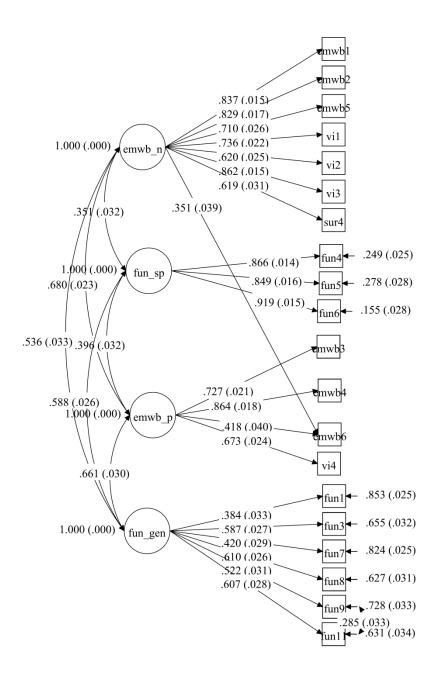
							Free	quency (	%) of 1	esponse	categoi	ies						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.75	0.93	3.69-3.82	2.9	0.8	2.5	4.0	3.5	11.3	10.6	17.1	23.3	11.7	12.1	0.2	-0.93	0.64	.587
Evwb2	4.02	0.75	3.97-4.07	0.5	0.4	0.8	1.8	2.2	7.5	9.6	20.3	26.0	14.2	16.3	0.2	-1.02	1.67	.644
Emwb1	4.02	0.97	3.96-4.09	-	3.4	6.8	49.9	39.6	-	-	-	-	-	-	0.3	-0.97	1.21	.624
Emwb2	4.19	1.04	4.12-4.26	-	3.9	6.4	36.1	53.2	-	-	-	-	-	-	0.4	-1.32	1.44	.649
Emwb3	3.26	1.24	3.17-3.34	-	10.5	30.5	36.4	21.6	-	-	-	-	-	-	1.0	-0.16	-0.87	.562
Emwb4	3.52	1.12	3.44-3.59	-	4.3	28.0	41.3	26.2	-	-	-	-	-	-	0.2	-0.22	-0.73	.623
Emwb5	4.40	0.94	4.33-4.46	-	2.5	5.1	27.2	64.5	-	-	-	-	-	-	0.6	-1.66	2.59	.526
Emwb6	3.20	1.19	3.12-3.28	-	8.8	35.1	36.7	19.4	-	-	-	-	-	-	0.1	-0.04	-0.80	.566
Fun1	3.75	1.00	3.68-3.81	-	1.8	12.6	17.4	45.8	22.0	-	-	-	-	-	0.4	-0.67	-0.18	.410
Fun2	2.96	1.09	2.89-3.04	-	7.6	32.1	20.8	33.2	5.3	-	-	-	-	-	1.1	-0.05	-1.07	.331
Fun3	3.60	0.92	3.54-3.66	-	1.4	14.3	19.1	52.9	11.4	-	-	-	-	-	1.0	-0.67	-0.09	.506
Fun4	4.03	0.72	3.98-4.08	0.3	0.2	1.1	1.5	2.6	6.4	10.6	19.7	27.2	13.5	16.3	0.6	-0.90	1.24	.468
Fun5	4.13	0.69	4.09-4.18	0.3	0.2	0.5	0.7	2.3	6.0	8.8	17.9	25.2	18.1	18.6	1.2	-0.96	1.44	.458
Fun6	4.03	0.77	3.97-4.08	0.5	0.5	0.6	2.3	3.0	7.3	10.9	17.9	23.0	15.9	17.4	0.6	-0.90	0.92	.532
Fun7	3.97	0.74	3.92-4.02	-	0.6	3.4	14.5	60.2	20.4	-	-	-	-	-	0.8	-0.86	1.74	.358
Fun8	3.76	0.88	3.70-3.82	1.6	1.1	2.3	2.3	4.7	13.1	12.0	16.7	22.0	10.7	12.5	1.0	-0.81	0.60	.562
Fun9	3.59	1.02	3.52-3.66	-	2.1	15.3	20.6	44.5	16.9	-	_	-	-	-	0.6	-0.50	-0.51	.447
Fun10	4.03	0.59	3.99-4.07	-	0.2	1.9	9.0	72.0	16.5	-	-	-	-	-	0.3	-0.84	3.18	.216
Fun11	4.02	0.75	3.97-4.07	-	0.8	3.9	10.1	62.9	21.9	-	_	-	-	-	0.3	-1.10	2.43	.596
Fun12	3.61	1.07	3.54-3.68	-	2.1	18.4	13.6	46.0	19.5	_	-	_	-	-	0.4	-0.56	-0.62	.517
Fun13	3.27	1.03	3.20-3.34	-	3.8	23.5	22.2	41.5	7.4	-	-	-	-	-	1.5	-0.33	-0.80	.481
Fun14	3.12	0.85	3.07-3.18	2.5	2.3	4.6	10.7	9.9	25.7	15.3	12.4	9.5	3.7	2.2	1.2	-0.17	-0.10	.368
Vi1	4.18	1.00	4.11-4.25	-	3.4	8.7	36.3	51.4	-	_	-	-	-	-	0.2	-1.17	1.06	.550
Vi2	4.02	1.09	3.95-4.10	-	4.1	12.1	37.9	45.6	-	_	-	_	-	-	0.3	-0.97	0.34	.499
Vi3	4.14	0.99	4.08-4.21	-	3.9	5.5	42.3	48.1	-	_	-	-	-	-	0.2	-1.22	1.53	.639
Vi4	2.67	1.24	2.59-2.76	-	21.8	42.1	23.7	12.0	-	-	-	-	_	-	0.4	0.35	-0.70	.508
Cowb1	3.04	0.82	2.98-3.09	4.1	2.0	4.4	10.8	10.8	25.6	15.7	16.4	6.9	1.9	1.3	-	-0.45	0.14	.255
Cowb2	3.14	0.84	3.09-3.20	3.7	2.0	3.8	9.7	8.1	26.6	14.2	18.1	9.7	1.8	2.1	0.1	-0.44	0.19	.233
Cowb3	2.91	0.87	2.85-2.97	4.2	3.6	7.1	14.3	12.8	24.3	11.1	12.2	6.6	1.9	1.8	0.1	-0.04	-0.26	.192

**Table B45** (continued)

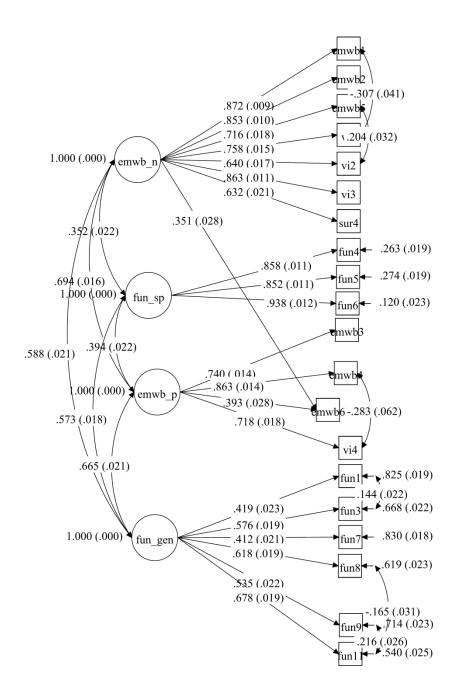
				Frequency (%) of response categories														
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.33	1.08	3.25-3.40	5.9	6.3	13.9	22.5	20.1	17.9	11.3	-	_	-	-	2.1	-0.32	-0.56	.272
Cowb5	3.82	0.84	3.76-3.88	-	1.3	7.3	19.3	53.1	18.6	-	-	-	-	-	0.4	-0.72	0.59	.202
Sur1	2.92	0.94	2.92-3.44	4.0	14.6	22.7	22.8	25.7	4.9	4.6	_	-	_	-	0.7	0.05	-0.43	.188
Sur2	4.11	0.69	4.06-4.16	0.2	0.2	0.6	1.3	1.7	6.3	9.3	16.1	29.7	16.0	18.4	0.2	-0.93	1.22	.414
Sur3	4.41	0.84	4.36-4.47	1.6	1.1	2.9	4.6	9.9	25.6	51.4	-	-	-	-	3.1	-1.90	3.88	.272
Sur4	4.46	0.92	4.40-4.52	-	3.1	4.4	25.0	67.3	-	-	-	-	-	-	0.2	-1.86	3.36	.480

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. Items were rescaled into a 1-5 scale for the computation of univariate statistics. Standard errors for skewness and kurtosis were 0.084 and 0.168, respectively.

**Table B46** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Spain (n = 943): Goodness-of-fit indices


Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	15.57	.772	.745	.124 (.120129)
2	8.44	.896	.870	.089 (.084093)
3	5.00	.951	.930	.065 (.060070)
4	3.26	.976	.960	.049 (.044055)

df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root-mean-square error of approximation; CI = confidence interval. Model fit is considered adequate if  $\chi^2/df < 3$ , CFI and TLI values greater than or close to .95 and RMSEA  $\leq$  .06 with the 90% CI upper limit  $\leq$  .06. Model fit is considered acceptable if  $\chi^2/df < 3$ , CFI > .90, TLI > .90 and RMSEA < .08 with the 90% CI upper limit < .08.


**Table B47** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Spain (n = 943)

	Factor I	Factor II	Factor III	Factor IV
Item	EMWB (-)	FUN specific	EMWB (+)	FUN general
Emwb1	.907	.007	.006	025
Emwb2	.798	.008	.123	018
Emwb3	024	.021	.784	.028
Emwb4	.177	002	.667	006
Emwb5	.768	007	.004	007
Emwb6	.330	051	.358	.110
Fun1	050	035	.010	.622
Fun3	.038	.014	.029	.588
Fun4	028	.900	.027	.002
Fun5	.049	.891	011	031
Fun6	002	.814	.016	.135
Fun7	116	.153	.098	.356
Fun8	.127	.214	074	.442
Fun9	.027	019	.190	.412
Fun11	.159	.025	.173	.424
Vi1	.643	.078	.099	011
Vi2	.702	061	002	.041
Vi3	.830	.014	.018	.042
Vi4	.040	.084	.640	.005
Sur4	.591	.046	054	.123
Factors		Correlations betwee	n factors	
EMWB (-)	_			
FUN specific	.301	_		
EMWB (+)	.655	.338	_	
FUN general	.486	.428	.547	_

EMWB = emotional wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 3.26$ , CFI = .976, TLI = .960, RMSEA (90% CI) = .049 (.044-.055).



**Fig. B23** Standardized solution for the model with 4 first-order correlated factors and a single cross-loading item based on Confirmatory factor analysis performed on the second half-sample of Spain (n = 945). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 3.56$ , CFI = .955, TLI = .947, RMSEA (90% CI) = .052 (.047-.057).



**Fig. B24** Standardized solution for the model with 4 first-order correlated factors and a single cross-loading item based on Confirmatory factor analysis performed on the full sample of Spain (N = 1,888). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 5.65$ , CFI = .963, TLI = .956, RMSEA (90% CI) = .050 (.046-.053).

**Table B48** Descriptive statistics, convergent and discriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Spain (full sample: N = 1.888)

	Subscale								
	Emotional wellbeing positive	Functioning specific	Emotional wellbeing negative	Functioning general					
Number of items	7	3	4	6					
Mean (standard error)	4.19 (0.018)	4.08 (0.016)	3.17 (0.021)	3.78 (0.013)					
95% Confidence interval	4.16-4.23	4.05-4.11	3.13-3.21	3.76-3.81					
Standard deviation	0.75	0.67	0.92	0.57					
Skewness	-1.352	-0.838	-0.009	-0.616					
Kurtosis	2.322	1.128	-0.590	0.755					
Convergent validity	.590	.781	.491	.301					
Composite reliability	.908	.914	.783	.714					
Average inter-item correl.	.469	.780	.462	.302					
Minmax. correlations	.298672	.770791	.398562	.210502					
Range of correlations	.373	.021	.164	.292					
	Average inter	r-item correlations b	between subscales						
Emotional wellbeing (-)	_								
Functioning specific	.371	_							
Emotional wellbeing (+)	.401	.382	_						
Functioning general	.301	.329	.302	<del></del>					
	Squared	correlations betwe	en subscales						
Emotional wellbeing (-)	_		_	<del></del>					
Functioning specific	.138	_							
Emotional wellbeing (+)	.161	.146	_						
Functioning general	.091	.108	.091	_					

Standard errors for skewness and kurtosis were 0.057 and 0.115, respectively.

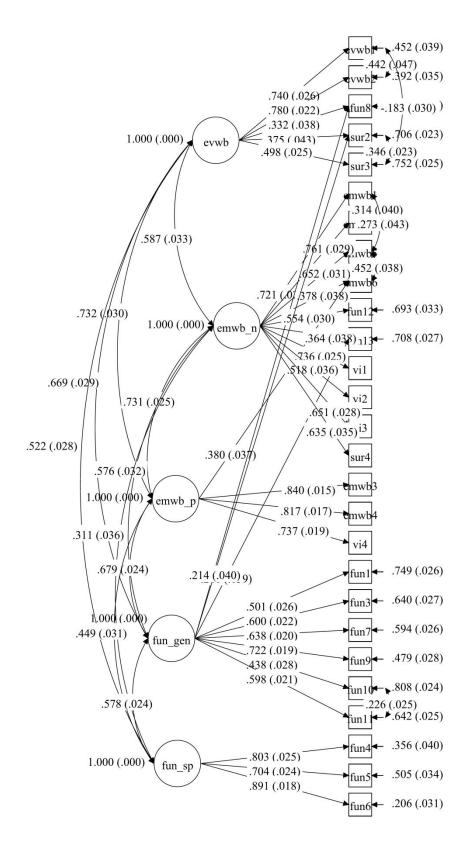
**Table B49** Item analysis of the 2012 European Social Survey measurement of wellbeing for Sweden (first half-sample: n = 923)

							Frequ	ency per	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.15	0.683	4.10-4.19	0.4	0.1	0.5	1.8	2.1	6.0	5.2	17.6	29.8	20.7	15.7	0.1	-1.30	2.56	.599
Evwb2	4.13	0.622	4.09-4.17	0.1	0.2	0.7	1.2	1.5	5.6	6.6	19.9	30.8	21.0	12.2	0.1	-1.04	1.87	.643
Emwb1	4.49	0.799	4.43-4.54	-	1.3	2.0	32.5	64.1	-	-	-	-	-	-	0.1	-1.69	3.53	.496
Emwb2	4.58	0.840	4.53-4.64	-	1.6	2.9	20.4	75.0	-	-	-	-	-	-	0.1	-2.30	5.53	.501
Emwb3	3.58	1.170	3.50-3.66	-	5.4	25.0	40.0	29.3	-	-	-	-	-	-	0.3	-0.37	-0.69	.610
Emwb4	3.77	1.100	3.70-3.84	-	3.6	19.9	43.2	32.9	-	-	-	-	-	-	0.3	-0.59	-0.27	.622
Emwb5	4.40	0.833	4.35-4.46	-	1.2	5.2	35.1	58.4	-	-	-	-	-	-	0.1	-1.25	1.24	.480
Emwb6	3.71	1.114	3.64-3.79	-	5.1	19.4	46.2	29.3	-	-	-	-	-	-	0.1	-0.59	-0.23	.561
Fun1	4.06	0.718	4.02-4.11	-	0.5	3.0	11.6	58.6	26.2	-	-	-	-	-	-	-0.84	1.61	.412
Fun2	3.32	1.121	3.25-3.40	-	3.9	25.0	17.6	40.5	12.6	-	-	-	-	-	0.4	-0.30	-0.90	.192
Fun3	4.02	0.581	3.98-4.06	-	0.1	2.2	10.5	70.7	16.0	-	-	-	-	-	0.4	-0.88	3.38	.506
Fun4	3.97	0.627	3.93-4.01	-	0.1	0.4	2.2	2.5	7.6	9.8	25.6	26.9	13.9	10.7	0.4	-0.69	1.12	.423
Fun5	3.56	0.813	3.51-3.62	0.8	0.3	3.4	5.2	5.7	15.0	14.6	20.9	17.7	7.9	7.4	1.2	-0.49	-0.09	.310
Fun6	3.71	0.771	3.66-3.76	0.7	0.1	2.2	3.8	3.9	11.8	14.7	22.4	22.0	8.6	8.3	1.5	-0.70	0.70	.461
Fun7	3.98	0.642	3.94-4.02	-	0.7	2.7	13.4	65.9	17.2	-	-	-	-	-	0.1	-1.00	3.29	.501
Fun8	4.05	0.709	4.00-4.09	0.5	0.3	1.0	1.3	2.7	7.0	7.5	17.8	31.6	15.1	14.8	0.3	-1.09	1.97	.572
Fun9	3.94	0.788	3.89-3.99	-	0.9	4.6	20.6	53.4	20.5	-	-	-	-	-	0.1	-0.69	0.76	.571
Fun10	4.03	0.608	3.99-4.07	-	0.1	1.8	10.9	70.1	17.0	-	-	-	-	-	-	-0.60	1.96	.377
Fun11	4.02	0.597	3.98-4.06	-	0.2	1.7	12.5	68.4	17.1	-	-	-	-	-	0.1	-0.62	2.41	.466
Fun12	3.40	1.122	3.33-3.47	-	1.3	28.0	19.5	35.4	15.7	-	-	-	-	-	0.1	-0.17	-1.15	.420
Fun13	3.62	0.939	3.56-3.68	-	2.2	12.9	21.9	49.1	13.4	-	-	-	-	-	0.5	-0.63	-0.04	.517
Fun14	3.52	0.703	3.47-3.56	0.7	0.3	1.8	4.4	5.7	20.5	14.2	24.2	19.8	5.6	2.5	0.2	-0.48	0.25	.457
Vi1	4.34	0.929	4.28-4.40	-	2.5	5.0	31.7	60.7	-	-	-	-	-	-	0.1	-1.45	2.05	.482
Vi2	4.25	1.031	4.18-4.32	-	3.3	9.0	31.4	56.3	-	-	-	-	-	-	-	-1.27	0.96	.374
Vi3	4.29	0.910	4.23-4.35	-	1.6	6.7	35.3	56.2	-	-	-	-	-	-	0.1	-1.17	1.10	.483
Vi4	3.21	1.189	3.13-3.29	-	10.8	34.3	38.5	16.3	-	-	-	-	-	-	0.1	-0.09	-0.77	.550
Cowb1	3.39	0.828	3.34-3.45	2.4	1.3	3.0	6.6	7.9	18.0	12.4	23.4	18.4	4.6	1.7	0.3	-0.80	0.35	.283
Cowb2	3.62	0.729	3.57-3.67	1.0	0.5	2.2	4.6	4.8	15.0	12.9	24.9	23.5	7.0	3.4	0.3	-0.84	1.02	.274
Cowb3	3.38	0.771	3.33-3.43	1.2	1.0	3.6	7.2	8.2	16.7	16.9	23.6	15.4	4.0	2.1	0.2	-0.62	0.25	.285

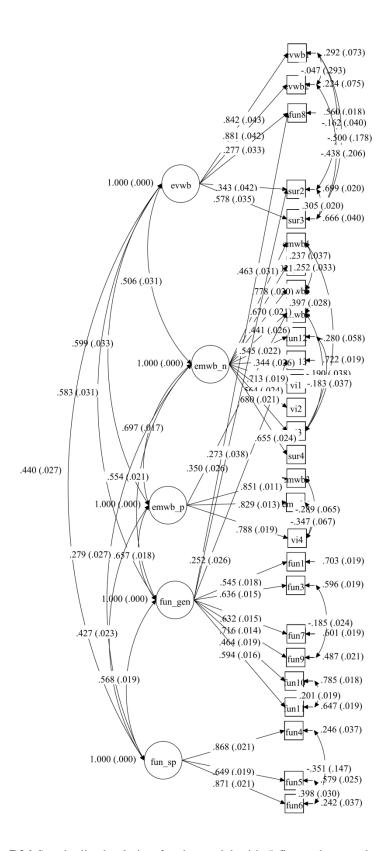
Table B49 (continued)

						Frequency percent of response categories												
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.67	0.953	3.61-3.74	2.1	3.9	9.4	16.1	27.7	25.7	13.0	-	-	-	-	2.1	-0.72	0.10	.320
Cowb5	3.66	0.832	3.61-3.72	-	0.9	8.3	25.6	53.6	10.6	-	-	-	-	-	1.0	-0.75	0.75	.284
Sur1	3.35	0.891	3.29-3.41	1.7	8.8	11.8	21.0	37.7	9.2	9.4	_	-	_	-	0.3	-0.31	-0.01	.229
Sur2	4.21	0.597	4.17-4.25	0.3	0.2	0.2	1.0	1.7	3.1	4.1	18.4	30.3	23.1	17.3	0.1	-1.27	2.99	.519
Sur3	4.52	0.650	4.47-4.56	0.3	0.4	1.3	4.0	10.2	30.2	53.5	-	-	-	-	-	-1.79	4.23	.446
Sur4	4.58	0.840	4.53-4.64	_	2.3	3.3	19.2	75.3	_	_	_	-	_	_	_	-2.30	5.53	.453

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.083 and 0.166, respectively.


**Table B50** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Sweden (n = 923): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	11.29	.672	.645	.106 (.102109)
2	6.68	.833	.804	.078 (.075082)
3	5.82	.871	.834	.072 (.069076)
4	4.47	.915	.880	.061 (.058065)
5	3.37	.947	.918	.051 (.047055)


**Table B51** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Sweden (n = 923)

Item	Factor I EVWB	Factor II EMWB (-)	Factor III EMWB (+)	Factor IV FUN (general)	Factor V FUN (specific)
Evwb1	.645	.070	.065	.049	.011
Evwb2	.834	.007	.100	027	012
Emwb1	.011	.806	.024	032	.018
Emwb2	.116	.728	.054	002	058
Emwb3	.187	.030	.737	007	.035
Emwb4	.271	.034	.621	.031	034
Emwb5	085	.767	.129	039	009
Emwb6	.014	.468	.397	.034	002
Fun1	.152	.123	.031	.327	.065
Fun3	.031	.112	014	.568	.034
Fun4	.222	.012	038	.065	.649
Fun5	021	048	.116	045	.752
Fun6	.012	.022	.010	.017	.925
Fun7	.097	040	.060	.549	.025
Fun8	.404	095	.041	.399	.077
Fun9	.094	018	.239	.462	011
Fun10	141	.014	020	.669	.007
Fun11	.006	012	.092	.691	172
Fun12	096	.363	.043	.231	.033
Fun13	025	.362	025	.326	011
Vi1	.053	.699	018	.007	006
Vi2	.014	.575	.014	.066	016
Vi3	.044	.349	.150	.138	.060
Vi4	045	.170	.439	.204	.135
Sur2	.341	.056	071	.306	.036
Sur3	.315	.055	135	.299	.004
Sur4	.164	.646	084	.000	.029
Factors			Correlation	s between facto	ors
EVWB	_				
EMWB (-)	.421	_			
EMWB (+)	.392	.576	_		
FUN (general)	.475	.375	.462	_	
FUN (specific)	.305	.131	.257	.479	_

EMWB = emotional wellbeing; EVWB = evaluative wellbeing; FUN = functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 3.37$ , CFI = .947, TLI = .918, RMSEA (90% CI) = .051 (.047-.055).



**Fig. B25** Standardized solution for the model with 5 first-order correlated factors and four cross-loading items based on CFA analysis performed on the second half-sample of Sweden (n = 924). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.09$ , CFI = .938, TLI = .928, RMSEA (90% CI) = .048 (.044-.051).



**Fig. B26** Standardized solution for the model with 5 first-order correlated factors and four cross-loading items based on CFA analysis performed on the full sample of Sweden (N = 1,847). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 4.90$ , CFI = .945, TLI = .934, RMSEA (90% CI) = .046 (.044-.048).

**Table B52** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Sweden (N = 1,847)

			Subscale		
	Evaluative	Emotional	Emotional	Functioning	Functioning
	Wellb.	Wellb. (-)	Wellb. (+)	(general)	(specific)
Number of items	5	10	3	6	3
Mean (standard error)	4.23 (0.011)	4.17 (0.014)	3.52 (0.022)	4.01 (0.011)	3.76 (0.015)
95% Confidence interval	4.21-4.25	4.15-4.20	3.47-3.56	3.99-4.03	3.73-3.79
Standard deviation	0.471	0.578	0.935	0.447	0.653
Skewness	-1.191	-1.187	-0.289	-0.549	-0.489
Kurtosis	2.574	1.747	-0.430	2.656	0.450
Convergent validity	.403	.359	.677	.364	.644
Composite Reliability	.741	.842	.863	.771	.842
Average inter-item correl.	.428	.328	.527	.359	.649
Minmax. correlations	.263730	.207539	.460609	.210467	.565714
Range of correlations	.467	.332	.149	.258	.149
	Average	inter-item corre	lations between	subscales	_
Evaluative wellbeing	_				
Emotional wellbeing (-)	.292	_			
Emotional wellbeing (+)	.392	.329	_		
Functioning (general)	.333	.272	.346	_	
Functioning (specific)	.373	.263	.394	.332	_
	Squ	uared correlation	is between subsc	cales	
Evaluative wellbeing	_				_
Emotional wellbeing (-)	.085				
Emotional wellbeing (+)	.154	.108	_		
Functioning (general)	.111	.074	.120	_	
Functioning (specific)	.139	.069	.155	.110	_

Standard errors for skewness and kurtosis were 0.058 and 0.116, respectively.

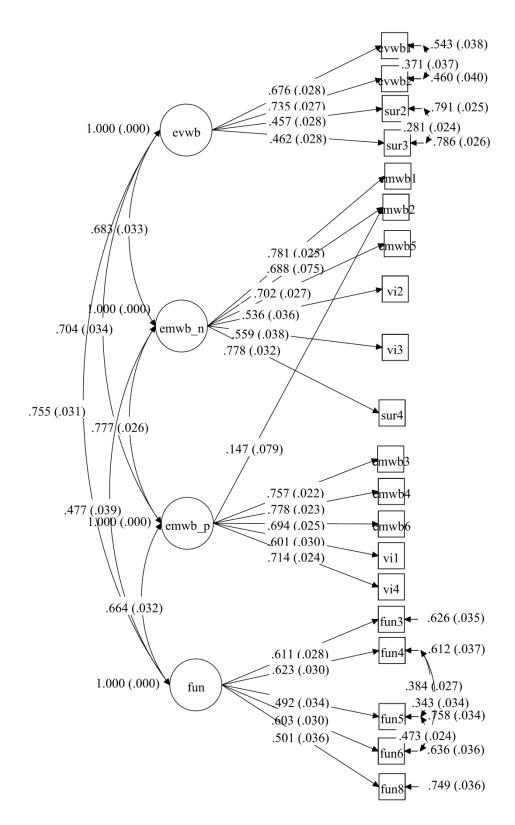
**Table B53** Item analysis of the 2012 European Social Survey measurement of wellbeing for Switzerland (first half-sample: n = 746)

			_					ency pe	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	4.29	0.661	4.24-4.33	0.1	0.1	0.5	1.1	1.6	3.4	2.4	11.9	31.0	27.3	20.2	0.3	-1.77	4.70	.580
Evwb2	4.24	0.594	4.20-4.28	0.1	0.1	0.7	1.3	3.8	3.8	4.4	13.5	34.7	25.7	15.3	0.3	-1.55	4.62	.557
Emwb1	4.36	0.775	4.30-4.41	-	0.4	3.5	37.0	58.7	-	-	-	-	-	-	0.4	-0.87	0.49	.445
Emwb2	4.47	0.799	4.41-4.53	-	0.5	2.7	31.8	65.0	-	-	-	-	-	-	-	-1.56	2.86	.526
Emwb3	3.83	1.041	3.75-3.91	-	2.3	18.0	44.1	35.7	-	-	-	-	-	-	-	-0.50	-0.41	.551
Emwb4	3.85	0.990	3.78-3.93	-	2.3	16.1	50.4	30.7	-	-	-	-	-	-	0.5	-0.50	-0.22	.546
Emwb5	3.94	0.940	3.87-4.01	-	2.4	7.6	52.4	37.5	-	-	-	-	-	-	-	-0.82	1.09	.437
Emwb6	3.49	1.059	3.41-3.57	-	4.8	23.9	48.9	22.3	-	-	-	-	-	-	0.1	-0.32	-0.34	.504
Fun1	4.23	0.717	4.18-4.28	-	0.4	3.8	7.8	55.5	32.3	-	-	-	-	-	0.3	-1.02	2.03	.286
Fun2	3.47	1.028	3.39-3.55	-	3.6	20.0	16.8	48.1	10.9	-	-	-	-	-	0.7	-0.54	-0.58	.311
Fun3	4.13	0.571	4.09-4.17	-	0.1	1.5	8.3	70.6	19.2	-	-	-	-	-	0.3	-0.41	1.76	.433
Fun4	4.05	0.601	4.01-4.09	-	0.4	0.1	0.9	1.5	7.6	7.9	23.1	33.1	16.1	9.1	0.1	-0.65	0.61	.481
Fun5	4.05	0.613	4.00-4.09	-	0.3	0.3	0.8	2.3	4.8	9.5	22.3	33.0	16.4	10.3	0.1	-0.77	1.53	.400
Fun6	4.04	0.628	3.99-4.08	-	0.3	0.7	1.5	1.2	6.8	10.3	22.9	32.0	13.4	13.4	0.3	-0.76	1.05	.507
Fun7	4.14	0.651	4.10-4.19	-	0.4	1.7	7.9	66.9	22.7	-	-	-	-	-	0.4	-1.17	4.53	.410
Fun8	3.89	0.785	3.84-3.95	0.8	0.7	2.3	3.1	2.9	10.2	11.0	21.2	26.8	12.1	7.9	1.1	-1.11	1.63	.377
Fun9	4.01	0.800	3.95-4.07	-	0.3	4.4	10.6	61.0	23.6	_	-	_	-	-	0.1	-0.95	1.37	.071
Fun10	4.07	0.575	4.03-4.11	-	0.1	2.3	7.8	71.7	18.1	-	-	-	-	-	-	-0.67	3.01	.303
Fun11	4.03	0.629	3.98-4.07	-	0.1	2.9	10.3	67.2	19.3	-	-	-	-	-	0.1	-0.74	1.97	.172
Fun12	3.85	0.968	3.78-3.92	-	0.1	13.5	12.7	42.4	30.6	_	-	_	-	-	0.7	-0.68	-0.37	.107
Fun13	3.58	1.031	3.50-3.65	-	3.5	16.0	17.2	48.8	14.3	-	-	-	-	-	0.3	-0.60	-0.40	.425
Fun14	3.45	0.718	3.40-3.50	1.1	1.1	2.3	5.9	7.1	19.8	17.4	20.2	18.8	3.8	2.1	0.4	-0.38	-0.12	.360
Vi1	4.07	0.998	3.99-4.14	-	2.4	7.9	42.8	46.8	-	_	-	_	-	-	0.1	-0.90	0.46	.391
Vi2	4.05	1.125	3.97-4.14	-	4.7	9.5	37.4	48.4	-	_	-	_	-	-	-	-1.15	0.75	.373
Vi3	4.48	0.855	4.42-4.55	-	1.7	3.6	25.3	69.2	-	-	_	-	_	-	0.1	-1.77	3.26	.345
Vi4	3.60	1.065	3.52-3.68	-	5.0	21.4	48.0	25.2	-	-	_	-	_	-	0.4	-0.40	-0.33	.569
Cowb1	3.27	0.809	3.21-3.33	1.6	0.8	3.9	9.1	9.9	21.3	11.5	20.8	16.6	3.4	1.1	-	-0.41	-0.31	.247
Cowb2	3.54	0.765	3.49-3.60	1.1	0.9	2.3	5.1	7.0	19.4	9.8	25.1	21.8	5.5	1.9	0.1	-0.47	-0.06	.228
Cowb3	3.28	0.805	3.22-3.34	0.8	0.8	3.8	9.2	9.0	21.4	12.6	20.2	16.5	3.5	2.1	-	-0.31	-0.22	.239

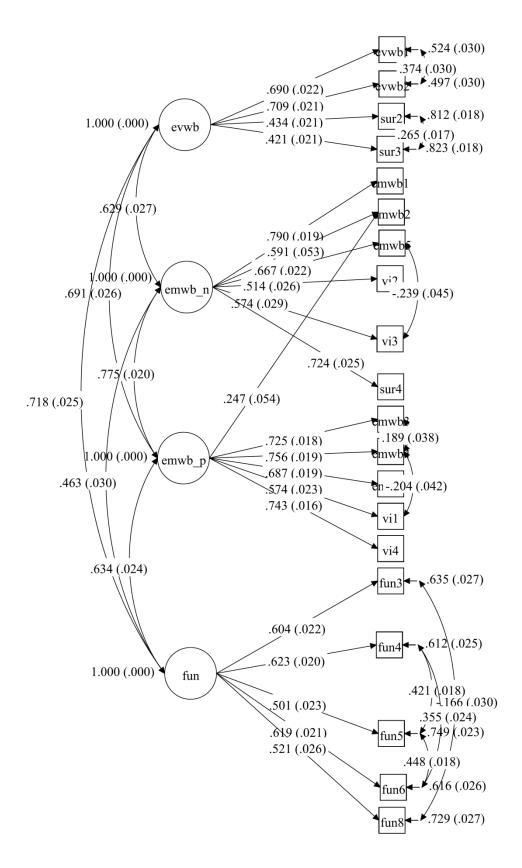
**Table B53** (continued)

	Frequency percent of response categories																	
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.73	0.916	3.66-3.80	2.8	3.8	7.9	14.3	25.6	31.2	12.9	-	_	-	-	1.5	-0.81	0.38	.305
Cowb5	3.64	0.898	3.58-3.71	-	1.2	12.2	20.5	52.9	13.0	-	-	-	-	-	0.1	-0.66	0.06	.321
Sur1	3.35	0.875	3.28-3.41	0.8	6.8	13.5	23.9	40.1	8.6	6.0	_	-	-	-	0.5	-0.26	-0.01	.165
Sur2	4.29	0.520	4.26-4.33	-	-	0.1	0.1	0.7	3.1	3.2	12.1	33.5	28.2	18.6	0.4	-0.99	1.99	.380
Sur3	4.47	0.615	4.42-4.51	0.1	0.3	0.9	2.8	10.2	37.9	47.3	_	_	_	_	0.4	-1.61	3.99	.371
Sur4	4.66	0.694	4.61-4.71	-	0.9	2.3	19.0	77.5	-	-	-	_	_	_	0.3	-2.17	5.17	.448

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.092 and 0.184, respectively.


**Table B54** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Switzerland (n = 746): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	9.62	.758	.729	.108 (.103112)
2	5.84	.879	.848	.081 (.075086)
3	3.95	.935	.907	.063 (.057069)
4	3.25	.957	.929	.055 (.049061)


**Table B55** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of Switzerland (n = 746)

	Factor I	Factor II	Factor III	Factor IV
Item	EVWB	EMWB (-)	EMWB (+)	FUN
Evwb1	.626	.156	.081	.042
Evwb2	.680	006	.208	021
Emwb1	.078	.895	037	012
Emwb2	.034	.462	.416	001
Emwb3	.063	033	.750	.025
Emwb4	.200	014	.682	012
Emwb5	075	.482	.136	.111
Emwb6	043	.195	.563	.023
Fun3	.117	012	.178	.312
Fun4	040	.031	.042	.798
Fun5	015	.028	055	.784
Fun6	.119	047	.025	.745
Fun8	.135	.016	.087	.312
Vi1	005	.138	.484	081
Vi2	093	.326	.203	.077
Vi3	012	.365	.214	.009
Vi4	.001	.079	.633	.166
Sur2	.414	011	091	.247
Sur3	.401	.066	069	.115
Sur4	.233	.560	.016	037
Factors		Correlations bet	ween factors	
EVWB	_			
EMWB (-)	.291	_		
EMWB (+)	.375	.605	_	
FUN	.312	.262	.385	_

EMWB = emotional wellbeing; EVWB = Evaluative wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 3.25$ , CFI = .957, TLI = .929, RMSEA (90% CI) = .055 (.049-.061).



**Fig. B27** Standardized solution for the model with 4 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the second half-sample of Switzerland (n = 747). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.08$ , CFI = .945, TLI = .933, RMSEA (90% CI) = .053 (.047-.058).



**Fig. B28** Standardized solution for the model with 4 first-order correlated factors and a single cross-loading item based on CFA analysis performed on the full sample of Switzerland (N = 1,493). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 4.30$ , CFI = .957, TLI = .947, RMSEA (90% CI) = .047 (.043-.051).

**Table B56** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: Switzerland (N = 1,493)

		Sut	oscale	
	Evaluative wellbeing	Emotional Wellbeing (-)	Emotional Wellbeing (+)	Functioning
Number of items	4	6	5	5
Mean (standard error)	4.33 (0.012)	4.34 (0.015)	3.77 (0.020)	4.00 (0.012)
95% Confidence interval	4.30-4.35	4.31-4.37	3.73-3.81	3.98-4.02
Standard deviation	0.444	0.569	0.756	0.437
Skewness	-1.416	-1.479	-0.579	-0.703
Kurtosis	4.051	3.466	0.208	1.428
Convergent validity	.336	.423	.817	.332
Composite Reliability	.657	.811	.827	.711
Average inter-item correl.	.378	.329	.408	.290
Minmax. correlations	.290682	.175524	.261540	.033612
Range of correlations	.392	.348	.280	.579
	Average inter	r-item correlations b	etween subscales	<u> </u>
Evaluative wellbeing	_			
Emotional wellbeing (-)	.277	_		
Emotional wellbeing (+)	.310	.324	_	
Functioning	.247	.212	.256	_
	Squared	l correlations betwee	en subscales	
Evaluative wellbeing	_	·		
Emotional wellbeing (-)	.077	_		
Emotional wellbeing (+)	.096	.105	_	
Functioning	.061	.045	.066	_

Standard errors for skewness and kurtosis were 0.064 and 0.129, respectively.

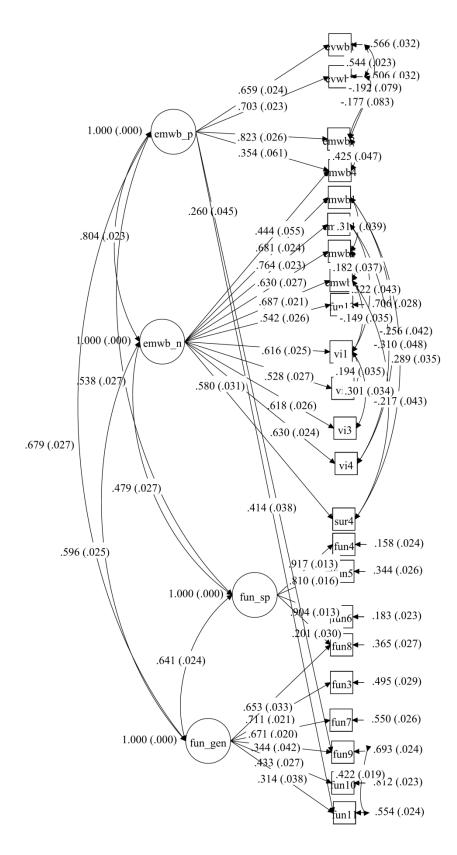
**Table B57** Item analysis of the 2012 European Social Survey measurement of wellbeing for the United Kingdom (first half-sample: n = 1,143)

			_					ency per	rcent of	f respon	se categ	ories						
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Evwb1	3.90	0.808	3.85-3.95	0.6	0.9	1.9	3.0	3.7	8.6	8.2	16.5	25.5	18.9	11.7	0.5	-1.01	0.98	.610
Evwb2	3.98	0.754	3.93-4.02	0.3	0.9	1.2	2.4	2.6	7.2	6.9	14.7	32.5	17.8	12.9	0.4	-1.15	1.58	.623
Emwb1	4.26	0.890	4.21-4.31	-	1.7	3.8	40.4	53.9	-	-	-	-	-	-	0.3	-1.17	1.64	.529
Emwb2	4.45	0.916	4.50-4.51	-	2.0	4.5	25.0	68.3	-	-	-	-	-	-	0.1	-1.79	3.04	.565
Emwb3	3.70	1.094	3.63-3.77	-	2.8	22.2	41.7	33.1	-	-	-	-	-	-	0.2	-0.42	-0.56	.652
Emwb4	3.59	1.007	3.53-3.66	-	2.4	22.8	47.4	27.2	-	-	-	-	-	-	0.1	-0.29	-0.34	.623
Emwb5	4.22	0.975	4.15-4.28	-	2.4	5.5	37.8	54.1	-	-	-	-	-	-	0.3	-1.32	1.80	.490
Emwb6	3.06	1.123	2.99-3.13	-	10.5	35.4	39.2	14.6	-	-	-	-	-	-	0.3	-0.04	-0.59	.535
Fun1	4.08	0.859	4.03-4.13	-	0.4	6.4	6.7	52.8	33.3	-	-	-	-	-	0.3	-1.10	1.25	.368
Fun2	3.29	1.031	3.23-3.35	-	3.7	24.1	20.6	43.4	7.4	-	-	-	-	-	0.8	-0.36	-0.86	.400
Fun3	3.70	0.803	3.65-3.75	-	1.2	8.4	18.3	59.7	12.1	-	-	-	-	-	0.3	-0.85	0.74	.525
Fun4	3.90	0.700	3.86-3.94	-	0.1	0.9	1.4	2.8	10.2	10.3	19.8	29.8	14.4	9.8	0.4	-0.75	0.72	.586
Fun5	3.80	0.718	3.76-3.85	0.2	0.1	1.3	1.9	4.2	11.6	11.9	20.7	26.0	13.4	8.0	0.7	-0.63	0.23	.523
Fun6	3.84	0.706	3.79-3.88	0.1	0.1	1.1	2.7	3.2	10.7	11.8	21.5	26.9	12.8	8.4	0.7	-0.61	0.25	.570
Fun7	3.96	0.721	3.91-4.00	-	0.5	3.5	13.1	64.9	17.8	-	-	-	-	-	0.2	-1.03	2.21	.482
Fun8	3.73	0.801	3.68-3.78	0.9	0.4	1.9	3.6	4.0	12.9	13.4	19.3	24.4	9.9	8.1	1.0	-0.74	0.65	.652
Fun9	3.73	0.897	3.68-3.79	_	1.3	9.7	17.8	57.9	12.8	-	-	-	-	-	0.4	-0.86	0.54	.504
Fun10	3.86	0.664	3.81-3.90	-	0.3	5.3	12.8	71.0	10.3	-	-	-	-	-	0.3	-1.21	2.56	.332
Fun11	3.83	0.790	3.78-3.88	-	0.6	8.3	11.0	67.9	11.9	-	-	-	-	-	0.3	-1.17	1.74	.611
Fun12	3.47	1.043	3.41-3.54	_	2.5	21.2	14.5	44.1	17.2	-	-	-	-	-	0.4	-0.42	-0.84	.454
Fun13	3.48	1.016	3.42-3.55	-	3.2	20.2	13.8	51.9	10.7	-	-	-	-	-	0.2	-0.68	-0.42	.483
Fun14	3.60	0.759	3.55-3.65	0.8	1.0	1.5	4.3	6.5	18.2	13.1	22.1	20.0	7.8	4.3	0.3	-0.59	0.37	.520
Vi1	4.07	1.099	4.00-4.14	-	3.9	9.7	36.8	49.3	-	-	-	-	-	-	0.3	-1.05	0.45	.483
Vi2	3.73	1.290	3.65-3.81	_	9.8	12.9	35.4	41.6	-	-	-	-	-	-	0.3	-0.80	-0.34	.377
Vi3	4.18	1.015	4.12-4.24	_	2.5	8.0	34.5	54.9	-	-	-	-	_	-	0.2	-1.19	1.06	.450
Vi4	2.90	1.143	2.83-2.97	_	16.9	39.4	32.7	10.8	-	-	-	-	_	-	0.2	0.05	-0.64	.475
Cowb1	3.14	0.826	3.08-3.19	2.1	1.6	5.0	8.7	11.0	22.7	13.8	16.8	14.4	2.3	1.3	0.3	-0.39	-0.27	.306
Cowb2	3.31	0.762	3.26-3.36	1.0	0.9	3.1	6.3	9.0	23.8	13.6	20.6	17.0	2.8	1.4	0.5	-0.44	0.08	.318
Cowb3	3.31	0.753	3.27-3.36	0.5	0.9	3.1	7.2	9.0	22.5	15.4	19.4	15.7	3.7	2.2	0.4	-0.51	0.24	.237

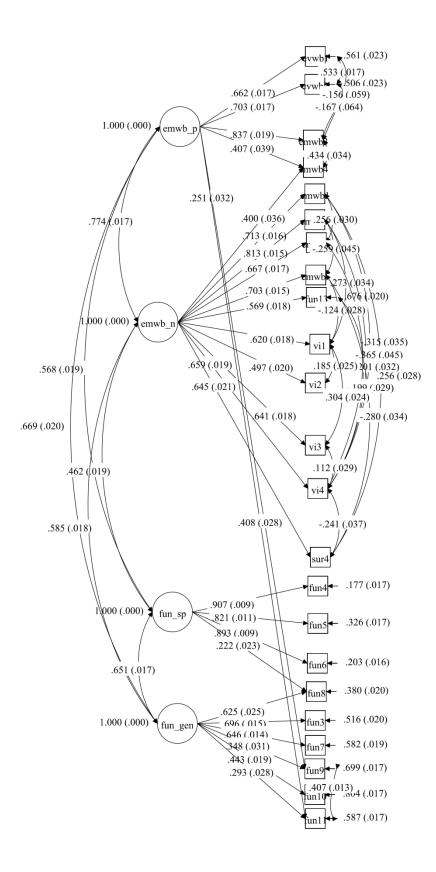
**Table B57** (continued)

	Frequency percent of response categories																	
Item	Mean	SD	95% CI	0	1	2	3	4	5	6	7	8	9	10	NA	Skew.	Kurt.	CC
Cowb4	3.51	0.980	3.45-3.57	2.2	4.5	8.9	20.0	24.9	22.5	12.6	-	-	-	-	4.3	-0.52	-0.13	.272
Cowb5	3.35	0.940	3.29-3.41	-	2.1	18.5	24.9	48.5	5.6	-	-	-	-	-	0.3	-0.43	-0.59	.270
Sur1	2.98	0.972	2.92-3.04	5.1	13.3	19.4	21.3	28.9	5.6	5.9	_	-	_	-	0.5	-0.07	-0.51	.252
Sur2	3.96	0.751	3.91-4.01	0.5	0.3	0.6	2.0	3.3	8.1	9.9	17.1	26.6	18.3	12.9	0.3	-1.03	1.35	.485
Sur3	4.37	0.771	4.33-4.42	0.5	0.9	2.4	4.9	12.5	31.6	46.8	-	-	-	-	0.3	-1.59	2.80	.360
Sur4	4.50	0.894	4.44-4.55	-	2.1	4.5	22.0	71.3	_	_	_	_	_	_	0.1	-1.85	3.10	.446

SD = standard deviation; CI = confidence interval; NA = no answer (missing values); Skew. = skewness; Kurt. = kurtosis; CC = corrected item-total correlation. For the computation of univariate statistics items were rescaled items into a 1-5 scale. Standard errors for skewness and kurtosis were 0.076 and 0.152, respectively.


**Table B58** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of the United Kingdom (n = 1,143): Goodness-of-fit indices

Number of factors tested	$\chi^2/df$	CFI	TLI	RMSEA (90% CI)
1	15.46	.724	.697	.112 (.109116)
2	9.39	.855	.824	.086 (.082089)
3	7.72	.896	.859	.077 (.073080)
4	6.01	.931	.895	.066 (.062070)


**Table B59** Exploratory factor analysis of the 2012 European Social Survey wellbeing items performed with robust weighted least squares of the polychoric correlation matrix applying geomin rotation on the first half-sample of the United Kingdom (n = 1,143)

Τ.	Factor I	Factor II	Factor III	Factor IV				
Item	EMWB (+)	EMWB (-)	FUN (specific)	FUN (general)				
Evwb1	.555	.036	.206	.006				
Evwb2	.552	.036	.217	.040				
Emwb1	.112	.705	.032	057				
Emwb2	.088	.812	010	032				
Emwb3	.630	.289	.045	.014				
Emwb4	.603	.350	.009	.001				
Emwb5	.111	.701	070	051				
Emwb6	.206	.453	027	.111				
Fun3	007	.090	.182	.508				
Fun4	.026	.009	.863	.004				
Fun5	.012	037	.908	036				
Fun6	024	.029	.819	.063				
Fun7	.089	041	.206	.459				
Fun8	.228	.025	.352	.310				
Fun9	.314	029	033	.491				
Fun10	126	.085	.125	.439				
Fun11	.401	.002	029	.466				
Fun13	.162	.329	.059	.111				
Vi1	132	.763	.010	.053				
Vi2	071	.571	039	.030				
Vi3	126	.756	.030	.098				
Vi4	.007	.436	.007	.274				
Sur4	.070	.630	.069	037				
Factors		Correlations between factors						
EMWB (+)	_							
EMWB (-)	.558	_						
FUN (specific)	.423	.403	_					
FUN (general)	.360	.415	.493	_				

EMWB = emotional wellbeing; FUN = Functioning. Factor loadings > .30 are in boldface. Goodness of fit indices for this model:  $\chi^2/df = 6.01$ , CFI = .931, TLI = .895, RMSEA (90% CI) = .066 (.062-.070).



**Fig. B29** Standardized solution for the model with 4 first-order correlated factors and four cross-loading items based on CFA analysis performed on the second half-sample of the United Kingdom (n = 1,143). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices for this model:  $\chi^2/df = 3.59$ , CFI = .949, TLI = .937, RMSEA (90% CI) = .048 (.044-.051).



**Fig. B30** Standardized solution for the model with 4 first-order correlated factors and four cross-loading items based on CFA analysis performed on the full sample of the United Kingdom (N = 2,286). Observed variables are represented by squares and latent variables are enclosed in circles. Goodness of fit indices:  $\chi^2/df = 5.56$ , CFI = .959, TLI = .948, RMSEA (90% CI) = .045 (.042-.047).

**Table B60** Descriptive statistics, convergent and dicriminant validity, composite reliability and internal consistencies of the 2012 European Social Survey wellbeing subscales: United Kingdom (N = 2,286)

	Subscale				
	Emotional	Emotional	Functioning	Functioning	
	Wellbeing (+)	Wellbeing (-)	(specific)	(general)	
Number of items	4	10	4	5	
Mean (standard error)	3.82 (0.016)	3.90 (0.014)	3.84 (0.014)	3.82 (0.012)	
95% Confidence interval	3.79-3.85	3.87-3.92	3.82-3.87	3.80-3.85	
Standard deviation	0.751	0.651	0.632	0.541	
Skewness	-0.610	-0.914	-0.568	-0.866	
Kurtosis	-0.002	0.953	0.172	1.661	
Convergent validity	.450	.432	.586	.261	
Composite Reliability	.756	.882	.830	.614	
Average inter-item correl.	.551	.332	.651	.370	
Minmax. correlations	.456749	.202502	.509789	.234607	
Range of correlations	.293	.300	.280	.373	
	Average inter-	item correlations b	etween subscales		
Emotional wellbeing (+)	_				
Emotional wellbeing (-)	.347	_			
Functioning (specific)	.470	.317	_		
Functioning (general)	.364	.286	.411	_	
	Squared	correlations between	en subscales		
Emotional wellbeing (+)	_				
Emotional wellbeing (-)	.120	_			
Functioning (specific)	.221	.100	_		
Functioning (general)	.132	.082	.169	_	

Standard errors for skewness and kurtosis were 0.052 and 0.105, respectively.