Technological Change and Employment Technological Unemployment. Quantitative Investigation based on Input - Output Tables

by
Charalambos Economides

Introduction ${ }^{1}$

Since the 1970s, technological unemployment has gradually become a serious threat in developed countries. During this period, all OECD countries began recording a high rate of unemployment. The greatest technological change took place in manufacturing, resulting in a sharp reduction in employment. ${ }^{2}$ Subsequently, in a number of countries the increase in employment seen in the services sector, which absorbed the labour displacement in manufacturing, began to slacken off. It has since been ascertained that the new information technologies gradually lead to significant labour displacement also in the services sector ${ }^{3}$.

The issue of technological unemployment is an important one in the present period for Greece also. According to some views, a considerable percentage of unemployment is technological unemployment, while according to others technological unemployment does not constitute a significant problem. There are also some who believe that technological unemployment in Greece is not important, given that the technological

[^0]change which has taken place in the country in recent years has not been substantial.

For the purpose of this investigation, it is necessary to define and empirically determine the concept of technological unemployment within the context of the (ireek economy. Generally speaking, technological unemployment is considered to be all unemployment resulting from the direct replacement of human labour by machinery. However, this simple definition creates certain important conceptual problems with respect to the notion of technological change: ${ }^{\dagger}$

In every case, technological unemployment depends on the factors, which determine the rates and extent of technological change.

According to Neoclassical economists, even if technological change reduces labour demand in a number of branches, through the price mechanism and above all wage flexibility, the unemployment is absorbed in other branches of the economy. According to certain classical economists ${ }^{5}$, technological change leads, first of all, to unemployment but also to an increase in the rate of profit and accumulation, which ultimately results in the absorption of unemployment. However, this process does not take place

[^1]automatically and without friction: The accumulation of capital is the most important factor for the absorption of labour that has been displaced, due to the increased capital intensity and productiveness of labour. Labour productivity increases unemployment in the short run, but in the long run it increases the rate of profit and accumulation. The accumulation of capital goes through crises from time to time and creates structural transformations. Workers are displaced from older branches that are replaced by new ones, which, however, generate a new absorption of labour.

The issue regarding the appearance of innovations is one that involves the development of innovations, which create new branches or modernise old ones. Few innovations are introduced in periods of expansion of the economy - recession sparks radical innovations (new products), which temporarily increase unemployment, but create possibilities for the reabsorption of unemployment. Thus, recession creates conditions for a longterm recovery and leads to changes in the structure of production. While it is recognised that two different types of innovation may be similar to one another in the way they displace labour, the process of labour re-absorption, which is associated with these types of innovations differs substantially. When technological innovation is concentrated in 'old' branches, it causes a major displacement of labour and creates only a slight or even no absorption of labour in those branches. In contrast, technological innovation in new products and services, with its proactive and retroactive effects, gives rise to significant labour absorption. The main problem is that with the ongoing creation of new specialisations and the superseding of old ones, technology itself places limits on the possibility of the direct replacement of labour by capital.

Overall, one could venture the conclusion that technological unemployment is caused by a deceleration of growth, which is then followed by a series of 'modernising' innovations, which have only a weak effect on the absorption of labour. At the same time, there is a massive increase in products and fixed capital, which fall into disuse, the productiveness of labour rises and new specialisations are created. Together, all the above factors eventually increase unemployment further'.

It is clear from the above that technological unemployment does not exist in a pure form: it is always accompanied by other forms of
6. Erturk K. Ibid, p. 87.
unemployment. such as structural unemployment and cyclical unemployment.

Technological unemployment should not be confused with structural unemplovment. As noted previously, according to the literature the former is due to the replacement of human labour by machinery, on a significant scale and at fast rates. It may create forms of structural unemployment. since it generates needs for new specialisations and labour skills, but then again this may not happen. In contrast, structural unemployment is due to the lack of correspondence between the labour skills and qualifications of the unemployed on the one hand. and the demand of employers for skills and qualifications in order to fill job vacancies on the other.

Technological unemployment differs qualitatively from cyclical unemployment. which. according to the literature, is due to the tendency of companies. in periods of prolonged economic recession, to resort to lay-offs because of the decline in demand for their products. Indeed, while in the case of cyclical unemployment companies respond to the increase in demand which accompanies the forthcoming recovery by rehiring personnel, in the case of technological unemployment they do not respond with new hirings, because there is already additional production capacity due to the increased productivity resulting from the adoption of new technologies and new forms of organisation and management.

It should be stated at this point that the empirical determination of technological unemployment in a specific country presents serious problems. which this paper does not tackle in their full extent. The aim of this paper is to empirically examine the prerequisites for determining technological unemployment in Greece and provide a initial answer to the problem in order to facilitate its further investigation.

The problem of measuring technological unemployment

L.ooking at the literature, one can see a number of indicators, which approximate an empirical measurement of technological unemployment.
a) The methodology of Input-Output Tables determines the direct labour coefficient resulting from the ratio of the labour used in each branch to the gross value of production of each branch.

Usually, labour coefficients are expressed in thousands of persons per production value of one million. Direct labour coefficients generally tend to
decline over the course of time. This tendency stems not only from the increase in the intensity of fixed capital, but also from the increased productivity in the economy ${ }^{7}$.

The approach applied in this study also uses the indicator of the direct labour coefficient from the Input-Output Tables methodology.

This indicator is the inverse determination of labour productivity based on the calculation of gross production, gross output to labour input. Consequently, these two determinations pertain to the same phenomenon and are influenced by the same variables, which is why extensive reference is made below to the determination of labour productivity and its relationship with technological change, since this relationship has been studied more in the literature.
b) Examining the relationships between labour productivity and the other coefficients which determine it -according to the OECD^{8} - the following points emerge:

The objectives of productivity measurement include technology, efficiency, real cost savings, benchmarking production processes and living standards.

Specifically, in the case of technology, the objective of measurement of productivity growth is often the determination of technological change.

According to the OECD^{8}, technology has been described as the currently known ways of converting resources into outputs desired by the economy, and appears either in its disembodied form (such as new blueprints, scientific results, new organisational techniques) or embodied in new products (advances in the design and quality of new ranges of capital goods and intermediate inputs).

The OECD ${ }^{y}$ notes further that despite the frequent explicit or implicit

[^2]association of productivity measures with technological change, the link is not straightforward.

The OECD's definition of labour productivity, based on the calculation of gross output. is described as the ratio of the quantity index of gross output to the quantity index of labour input.

Changes in labour productivity reflect the joint influence of changes in capital. intermediate inputs, as well as technical, organisational and efficiency change within and between firms, the influence of economies of scale. varying degrees of capacity utilisation and measurement errors.

Because labour productivity measures reflect the combined effects of changes in capital inputs, intermediate inputs and overall productivity, they do not leave out any direct effects of technological change, either embodied or disembodied. The former operates via capital goods and intermediate inputs and thus affects labour productivity; the latter generally enhances production possibilities for a given set of inputs and so also affects labour productivity.

With respect to drawbacks and limitations, it is noted that labour productivity is a partial productivity measure and reflects the joint influence of a host of factors. It is easily misinterpreted as technical change or as the productivity of the individuals in the labour force.
c) The empirical measurement of the evolution of productivity in major industry in Greece in the period 1980-1993 shows that following a seven-year stagnation (1980)-1987) productivity has constantly increased. However, it appears that the high rates recorded between 1990-1993 were mainly due to the closure of loss-making businesses, on account of the recession rather than the technological and organisational modernisation of manufacturing. Therefore, technological and organisational modernisation is the main cause of productivity growth only in certain periods. It also emerges from the aforesaid measurement. as has been observed in recent years, that another reason for the growth of labour productivity is its intensification.

According to a recent study (2003) by the Centre of Planning \& Economic Research (KEPE) on the evolution of productivity in the economy as a whole, following a stagnation in the 1980s and an average annual increase in the rate of change of labour productivity in the first half of the 1990s lower than unit (0.75%), the average annual rate of increase of gross labour productivity, based on the number of employed, reached 2.8% in the
period 1995-2000, rising further to 3.75% in the five-year period 1998-2002 ${ }^{11}$.
d) In the literature, four indicators are used in the analysis of employment: The rate of accumulation of capital (which is the rate of change of the capital stock), the rate of capacity utilisation, working time and the rate of change of capital intensity (i.e. the speed at which labour is replaced by capital). This latter indicator is considered also to be the main indicator of technological unemployment. It can be seen that the number of employed is first of all directly proportional to invested capital stock and its rate of use, and secondly, inversely proportional to the replacement of labour by capital (technological unemployment) and to the duration of working time. ${ }^{11}$

In the period 1984-1994, of the above four indicators, the replacement of labour by machinery (technological unemployment) was the most important in Greece.
e) Another indicator of technological unemployment is the type of investment. According to available data, investments to replace existing capital equipment and to expand production capacity account for the majority. Both these categories are ahead of investments to rationalise the production process. Data on type of investment can be used only as an indication of the quality of technological modernisation, given that the investment categories 'replacement' and 'expansion' are too broad for reliable conclusions to be drawn about the direction of technological renewal (e.g. growth of production capacity, for products already being manufactured or the production of new ones).

A method of calculating technological unemployment

In order to approach the problem of technological unemployment in
10. KEPE, Labour productivity developments and growih prospects, Economic Developments, issuc 2, April 2003 (In Greck) p. 34.
11. In his examination of the effect of labour productivity on unemployment, Erturk finds that technological change does not lead to a drop in demand for labour only if the rate of accumulation of eapital is higher or equal to the aggregate of the pereentage increase of the capital/output ratio and the percentage increase in labour productivity.
He also ascertains that labour productivity, which may grow with the increase in capital intensity, acts on both sides of the inequality. This increases the replacement of labour directly in the short run and possibly also the absorption of labour indirectly in the long run. through the effect on the rate of prolit. Erturk, K., ibid. p. 80).

Greece. empirically, a method was used which emerges from the analysis of Input-()utput Tables.

Let L95 be the total number of workers in the economy as a whole in a certain year. e.g. 1995. Then, the following holds

$$
\begin{equation*}
\mathrm{L} 95=\ell_{1} \mathrm{x}_{1}+\ell_{2} \mathrm{x}_{2}+\ldots+\ell_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \tag{1}
\end{equation*}
$$

where $\ell_{1}, \ell_{2} \ldots \ldots \ell_{n}$ are the employed per unit of product by branch for a specific year. e.g. 1995 and $x_{1}, x_{2}, \ldots, x_{n}$ are the production units of branches 1.2..... n in the same year.

The change in employment from 1995 to 1996 will be:

$$
\begin{align*}
& \Delta(\text { L96 }- \text { L95 })=\left(\ell_{1}+\Delta \ell_{1}\right)\left(\mathrm{x}_{1}+\Delta \mathrm{x}_{1}\right)+ \\
& +\left(\ell_{2}+\Delta \ell_{2}\right)\left(\mathrm{x}_{2}+\Delta \mathrm{x}_{2}\right)+\ldots+ \\
& +\left(\ell_{\mathrm{n}}+\Delta \ell_{\mathrm{n}}\right)\left(\mathrm{x}_{\mathrm{n}}+\Delta \mathrm{x}_{\mathrm{n}}\right) \tag{2}
\end{align*}
$$

Performing the calculations in (2) we get:

$$
\begin{align*}
& \Delta(\mathrm{L} 96-\mathrm{L} 95)=\left(\Delta l_{1} \mathrm{x}_{1}+\Delta \ell_{2} \mathrm{x}_{2}+\ldots+\Delta \ell_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)+ \\
& +\left(\ell_{1} \Delta \mathrm{x}_{1}+\ell_{2} \Delta \mathrm{x}_{2}+\ldots+\ell_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right)+ \\
& +\left(\Delta l_{1} \Delta \mathrm{x}_{1}+\Delta \ell_{2} \Delta \mathrm{x}_{2}+\ldots+\Delta \ell_{\mathrm{n}} \Delta \mathrm{x}_{\mathrm{n}}\right) \tag{3}
\end{align*}
$$

Consequently, the change in employment is due to changes in technology.' which are presented in the first aggregate of (3), to changes on account of the increase in output, which are presented in the second aggregate and to changes that are due to the combined effect of output and technology, which are presented in the third aggregate of (3).

For the specific calculation of the above components of equation (3). data were used from the National Accounts of Greece 1990-2000 and more particularly, the data on the gross output value of goods and services in the period 1990-2000 for 31 branches which make up the entire economy. The data on gross output value were converted into constant prices 1990 in order to eliminate the effect of inflation. ${ }^{13}$ Data on the employed in each branch for the period 1990-2000 were also used.

[^3]The technological influence for the years 1990-2000 was then isolated using the formula $\left[\mathrm{N}_{\mathrm{t}} /\left(\right.\right.$ OUTPUT $_{1}$ at prices 90$\left.)\right] *$ OUTPUT $_{90}$ where $\mathrm{t}=1990$, $\ldots, 2000$. That is, the number of employed is calculated in relation to output, for each year, at 1990 prices and multiplied by 1990 output. This percentage is the labour coefficient, for each year, which when multiplied by the output of the given year 1990 gives the number of theoretically necessary employed, on the basis of the technology of each year, when production (output) is given.

Consequently, by deducting these employed from those actually employed in 1990, we get the unemployment that is caused by change in technology: 'technological unemployment'. As emerges from the calculations, this follows an upward trend, and with a different evolution in each branch.

The next step is to isolate the influence of the output by using the formula $\left(\mathrm{N}_{90} /\right.$ OUTPUT $\left._{910}\right) *\left(\right.$ OUTPUT $_{1}$ at 1990 prices) where $\mathrm{t}=1990, \ldots$, 2000.

The number of employed in relation to production, that is, the labour coefficient, for 1990, is kept constant and multiplied respectively by the gross value of output, for each year, at constant prices 1990. This gives the number of employed who are necessary on the basis of technology in 1990 to produce the increased annual output. So, if this number of employed is deducted from those actually employed in 1990, we get the number of additional employed, due to the increase in output. As emerges from the calculations, this number is positive and shows an increasing trend - although with a different evolution, for each branch.

The combined influence of technology and output is derived as a residual - the third component of equation (3). As emerges from the data, the combined influence is negative and decreasing.

Regarding the number of employed per unit of production unit -or the coefficient of labour- as calculated here, and on the basis of which 'technological unemployment' is calculated, the following observations can be made:
a) This index combines the rate of accumulation of capital, the degree of capacity utilisation, working time and the rate of change of capital intensity. In other words, it is an index that may be considered broader than the one rendered by the notion of replacement of labour by machinery. In addition, the index calculated on the basis of output takes into account the growth of
production as a result of the accumulation of capital and the increase of demand.
b) Because the labour coefficient that is calculated here may be considered as an index which approximates the concept of labour productivity. the observations made in the preceding chapter concerning labour productivity should be taken into consideration.
c) The formula [$\mathrm{N}_{1} /$ (OUTPUT, at prices 90$)$] OUTPUT $_{90}$ measures the annual change in technology, keeping output constant. Therefore, the unemployment resulting from application of the formula measures the unemployment from the change in technology, for each year, and consequently has an aggregating effect on the calculation of the theoretical number of unemployed, for each year.
d) It is clear that the calculations performed here, on the basis of national accounting data, are based on the established principles of National Accounts.

Conclusions

a) It emerges from the calculations that for the economy as a whole. 'technological unemployment' grew from -190,889 in 1990 to $-1,711,915$ in 2000 . At the same time, the increase in employment, due to the growth of output. rose from $+88,902$ in 1990 to $+3,548,216$ in 2000 . In addition, the combined influence of technological unemployment and output ranged from +41.97 () in 1990 to $-1.007,603$ in $2000 .{ }^{14}$

The change in employment in the period 1990-2000 with 1990 as base year is -65.898 in 1991, $-12,712$ in 1992, $+18,300$ in 1993, $+88,450$ in 1994, +74.823 in 1995, +59.688 in 1996, $+38,685$ in 1997, $+195,038$ in 1998 , +164.524 in 1999 and $+152,219$ in 2000 . That is, the change in unemployment in 1991 and 1992 was negative, while in 1993 through to 2000 it was positive. This fact must be taken into consideration when evaluating the above three coefficients of change in employment.

The conclusion is that while the reduction of employment caused by

[^4]technological change is significant, the influence of output is clearly greater, which however is diminished by the combined influence of the two.
b) The levels of 'technological unemployment', as these emerge from the above analysis, underline its important in the shaping of total unemployment. Regarding the share of 'technological unemployment' in total unemployment, the data are as in the following table ${ }^{15}$:

Year	(1) 'Technological unemployment' (On the basis of the employed in 1990)	$(2)^{*}$ Total	$(3)^{*}$ Labour force	$(4)^{*}$ Employed	(5) N
				(Employed according to National	
	$-1,475,221$	446,700	$4,318,960$	$3,871,900$	$3,805,032$
Accounts data)					

*Source: National Statistical Service of Greece: Labour force surveys
The ligures in column (1) are extracted from the calculations sheet as exhibited in the appendix to this study.
c) Generally speaking, the phenomena evident in the economy as a whole are the same at the level of individual branches, that is, employment is reduced by technological unemployment and increased by output.

The branches with the highest technological unemployment are: agriculture, food products, textiles, other manufacturing activities, electrical energy, construction, commerce, hotels, transport, financial organisations, real estate management, public administration, education, health and production of other services. ${ }^{16}$
15. The problem that arises is the extent to which it is possible to establish that in the percentage of unemployment ascertained in the economy, a proportion, e.g. 35%, is technological unemployment and the remainder is caused by other reasons, such as structural unemployment, frictional unemployment, etc.
16. For the purpose of comparing and verifying these results, the KEPE study on developments in labour productivity found that high rates of productivity growth (above the average) in the period 1995-2001were recorded in the branches of transport/
d) As emerges from the above analysis, the unemployment caused by change in technology - technological unemployment'- is very often fully offset by the increase in production (output).

Therefore, an important prerequisite for the reduction or even the elimination of technological unemployment is the increase of production and consequently of demand also. A further very important parameter thus arises in the analysis, namely demand, which however will not be analysed here. ${ }^{17}$

Bibliography

Erturk. K.. Heterodox Theories of Technological Unemployment: Towards a Synthesis, in Competition. Technology \& Money: Classical and Post-Keynesian Perspectives (New Directions in Modern Economics Series), Edited by Mark A. Colich. Edward Elgar Publishing Company, 1994.
Kalmbach. P. and Kurz, H.D., Microelectronics and Employment: A Dynamic InputOutput Study of the West (ierman Economy; in Structural Change and Economic Dynamics. vol. 1. no. 2. 1990, Oxford University Press, 1990.
KEPE. Labour productivity developments and growth prospects, Economic Developments, issue 2. April 2003 (In Greek).
Leonticf. W.. Input-Output Economics. Oxford University Press, 1986.
Leontief. W.. Duchin, F., The Future Impact of Automation on Workers. New York Oxford. Oxford University Press, 1986.
Marx. K.. Das Kapital. I. Verlag Ullstein GmbH,1969.
National Statistical Service of Greece. National Accounts of Greece, 1988-1997, Athens. 1998.
National Statistical Service of Greece. National Accounts of Greece, 1995-2000, Athens. 2001.
OECD. Technology and Industrial Performance, OECD, Paris, 1996.
communications (6.95%), fishing (5.2%). commerce (4.96%), clectricity (4.88%). hotels restaurants (3.33%), construction (3.24%), other activities (3.37%) and mines (3.10 $\left.)^{\prime \prime}\right)$. KEPE, ibid. p. 35.
17. The long-period extension of Mr. Keynes's theory brings the problem of the reserve army of labour into the foreground of the picture. The propensity to save and the rate of investment determine the level of real output, at any moment. As time goes by, the productivity of labour increases and the amount of employment corresponding to a given level output declines. Thus the technique of production plays an important part in determining the level of employment. Finally, Mr. Keynes justifies Marx's intuition that the chronic conflict between productive and consumptive power is the root cause of crises. Rohinson. J., An essay on Marxian economics, The McMillan Press Lid, 1965.

OECD, Productivity Manual: A Guide to the Measurement of Industry-Level and Aggregate Productivity Growth, OECD, Paris, 2001.
Platt, H., Input-Output Analyse. Verlag Anton Hain KG, Meisenheim am Clan. 1957. Ricardo, D., On The Principles of Political Economy and Taxation. The works and correspondence of David Ricardo, edited by Pierro Sraffa, Cambrigde University Press, 1975
Robinson, J., An essay on Marxian economics, The McMillan Press Ltd, 1965.
Skountzos, T., Intersectoral Relations in the Greek Economy, KEPE, Athens, 1975 (In Greek).

APPENDIX

INDUSTRIES CLASSIFICATION CODES

A: Agriculture, hunting and forestry
B: Fishing
C : Mining and quarrying
CA: Mining and quarrying except energy producing materials
CB : Mining and quarrying of energy producing materials
D: Manufacturing
DA: Manufacture of food products, beverages and tobacco
DB: Manufacture of textiles and textile products
DC: Manufacture of leather and leather products
DD: Manufacture of wood and wood products
DE: Manufacture of pulp, paper and paper products, publishing and printing
DF: Manufacture of coke, refined petroleum products and nuclear fuel
DG: Manufacture of chemicals, chemical products and man-made fibres.
DH: Manufacture of rubber and plastic products
DI: Manufacture of other non-metallic mineral products
DJ: Manufacture of basic metals and fabricated metal products
DK: Manufacture of machinery and equipment n.e.c
DL: Manufacture of electrical and optical equipment
DM: Manufacture of transport equipment
DN: Manufacturing n.e.c.
E: Electricity,gas and water supply
F: Construction
G: Wholesale and retail trade, repair of vehicles and household goods

H: Hotels and restaurants
I: Transport. storage and communication
J: Financial intermediation
K : Real estate, renting and business activities
L: Public administration and defence, compulsory social security
M: Education
N : Health and social work
O: Other community, social and personal services
P: Private households with employed persons activities
Q: Extra-territorial organisations and bodies
cup: current accounting prices
coppy: cost on prices previous year
Ntecm: theoretical necessary

Industry	Outp9)cap	Outp9lcap	Outp92cap	Outp93cap	Outp94cap	Outp95cap	Outp96cap	Outp97cap	Outp98cap	Outp99cap	Outp()(cap	IT
A	1787500	2363877	24()9630	2549573	3023342	3315288	3503032	3636135	3714504	3757235	3881296	?
B	97582	108568	112646	122540	1380006	149402	172119	170868	169670)	178510)	192493	\bigcirc
CA	77886	82326	83833	109949	117953	136873	130328	135878	132982	136873	148492	\bigcirc
CB	73410	84411	91789	97510	107020	109079	141586	157355	178914	176945	202334	$\stackrel{\square}{3}$
DA	1890189	2412759	2580743	2719327	2989124	3041316	3658290	3652747	3815398	3910183	4096895	$\stackrel{\rightharpoonup}{2}$
DB	1016539	1144493	1283499	1288077	1393618	1558338	1641034	$16(4657$	1736974	1665288	1720759	ํ
DC	133671	144080	168239	183364	188747	207892	224973	201568	209858	193649	201341	$\frac{2}{2}$
DD	150455	160472	185466	207127	197248	229127	242606	228660	235147	223232	251648	T
DE	273354	$30) 6234$	364449	378417	433433	581850	629280	609936	652026	689360	764402	$\frac{8}{2}$
DF	467837	497740	524983	527873	567767	711045	903736	97224()	769027	826109	1603171	-
DG	374045	403616	453563	495453	561529	642764	681013	691126	732142	757653	790413	$\stackrel{1}{2}$
DH	164101	178785	199772	204247	235805	285437	284641	274020	290883	303371	340306	$\stackrel{\square}{0}$
DI	318218	358061	388944	399598	414908	450320	521745	589056	659670	672263	723261	\bigcirc
DJ	617421	654107	729994	674971	810866	10)5566	975392	1022419	1105118	1126211	1250193	\%
DK	175224	179577	210903	216084	262275	298426	345040	323826	338557	317015	358562	$\underset{\sim}{2}$
DL	152692	191594	221603	267488	260230	292647	280859	299652	355299	353583	456()622	T
DM	174167	211976	230693	233007	231343	232645	255261	257()9)	304192	270869	282313	$\stackrel{1}{7}$
DN	200129	230592	291961	301117	335457	370651	393768	394756	423267	455951	500378	خ
E	447386	525396	619158	672637	726243	81314()	937615	977974	1083538	1146469	1168143	O
F	2198306	2688916	2773044	2997792	3171369	3482938	3970394	4341100	4927902	5416409	5774707	\bigcirc
G	2804856	3346108	3830367	4399449	4980090)	5472367	6116436	6758898	7074194	7594463	8654821	2
H	1241821	$14824(1) 4$	1898021	2369174	2708871	3081424	337734)	3989183	4309549	4322746	4533899	\subset
I	1059486	1202639	14332()2	1628321	1912626	2240937	2636614	2968837	33741035	4)6()234	5224543	皆
J	488782	696167	872627	766382	967561	1165738	1640201	1811305	2172058	253()682	2804272	3
K	2059288	2692732	3237621	3750607	4296185	4857786	5461646	6047595	6565772	6856991	7421215	5
L	1318269	1555262	1752680	2109652	2325885	2983654	2829059	3277910	3552646	3769473	4170711	<
M	613396	761579	890109	100)2193	1153190	1266189	1365148	1612197	1748218	1868775	2024787	艺
N	$73+114$	865667	$1(1) 4752$	1251776	1576251	1762179	1916723	2067223	2307285	2435194	2445959	,
O	38750)	528335	641118	730441	862405	947178	1056705	1121308	1245562	1334363	141)7()26	
P	24777	29051	$326+1$	$355+1$	44293	55390)	72737	$9(723$	105411	124162	134393	
Sum 1	$215224(1) 3$	26087524	29554050	32689687	3699364()	41747583	46365321	50286242	54289798	57474261	63528795	'00

Outpouppiyl 911	Outpcupp! Y- 91	Outpcuppy 4 : 4?	Outpcoppy $9+43$	Outpruppy 9597	Productorppiyn 45	Productarp! ${ }^{\text {¢ }}$ 4n	Productarppy 4847	Producturpy 9498	Productioppyar 44
2002061	23717756	2392517	2684387	$31+8227$	3208152	3390944	3589105	3671600	30.53057
107788	110593	126909	121434	132162	159515	167837	158475	170032	$18+258$
70898	78745	93211	109753	120076	105343	120859	125116	119635	131135
72561	83667	89698	99681	105230)	124444	138130	161671	148723	172182
2029972	2398334	2501130	2761556	2952768	3455751	3750548	$38+3093$	3914642	+126780
1013357	1125493	1155436	1314039	1432294	1550455	1558423	1683320	1642766	1670020
128430	1500009	163244	172724	193913	215303	194478	208747	192992	197937
141622	157314	185320	188569	21.5916	220062	220925	227149	223233	246490
262814	312922	337879	405964	510555	542950	545838	580409	657235	69570)
425221	517785	468072	554972	635177	769128	8729()2	$8(88700)$	662876	972452
347140	400207	457887	509574	580374	577627	624202	640181	691709	715587
152522	180484	190950)	216433	259164	278958	268202	274458	297228	311178
296923	340815	373958	384427	415782	484408	547408	617439	654587	687449
593052	645389	631608	753039	896129	$93(0229$	986417	10600042	1152444	1219184
155693	181657	2000672	243073	275264	335923	330488	327681	313623	356509
176330)	193375	243537	253080	267913	270068	283001	332333	334720	413226
187414	210796	205408	218459	219801	224419	237503	262134	240161	241614
207836	253084	274994	318510	347676	414959	436646	457893	513027	548110
455443	550271	619404	709431	753513	903148	964903	1075254	119()974	1215147
2266957	2473981	2631963	2893527	3227235	3828480	4196457	4879039	5432011	5797781
2843631	3396953	3813014	4554963	5177444	5768664	6586706	7147981	7646900	8316641
1225469	1575213	1960447	2458750	2749806	3077883	3762190)	4141089	4173457	4330037
1056885	1245722	1462788	1633386	2069823	2386356	2766688	3036210	3885478	505399()
554753	752679	673816	849618	1065433	1472611	1705451	2003337	2314307	2678556
2121905	2741574	3135987	3774743	4378160	5081421	5715740	6343281	6822201	7231528
1308445	1522923	1844651	2134001	2487035	2750800	2834235	3192309	3424761	3715758
629430	752090)	877412	1050727	1185829	1263227	1380660	1620557	1768775	1913394
726439	901731	1035747	1439739	1584188	1736594	1960756	2105047	2304443	2373484
447948	533516	634376	796488	899907	962383	1077315	1184430	1294547	1356435
24331	28557	34273	40303	50937	63809	76956	101065	117744	127266
22033270	26186635	28816308	33645350)	38337731	18659322	19836111	21312239	22224218	23555796

PriceInd 90)	PriceInd 91	Pricelnd 92	PriceInd 93	PriceInd 94	PriceInd 95	PriceInd 96	PriceInd 97	Pricelnd 98	PriceInd 99	PriceInd 00
$1.000)$	1.181	1.016	1.066	1.126	1.053	1.041	1.038	1.002	0.991	1.029
1.000	1.007	1.019	0.966	1.136	1.130	1.079	1.018	1.073	1.052	1.047
1.000	1.161	1.065	1.180	1.075	1.140	1.170	1.049	0.980	1.042	1.033
$1.000)$	1.163	1.097	1.087	1.074	1.037	1.032	1.066	0.963	1.034	1.033
1.000	1.189	1.076	1.087	1.082	1.030	1.080	0.999	1.013	1.018	1.011
1.000	1.129	1.140	1.115	1.061	1.088	1.050	1.018	1.018	0.949	1.015
1.000	1.122	1.122	1.123	1.093	1.072	1.040	1.027	0.999	0.997	1.010
1.000	1.133	1.179	1.118	1.046	1.061	1.088	1.024	1.021	0.985	1.009
1.000	1.165	1.165	1.120	1.068	1.140	1.101	1.044	1.074	1.006	1.055
1.000	1.171	1.014	1.128	1.023	1.119	1.165	1.109	0.947	1.240	1.646
1.000	1.163	1.133	1.082	1.102	1.107	1.055	1.012	1.046	1.004	1.040
1.000	1.172	1.107	1.070	1.090	1.101	1.025	1.036	1.060	1.023	1.036
1.000	1.206	1.141	1.069	1.079	1.083	1.066	1.058	1.052	1.012	1.036
1.000	1.103	1.131	1.069	1.077	1.122	1.038	1.036	1.050	0.990	1.038
1.000	1.153	1.161	1.077	1.079	1.084	1.067	1.005	1.052	1.018	1.014
1.0000	1.087	1.146	1.098	1.028	1.092	1.008	1.023	1.033	1.020	1.072
1.000	1.131	1.094	1.134	1.059	1.058	1.062	1.014	1.056	1.001	1.031
1.000	1.109	1.154	1.095	1.053	1.066	1.054	1.031	1.036	0.991	1.017
1.000	1.154	1.125	1.086	1.024	1.079	1.049	1.020	1.025	0.978	0.977
1.000	1.186	1.121	1.139	1.096	1.079	1.071	1.064	1.051	1.041	1.039
$1.000)$	1.177	1.128	1.154	1.093	1.057	1.089	1.049	1.013	1.015	1.062
1.000	1.210	1.205	1.208	1.102	1.121	1.100	1.061	1.041	1.036	1.047
1.000	1.138	1.150	1.113	1.171	1.083	1.068	1.052	1.066	1.0)4	$1.000)$
1.000	1.255	1.159	1.137	1.139	1.094	1.094	1.045	1.070	1.079	1.033
1.000	1.269	1.181	1.196	1.138	1.110	1.088	1.071	1.053	1.022	1.044
1.000	1.189	1.151	1.144	1.090	1.200	0.993	1.111	1.069	1.057	1.079
1.000	1.210	1.184	1.142	1.098	1.068	1.080	1.168	1.079	1.057	1.058
1.000	1.192	1.154	1.209	1.095	1.112	1.103	1.053	1.095	1.054	1.028
1.000	1.179	1.202	1.151	1.083	1.053	1.091	1.040	1.044	1.024	1.030
1.000	1.194	1.143	1.037	1.099	1.087	1.140	1.179	1.143	1.055	1.056

Prind90)(base90)	Prind91(basc90)	Prind92(bascy0)	Prind93(${ }^{\text {(asces }}$ (1))	Prind9t($($ assce 0 ()	Prind95(hascy 90)	Prind96(hascy ${ }^{\text {(0) }}$	Prind97(hasc 40)	Prind98(basc 40)	Prind99(has'41)	Prindowhascel)
1.000	1.181	1.200	1.083	1.200	1.186	1.234	1.281	1.283	1271	$\frac{1.308}{1046}$
1.000	1.007	1.026	0.983	1.097	1.186 1.285	1.234 1.386	1.281 $1+11$	1.283 1.514	1.271	1.308
1.000	1.161	1.236	1.256	1.268	1.225	1.434	1.411 1.504	1.517	1.593	1.668
1.000	1.163	1.276	1.193	1.167	1.113	1.148	1.514	1.474 1.179	1.535	1.586
1.000	1.189	1.279	1.170	1.177	1.115	1.2144	$1.2-4$	1.179	1.219	1.260
1.000	1.129	1.288	1.271	1.182	1.154	12	4	8	1	254
1.000	1.122	1.258	1.260	1.227	1.172	19	7	-56	. 25.	1.275
1.000	1.133	1.336	1.318	1.169	1.110	1.207	. 235	. 251	1.247	1.26 ()
1.000	1.165	1.357	1.304	1.196	1.217	1.339	1.398	1	10	. 54
1.000	1.171	1.187	1.143	1.154	1.145	1.334	1.480	1	738	..593
1.000	1.163	1.318	1.226	1.192	1.220	1.287	1.303	363	.738	2.860
1.000	1.172	1.297	1.184	1.165	1.200	1.230	1.274	. 351	1.382	1.424
1.000	1.206	1.376	1.219	1.153	1.169	1.246	1.318	7		+ 45
1.000	1.103	1.248	1.209	1.151	1.208	1.255	1.3000	1.366	1.352	1.404
1.000	1.153	1.339	1.250	1.162	1.170	1.249	1.255	1.321	1.345	364
1.000	1.087	1.245	1.259	1.129	1.123	1.132	1.159	1.197	1.221	1.308
1.000	1.131	1.238	1.241	1.201	1.121	1.190	1.207	1.275	1.275	1.315
1.000	1.109	1.280	1.263	1.153	1.123	1.184	1.220	1.264	1.253	1.275
1.000	1.154	1.298	1.222	1.112	1.105	1.158	1.182	1.211	1.184	1.156
1.000	1.186	1.330	1.277	1.248	1.183	1.267	1.348	1.417	1.475	1.533
1.000	1.177	1.327	1.301	1.261	1.156	1.258	1.319	1.336	1.356	1.441
1.000	1.210	1.458	1.456	1.331	1.235	1.358	1.441	1.500	1.554	1.628
1.000	1.138	1.309	1.281	1.303	1.268	1.353	1.424	1.518	1.524	1.524
1.000	1.255	1.455	1.319	1.295	1.246	1.363	1.425	1.525	1.646	1.700
1.000	1.269	1.499	1.412	1.361	1.263	1.374	1.472	1.550	1.584	1.654
1.000	1.189	1.368	1.316	1.246	1.308	1.298	1.443	1.542	1.630	1.759
1.000	1.210	1.432	1.352	1.254	1.172	1.266	1.478	1.595	1.685	1.783
1.000	1.192	1.375	1.395	1.323	1.218	1.343	1.415	1.550	1.633	1.678
1.000	1.179	1.417	1.384	1.247	1.140	1.244	1.294	1.351	1.382	1.425
1.000	1.194	1.365	1.185	1.140	1.195	1.362	1.606	1.675	1.766	1.865

N90)	N91	N92	N93	N94	N95	N96	N97	N98	N99	N ()
886376	787346	822677	776123	778684	719749	708318	684960	$6851+1$	6591010	
23007	24315	23623	23150	23019	29222	28659	66894	$6851+1$ 24696	65910)	626801
14399	12461	10206	10107	9673	7374	-7859	-7605	$2+696$ 7480	-7135	- 2 207
7974	7991	7577	8573	7150	9455	9441	8885	7489 8906	7135 9300	8263
132910	133935	133519	131299	131417	129386	130787	129943	130595	128857	9214 31559
182716	180321	176062	155535	148166	147678	145044	136011	138167	136309	35724
21545	21233	21456	20528	19944	20089	$2(279$	17015	17252	17029	15767
36994	32809	31144	31210	29285	29521	30893	29441	29364	28973	27591
37473	37697	38849	38903	37928	39618	4(2)00)	40319	41785	41229	$40(2)$
8663	7990	7858	7843	8916	9738	9371	8649	9427	$931) 2$	827()
27875	27179	26155	24675	24371	23652	$232(02$	23250	23893	23578	23205
18469	17867	18004	17140	17197	17230)	17248	16731	16939	16713	16 ()23
36300	34897	33755	32167	30247	30522	30915	3090)	32692	32258	30688
55848	54696	54763	53971	57632	57414	57735	55742	59245	58457	57984
31067	27744	27641	25598	$29(027$	28944	29964	28977	31548	30142	30582
15868	14662	14348	13508	13463	13505	14942	14318	15465	15259	4393
35484	33463	$33(1) 47$	29638	29185	29113	27433	26209	26845	26488	641
46278	47424	50043	46980	48809	48626	47784	47925	49364	48776	47453
37418	37458	37507	4() 753	41284	41647	43166	42935	42693	44120	41859
239579	241295	243295	261438	261166	252288	251809	249003	275229	269993	278158
469428	477571	487569	526549	544889	553409	540489	556393	583228	579561	586434
179273	183017	187049	203362	211960	223676	224326	229886	238651	239948	246946
242309	251433	248181	259013	263333	263657	261860	255477	266699	264126	262549
67543	69938	63835	66750)	71735	82285	76366	84154	87311	87248	94976
141431	153083	165685	167352	176775	183607	177995	184160)	216011	216960	215918
280279	281164	273979	276143	276335	272298	276266	272332	270897	275482	280979
179954	184746	190638	200699	213846	219964	224257	229981	237()65	238093	240525
139335	143449	148474	154968	161244	163067	170543	170036	182765	186759	182850)
122458	125660	129542	132209	136057	139305	138559	134234	145618	$14(1) 908$	140919
27099	26610)	26160	27468	31155	34136	39322	41606	46350	51787	53073
3745352	3679454	3732641	3763652	3833892	3820175	3805032	$3784(1) 37$	394039()	3909876	3897571
Change in empl. Base 90:	3679454	3732641	3763652	3833892	3820175	$38(1) 5032$	37841037	394(1)39)	3919876	3897571

[^5]| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 1249121 | $13861(04$ | 1407123 | 1407777 | 1435283 | 1465472 | 1471151 |
| 992771 | 995660 | 1167249 | 1249121 | 27418 | 29274 | 28546 | 26419 | 26419 | 27212 |
| 25413 | 25887 | 29376 | 17201 | 20656 | 16806 | 16704 | 16683 | 16486 | 17314 |
| 13107 | 12537 | 16186 | 9960) | 10647 | 13393 | 13965 | 16486 | 15763 | 17448 |
| 7882 | 7812 | 163438 | 178600 | 191819 | 213620 | 213505 | 220251 | 221628 | 229646 |
| $1+2739$ | 141886 | 163438 | 211868 | 242744 | 243406 | 233781 | 248535 | 238435 | 242639 |
| 182144 | 179120 | 823460 | 24785 | 28602 | 29752 | 25953 | 27036 | 25029 | 25759 |
| $2(0700$ | 21552 | 23460 | 24785 41484 | 50754 | 49407 | 45495 | 45807 | 44152 | 49327 |
| 34822 | 34137 | 38650 | 49690 | 65554 | 64420 | 59794 | 59535 | 62591 | 65783 |
| 36028 | 36815 | 39770 | 9112 | 11497 | 12542 | 12162 | 10161 | 8800 | 10379 |
| 7874 | 8191 | 30109 | 35096 | 39249 | 39420 | 39536 | 40027 | 41245 | 41358 |
| 25870 | 25651 | 30109 | 22773 | 26772 | 26036 | 24204 | 24237 | 24710 | 26754 |
| 17166 | 17329 | 19416 | 41039 | 43945 | 47770 | 50973 | 54256 | 54621 | 56740 |
| 33871 | 32239 | 37380 | 63739 | 75277 | 70319 | 71134 | 73193 | 75321 | 80560 |
| 53644 | 52929 | 50510 | 63739 | 45231 | 48993 | 45732 | 45444 | 41793 | 46597 |
| 27604 | 27924 | 3064 | 33946 | 27077 | 25778 | 26874 | 30843 | 30103 | 36236 |
| 18324 | 18495 | 22085 | 39236 | 42287 | 43695 | 43387 | 48613 | 43266 | 43754 |
| 38183 | 37970) | 38239 | 39236 | 76335 | 76917 | 74801 | 77404 | 84169 | 90782 |
| 48060 | 52748 | 55122 | 54639 | 61563 | 67694 | 69219 | 74832 | 80993 | 84482 |
| 38092 | 39895 | 46041 | 54639 | 320902 | 341473 | 350844 | 378955 | 400256 | 410594 |
| 247061 | 227312 | 255906 | | 792541 | 813581 | 8574() 4 | 886088 | 937106 | 1005464 |
| 475917 | 483149 | 565947 | | 360316 | 358911 | 399645 | 414739 | 401519 | 402070 |
| 176912 | 187988 | 234882 | | $4(04265$ | 445552 | 476855 | 508325 | 609396 | 783880 |
| 241714 | 250373 | $29(183$ | 335587 | 129282 | 166268 | 175668 | 196851 | 212467 | 227947 |
| 76659 | 82882 | 80313 | 103 | 264194 | 272978 | 282213 | 290998 | 297227 | 308242 |
| 145732 | 148375 | 182379 | | 485149 | 463426 | 483115 | 489917 | 491777 | 504184 |
| 278190 | 272406 | 340782 | 3 | 316980 | 316379 | 319941 | 321581 | 325321 | 333075 |
| 184658 | 182357 | 217496 | 269875 | 274639 | 270801 | 277242 | 282494 | 282959 | 276597 |
| 137878 | 143622 | 170326 | | 262651 | 268461 | 273873 | 291430 | 305018 | 312116 |
| 141560 | 142948 | 166828 | 218602 | 50692 | 58397 | 61784 | 68827 | 76880 | 7880)2 |
| 26611 | 26159 | 32795 | 42507 | 6067547 | 62878.56 | 6462646 | 6710545 | 6914334 | 7293568 |
| 3834254 | 3848239 | 4442542 | 5160927 | | | | | | |

	-22()15	$80(0) 43$	-30417	-26362	-132547	-91986	-89651	-85473	-117411	-108349
	-104	-1560	-1966	-1629	278	-6347	-5973	-4110	-1744	-3450
	64	2284	3522	3065	703	5743	5293	5475	5726	5740)
	-1	-12	366	-1159	525	-3080)	-3646	-4794	-4185	-5797
	-606	-1554	-6612	-10459	-17681	-27772	-29421	-32586	-34821	-37265
	6	2456	6742	18416	11041	10513	16316	17476	20684	200003
	-22	312	-150	384	-499	-1157	-252	2543	3178	2888
	126	4435	5531	4464	1953	2822	3101	4390	5169	2587
	-67	-260)	-1426	-4322	-11565	-12277	-9997	-9424	-12884	-14843
	-12	692	814	810	-686	-2056	-1719	-94	-756	-988
	-101	652	1317	993	-1016	-527	-131	-273	-1745	-1621
	-53	558	354	275	-1687	-1315	-550	1	-490	-1567
	-74	1212	2394	2887	3718	1731	-393	-1737	-3893	-5343
	-43	1051	719	1121	-6395	-4156	-5195	-3199	-7757	-9534
	-18	3355	3495	3009	-306()	-4839	-427()	-2622	-2471	-4412
	-491	617	-894	-1176	-3213	-1802	-4216	-5916	-6617	-11669
	-334	1699	1817	4885	4179	3315	4922	3396	5621	5383
	-24	-1478	-5071	-6459	-13442	-13953	-11755	-12923	-19019	-23739
	-11	-188	-1079	-7544	-11677	-15199	-17823	-21586	-25113	-30447
	-175	-2578	-3363	-23973	-38975	-39464	-44528	-47574	-87942	-85574
	23	-8017	-24860)	-90654	-172953	-199502	-207269	-229377	-292239	-333527
	-81	-3788	-15238	-55945	-101343	-111764	-138662	-150586	-148810	-146633
	-24	-9195	-11168	-36787	-77354	-105141	-128438	-139616	-232373	-381997
	-799	-5920)	1551	-10092	-26635	-68123	-65150	-88566	-105180	-113276
	217	-10842	-27628	-39819	-72791	-87948	-85478	-81270)	-116653	-125492
	-22	-930)	-5176	-31198	-85939	-65985	-84484	-85773	-8364()	-94327
	2	-4683	-13583	-39414	-75831	-79734	-83664	-87249	-96088	-100686
	-59	-3969	-11933	-40523	-76876	-724()4	-84535	-81241	-92259	-93946
	-2146	-5124	-16291	-46055	-79436	-87494	-93302	-96318	-121383	-122478
	$1)$	489	14	-4484	-11762	-17260)	-23551	-28134	-35499	-41569
	-26845	39757	-148222	-437746	-100)0966	-1097161	-1194419	-1267159	-1610595	-1861928
Sum 2	36090)	+1971	-57815	-33(469	-844833	-100)7603	-1135258	-1233768	-1388968	-16844182

__A-TECH UNEMP \qquad A-OUTPUT

A-COMB

——B-TEC̄H UNEMP \qquad B-OUTPUUT

B-COMB

__CA-TECH UNEMP __CA-OUTPUT CA-COMB

CB-TECH UNEMP \qquad CB-OUTPUT

CB-COMB

_—DI-TECH UNEMP DI-COMB

——DJ-TECH UNEMP ——DJ-OUTPUT DJ-COMB

—_DK-TECH UNEMP \quad DK-OUTPUT DK-COMB

__DN-TECH UNEMP _DN-OUTPUT DN-COMB

- F-TECH UNEMP -F-OUTPUT F-COMB

I-TECH UNEMP \qquad I-OUTPUT
I-COMB

[^0]: 1. J would like to thank the assistant professor Th. Mariolis for his valuable advice in performing this study.
 2. "They cannot provide a final answer to the long run question of how to enable a modern industrial society to derive the benefits of continued technological progress without experiencing involuntary technological unemployment and resulting social disruption". Leonticf. W.. Input-Output Economics. Oxford University Press. 1986, pp. 372
 3. Erturk, K. Heterodox Theories of Technological Unemployment: Towards a Synthesis, in Competition. Technology \& Money: classical and Post-Keynesian Perspectives (New Directions in Modern Economics Series), Edited by Mark A. Colich, Edward Elgar Publishing Company. 1994.
[^1]: 4. According to the literature, although technological change is usually incorporated in new machinery. the concept of technological change also includes changes in the organisation of production as well as in economic activity, which may be accompanied by the use of new machinery, hut not necessarily. Second, for technological unemployment to be caused, the discosery of some new machine, material or technique is not enough. Even its limited practical application is not enough. The innovation in question must be used widely in order for there to be significant results at the level of employment in the companies of the various branches. This dimension can be seen in the distinction made between 'invention'. 'innovation' and 'diffusion of new technology'. Third, the diffusion of new technology must take place in a short space of time, so as to create impacts without allowing slow processes of adjustment to be completed.
 5. Ricardo argues that technological change can indeed lead to a reduction of the wage fund. Ricardo. D.. On the Principles of Political Economy and Taxation. "The works and correspondence of David Ricardo", edited by Pierro Sraffa, Cambrigde University Press, 1975. chapter © ()n Machinery. Marx too notes that the increase in the number of employed workers depends on the proportionally much more rapid growth of the total capital invested in factories. This process takes place however only in the context of the ebb and flow of the industrial cycle. Moreover, it is constantly interrupted by the technical progress that at one time virtually supplies the place of new workmen, at another, actually displaces old ones. Marx. K. " Das Kapital' I , Verlag Ullstein GmbH,1969, p. 409.
[^2]: 7. Aggregate labour coefficients can also be calculated. The aggregate labour coefficient for a branch denotes the amount of labour required for the production of one unit of finished product of a branch, not only directly but also indirectly, on account of the inputs that are used for the production of the final product of the branch. Just like direct coefficients of labour, the aggregate coefficients also tend to decline over the course of time. Skountzos. T., Intersectoral Relations in the Greek Economy, KEPE, Athens, 1975, (In Greek), p.109. Platt, H., Input-Output Analyse. Verlag Anton Hain KG, Meisenheim am Clan, 1957, p. 105.
 8. OECD. Productivity Manual: A Guide to the Measurement of Industry-Level and Aggregate Productivity Growth - OECD, Paris, 200), p. 9.
 9. OECD, ibid. p. 12.
[^3]: 12. According to the preceding chapter, it is not just change in technology, but a combined change. For simplicity's sake, it is considered here to be a simple change in technology.
 13. The conversion to constant prices for $1995-2000$ was performed using the branch price indices for products due to a lack of production price index data.
[^4]: 14. In the calculation tables, the calculation of the combined influence of 'technological unemployment and output growth for the economy as a whole cannot result from the aggregate of the branches as Sum 1 and for this reason Sum 2 was calculated, which involves the separate calculation of the aforementioned aggregate magnitude.
[^5]:

