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1. Introduction

The economic theory of technological change is a theory of investment 
subject to appropriability problems. At any point in time, there is a feasible 
set of values of cost, quality and variety variables. Each firm is on the frontier 
of its feasible set. The only way to simultaneously improve in all dimensions is 
investment. A firm that buys a flexible manufacturing system (FMS) and 
trains workers in its use, for example, has invested in equipment and training 
that allow it greater variety with the same cost and quality as before. The 
FMS itself was invented by a firm that invested in research. Investment is 
modelled as foregone consumption used as an input into a black box process; 
the output of this process is a larger feasible set. Scale is important because of 
nonconvexities: in particular some investments are fixed costs to be spread 
over as many units as possible. Appropriability problems arise because of 
imperfect competition, externalities, or asymmetric information.

Some recent literature has proposed looking into the blac-box process. 
Solow (1994, p. 52) suggested that “... the production of new technology may 
not be a simple matter of inputs and outputs. I do not doubt that high 
financial returns to successful innovation will direct resources into R&D. The 
hard part is to model what happens then!” Milgrom and Roberts (1992, p. 93) 
argue that not all resource allocation problems are the same: problems with 
design attributes require different coordination mechanisms. And Hayek 
(1948, p. 196) remarks on the treatment of cost curves as objectively given
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data: “What is forgotten is that the method which under given conditions is 
the cheapest is a thing which has to be discovered, and to be discovered anew, 
sometimes almost from day to day, by the entrepreneur, and that, in spite of 
the strong inducement, it is by no means regularly the established 
entrepreneurs, the man in charge of the existing plant, who will discover what 
is the best method.” I will summarize this literature to motivate the 
mathematical model introduced in the main body of the paper.

The first point this literature makes is that existing arrangements do not 
usually exhaust the possibilities afforded by current equipment, knowledge 
and people. Large improvements can be obtained by discovering and 
eliminating waste. Hammer and Champy (1993, p. 37) describe how IBM 
Credit reduced its response time to a credit application from six days to four 
hours. The first step was the discovery of waste: “Two senior managers at 
IBM Credit took a financing request and ... asked personnel in each office to 
put aside whatever they were doing and to process this request as they 
normally would, only without the delay of having it sit in a pile ... performing 
the actual work took in total only ninety minutes. The remainder -now more 
than seven days on the average- was consumed by handing the form off from 
one department to the next.” The second step consisted in understanding the 
relative importance of investment vs. waste elimination. A new computer 
system might be able to “double the personal productivity of each individual, 
but total turnaround time would have been reduced by only 45 minutes” 
(ibid., p. 38). The reason is that waste had not yet been eliminated; the new 
computer system “would have done nothing to eradicate the queue time that 
awaited the forms when they arrived at each office” (ibid., p. 84). The third 
step was to identify the source of waste: “every request (was handled as if) it 
was unique and difficult to process, thereby requiring the intervention of four 
highly paid specialists. In fact, most of the work those specialists did was 
clerical ... and well within the capacity of a single individual when he is 
supported by a computer system.” The fourth step was the installation of the 
computer system. The fifth step was the routing of difficult cases to a team of 
specialists. The result was that IBM Credit reduced turnaround time from 
seven days to four hours; increased the number of cases handled one hundred 
times (not 100%); and reduced the number of employees involved (ibid., p. 
39). The hundredfold increase in productivity could be attributed to investing 
in a new computer system. The reasoning in step two shows why this would be
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a mistake; the critical step in increasing productivity was the classification of 
cases into routine and hard, and their different handling. The next point 
illustrates how costly such a mistake can be.

The second point the literature makes is that misdiagnosis of a waste 
elimination problem for a lack of investment problem is both possible and 
costly. A well-known example is the attempt of General Motors (GM) to 
approach the industry leader, Toyota, in the 1980s. In 1980, Toyota could 
build a car for $1500 less than GM; in small cars, the difference was $2874 
(Keller, 1990, pp. 82, 83). GM had a wide product range, but its models were 
considered by consumers and dealers as only cosmetically different, “victims 
of badge engineering -  changing the nameplate and a few decorative 
features” (ibid., p. 72). Finally, GM had a reputation for low-quality, defect- 
ridden products: “by the Summer of 1981, GM was forced to recall all of its 
1980 standard transmission X-cars (about 245,000 cars) to fix clutch and rear- 
brake systems. At Cadillac, the V-8-6-4 engine was fraught with mechanical 
problems. It followed the diesel engine, also a disaster, and caused massive 
defections from the Cadillac brand. In 1981, the J.D. Power survey ranked 
Cadillac number fifteen out of twenty-two brands” (ibid., pp. 74 and 76). At 
the same time, the competition was doing better: “... consumers now expected 
good performance and high quality to be standard features on their cars. The 
Japanese had taught them to demand that” (ibid., p. 69). As a result, “... in 
1980, GM posted its first loss in sixty years -  a sum of $763 million” (ibid., p.
9)·

GM, and all the Big Three, believed they faced cost-quality-variety 
tradeoffs, i.e. that they were on the frontier of their feasible set. Womack et 
al. (1990, p. 65) report that “most Western companies concluded that the 
Japanese succeeded because they produced standardized products in ultra- 
high volume. As recently as 1987 a manager in Detroit confided in an 
interview with members of our project that ...[the Japanese]... are making 
identical tin cans; if I did that I could have high quality and low cost too.”

This belief was based on experience. One of the most striking findings of 
Womack et al. (1990, pp. 93, 98) was that there were no significant relations 
between plant cost, quality, and variety. Once, however, Japanese plants were 
removed from the sample, tradeoffs appeared. An example of action based 
on this belief is reported in Ingrassia and White (1994, p. 167). “Reuss [then a 
top GM executive] argue that to achieve high quality GM should dedicate
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three of the four GM-10 factories to building just one model each. One 
model, fewer variations, fewer chances for the assembly workers to screw up, 
the argument went. Thus the GM-10 factory in Doraville, Georgia, got the 
Cutlass Supreme, the new plant in Fairfax, Kansas, got the Pontiac Prix, and 
the Oshawa, Ontario, plant got the Chevrolet Lumina. It was another gigantic 
error.” The diagnosis for a firm that believes it is on its efficiency frontier but 
lags the competition is clear: lack of investment. GM invested $70 billion 
during the 1980s (ibid., p. 33). GM’s CFO Alan Smith, as quoted in Keller 
(1990, p. 196), provides some perspective on the magnitude of this sum: 
“From 1980 to 1985, GM spent $45 billion in capital investment, yet 
increased its worldwide market share by only one percentage point, to 22 
percent. For the same amount of money GM could buy Toyota and Nissan 
outright, instantly increasing its market share to 40 percent.”

The results of the $70 billion investment were not those anticipated by 
GM. Its US market share decreased continuously from 46 percent in 1980 to 
30 percent in 1996. Average pretax return on assets in the 1982-1991 period 
was 2.8% for GM and 4.8% for its suppliers; the corresponding figures for 
Toyota were 13% and 7%, respectively (Dyer, 1994, p. 178). GM loses money 
in passenger cars: “The Big Three have been able to raise car prices only by 
6% a year since 1988, while manufacturing costs have been rising at an annual 
rate of 6.5%. ... The magnitude of the profit drain from cars is difficult to 
calculate because it depends on the allocation of corporate overhead, but it’s 
huge. No US company has made a profit on cars once during the last decade. 
Losses have to be in the tens of billions of dollars” (Taylor, 1996, p. 14). GM 
makes money in trucks in North America, and is also profitable in Europe; 
until very recently, though, it has not faced Japanese competition in either of 
these segments. Ingrassia and White (1994, p. 353) state that, in the protected 
European market, “GM Europe could charge hundreds or even thousands of 
dollars more for its vehicles than GM could have demanded for the same cars 
in the US. ... GM Europe would lose money, too, if it had to sell at North 
American prices.” Its protected position withstanding, GM Europe in 1994 
generated $188,278 in revenues per employee, vs. Toyota’s $939,233 
(Automotive Industries 1995, p. 48). Taylor (1992, p. 64) explains the situation 
in trucks: “GM and Ford control the full-size pickup market and price their 
vehicles as any duopoly would. The Japanese aren’t strong competitors, and a 
25% import duty on two-door light trucks puts them at a severe



m a n a g in g  d e s ig n  c o m p l e x it y ... 9

disadvantage.” The Economist (1997) reports that the import duty is still in 
place in 1997.

The $70 billion investment did not improve GM’s relative cost position. 
Ingrassia and White (1994, p. 33) report that “... when the 1980s began, GM 
had the lowest production costs among the Big Three. By the middle part of 
the decade, GM had the highest cost of any major automaker in the world.” 
Taylor (1997 (a), p. 62) reports that this was still true in 1996: “[GM] makes 
almost no money in North America, where it has higher costs than its 
competitors and some of the weakest brands.”

The $70 billion investment did not deliver the expected quality 
improvements. GM’s quality problems were probably the main reason for the 
decline in its market share. Its warranty costs in 1985 were $2 billion, or $300 
per vehicle (Ingrassia and White, 1994, p. 931). Between 1985 and 1991, it 
processed 2.7 million warranty claims for a single problem (stalling) in Buick 
and Oldsmobile models; they were recalled in 1991 (ibid., pp. 98-99). The 
Fiero model was recalled twice, in 1987 and 1989, to fix problems that caused 
fires (ibid., pp. 108, 110). The extent of the damage to GM’s reputation is 
indicated by a 1989 customer survey that found that “GM cars got fewer 
recommendations on average than any brand except the Yugo, a comical 
subcompact that had become the industry’s benchmark for bad quality” 
(ibid., p. 181). Internal GM studies (ibid., p. 427) showed that in 1992 GM 
attained the 1986 quality levels of an average Japanese car; its trucks had the 
highest number of defects of all brands in the market; its warranty costs in 
1992 were $3 billion, or $829 per car.

The $70 billion investment did not deliver the expected results in variety 
and model renewal either. Many of GM’s large number of models were still 
perceived as only cosmetically different; and the new models as not being 
significantly better than the ones they replaced. An example is described in 
Taylor (1992, p. 78): “Buyers not only couldn’t distinguish an Oldsmobile 
from a Buick but also had a hard time telling a $9,000 Pontiac Grand Am 
from a $25,000 Cadillac Eldorado.... This luxury car fiasco cost GM $1 billion 
in 1986 alone.” Ford was able to inflict further damage to GM’s reputation 
with negative advertising that satirized look-alike cars (ibid., p. 134). The 
GM-10 cars, that were being designed for 8 years (1982-90), were perceived 
by consumers as worse than the models they were replacing: “... these cars 
had lost GM $7 billion. They had generated nothing but huge losses, steady
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market-share erosion, and a belief among consumers that GM didn’t know 
how to design good cars” (Ingrassia and White, p. 431). Womack et al. (1990, 
p. 109) report that the A bodies that GM-10 was to replace have proved 
much more profitable in the late 1980s, and the company now plans to 
continue the production of the Oldsmobile and Buick variant indefinitely.” 
This was still true as late as 1997: “The company only recently retired the 
midsize Buick Century and Olds Cipra, which dated to 1982, and it still sells 
the compact Buick Skylark and Olds Achieva” (Taylor, 1997 (a), p. 65). Five 
years after GM’s new management took over and started implementing waste 
elimination ideas, GM “has improved its cost structure, streamlined product 
development, and improved its image, but it still lags behind the industry” 
(ibid., p. 62). Toyota does have more assets per employee, $144,189 vs. GM’s 
$37,559 in 1991 (Williams et al., 1994, table 3.3, p. 35). This does not explain 
its superior performance. As Womack et al. (1990, p. 236) state, extra 
investment rationalizations “did not explain why Japanese firms gained major 
benefits from automation while Western firms often seemed to spend more 
than they saved.”

The third point the literature makes is that waste elimination is the 
outcome of product and process design. Product design eliminates waste in 
the form of redundant components; process design eliminates waste in the 
form of redundant processing steps. Low cost, high quality and large variety 
have to be designed -  in the products and processes of the firm; they are not 
straightforward consequences of investment (hence GM’s unexpected 
experience). To understand this, consider a product as a device that receives 
inputs from the environment and the user, and produces outputs that 
constitute the user experience. Clark and Fujimoto (1991, p. 5) illustrate this 
point using a car driver as an example: “Seated behind the wheel, the 
customer receives a barrage of messages about the vehicle’s performance. 
Some of these messages are delivered directly by the car: the feel of 
acceleration, the responsiveness of the steering system, the noise of the 
engine, the heft of the door. ... All these messages influence the customer’s 
evaluation. ... In essence, the customer is consuming the product experience, 
not the physical product itself.” The behavior of the product, then, is the set 
of input-output pairs it allows.

Each such pair represents a function the product has to fulfill. Design 
starts from desired behavior. Each function is mapped into a physical
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component that realizes it. Product size, mass, ease of fabrication, and 
therefore cost, depend on the number and the individual characteristics of 
components in the product. Cost reduction at the product design stage is 
achieved by mapping as many functions as possible into individual 
components, i.e. by eliminating waste in the form of redundant components. 
This is called function sharing by Ulrich (1995, p. 433), who also provides the 
following example: “A conventional motorcycle contains a steel tubular 
frame distinct from the engine and transmission. In contrast, several high- 
performance motorcycles contain no distinct frame. Rather the cast 
aluminum transmission and motor casing acts as the structure for the 
motorcycle. The motorcycle designers adopted function sharing as a means of 
exploiting the fact that the transmission and motor case had incidental 
structural properties which were redundant to the structural properties of the 
conventional frame”.

Product design is probably the major determinant of cost for many 
products. Whitney (1988) reports on GM and Rolls-Royce studies to this 
effect. He then states: “When senior managers put most of their efforts into 
analyzing current production rather than product design, they are monitoring 
what accounts for only about a third of total manufacturing costs ... they now 
face competition that is reducing drastically the number of components and 
subassemblies for products and achieving a 50% or more reduction in direct 
cost of manufacture.” Morton (1994, p. 11) stresses the importance of design 
for other performance variables: “Good design is the key to manufacturing. It 
is the difference between a product that does a great job reliably, is easily 
fixed if damaged and is made cheaply and quickly; and a pile of junk.”

GM neglected cost reduction at the product design stage. Ingrassia and 
White (1994, p. 112) describe Hamtramck, a GM factory that opened in 1985: 
“Hamtramck was supposed to erase the nearly $2000 a car cost advantage 
Toyota enjoyed ... (Hamtramck’s) cars were hard to build. The front and rear 
bumper of a Cadillac Seville had more than 460 parts and took thirty-three 
minutes of labor to put together. Two years after it opened, Hamtramck put a 
stunning 100 hours of labor -five times as much as Toyota- into building each 
car.” The GM-10 cars were more difficult to build than comparable Ford 
Taurus cars, because they had so many parts they were difficult to assemble: 
“As GM engineers tore apart Tauruses and gathered intelligence about the 
factories in Atlanta and Chicago where they were built, they realized their
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crosstown rival had designed cars that were cheaper to build. Building a 
Grand Prix was like assembling a jigsaw puzzle. It required some thirty-five 
hours of assembly labor. Building a Taurus took about twenty hours of 
assembly labor. In 1988, this translated to a roughly $300 per car advantage to 
Ford -  on assembly labor alone. Ford’s advantage was all the more stunning 
because GM had spent billions to outfit the GM-10 plants with the latest 
automation. Eventually GM would lose as much as $1800 on every GM-10 car 
it sold” (ibid., pp. 160-161). During the redesign of its J-cars in 1989-90, GM 
engineers studied Toyota and Honda cars: “the more the J-car engineers 
learned, the harder they worked to eliminate extraneous parts and make the 
new mold easier to build. The old Cavalier took nearly 50 percent more labor 
time to assemble than a Corolla. The new J-car would have nearly 20 percent 
fewer bolts and widgets than the old model” (ibid., p. 423). This paper 
discusses design for cost reduction in Sections 3, 4, and 5.

Product variety can be obtained in several distinct ways. The first way is 
to design each product separately; no provision is made for parts-sharing 
between products. A firm can then either build its product range before 
orders come in, and provide fast service at high (inventory) cost; or it can 
build to order, providing slow service at lower (inventory) cost. The second 
way, modular product design, allows the firm to avoid these two extremes. All 
the products are designed together. Waste elimination in the form of 
minimizing the number of components is then equivalent to maximizing the 
number of shared parts; build shared parts before orders come in; and then 
assemble to order. Feitzinger and Lee (1997) report that this is done at 
Hewlett-Packard; and Whitney (1988; 1995) at Nippondenso, one of Toyota’s 
main suppliers. The same principle applied to equipment, modular equip
ment design, allows a given set of machines to make different products, while 
minimizing setup and changeover costs. Shingo (1989) calls this principle 
function standardization, and provides numerous examples, many of them 
drawn from Toyota. The same author, in his study of Toyota, warns: 
“Mechanization should be considered only after every effort has been made 
to improve setups using the techniques described. [They] can reduce a two- 
hours setup to three minutes, and mechanization will probably reduce that 
time only by another minute” (Shingo, 1989, p. 44).

GM neglected design for variety, and Shingo’s advice on automation. It 
seems to have reversed the principle of modular product design in two ways.
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First, similar cars used different components, foregoing the benefits of 
eliminating redundancies: for years the company produced 17 ignition
systems where three would have sufficed, and 40 types of catalytic converters 
instead of three or four. The engineering was 180 degrees out of phase. GM 
cars looked alike outside but were all different inside” (Taylor, 1992, p. 59). 
Secondly, in other instances GM compromised variety in order to share parts 
(as opposed to maximizing shared parts keeping variety fixed), foregoing the 
extra revenue variety brings: “GM’s aggressive pursuit of commonality of 
floor panels and other body parts as a way of holding down the enormous cost 
of developing a series of fuel-efficient models during the 1970s and 1980s 
seriously hurt its product differentiation” (Clark and Fujimoto, 1991, p. 149).

GM seems to have reversed the principle of modular equipment design 
as well: “As recently as the 1980s stamping was split among several divisions 
that each produced their own metal parts using different presses and dies. 
This segmented approach resulted in some press systems that ran only 20 
hours a week. Pieces stamped by Pontiac for a certain model wouldn’t fit on a 
nearly identical car made by Buick. GM is now spending $850 million to 
standardize the die production at 13 plants and reduce the number of press
line setups from 57 to six. That’s progress, though it won’t send GM to the 
head of the class. GM will spend about $2700 per ton of stamping, vs. $2200 
to $2300 at Toyota” (Taylor, 1997 (a), p. 62). The same source reports on 
GM’s recent effort to adopt modular product design: “GM is thinking of ways 
to integrate future Chevies, Pontiacs and Saturns with German-made Opels 
to achieve greater economies of scale. ... a compact Pontiac Sunfire is 
designed alongside four other brands as part of a global small-car program” 
(ibid., p. 65). This paper discusses design for inexpensive variety in Section 7.

Quality, in the sense of a defect-free product, can be attained in several 
distinct ways. The first is to build redundant components into the product, so 
that if one component is defective, others will perform its function. It makes 
the product heavy and expensive to build. The alternative is to eliminate 
waste from the product in the form of redundant components, so that testing 
and fault-diagnosis become easier. (The same principle applied to production 
is the well-known lean technique of removing inventory to expose defects.) 
An example is provided by De Micheli (1993, p. 33): “Microelectronic circuits 
are tested after manufacturing to screen fabrication errors. Circuit testability 
affects its quality. A circuit that is not fully testable is less valuable than
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another one that is. For some kind of fault models, increasing the fault 
coverage is related to removing redundancies in the circuit.” In the sense, 
then, that quality is a byproduct of design for cost reduction, quality is free. 
GM’s quality strategy, on the other hand, was not based on waste elimination 
and was bound to produce cost-quality tradeoffs. Alex Mair, then head of 
GM’s Vehicle Assessment center, made this point to GM engineers in a 
speech given in 1986, quoted by Ingrassia and White (pp. 89-93). Mair first 
reminded the audience that GM had invented the automatic transmission in 
the 1930s. He then played tapes of a GM Hydramatic transmission (noisy); 
and a Toyota Camry gearbox (quiet). Finally, he made the point: “People say, 
T don’t believe that. I just drove a Cadillac and it was very quiet.’ That’s true. 
Because we spend a lot of money and a lot of engineering talent to mask that 
noise -  by packing insulation under the hood” (ibid., p. 92). This paper 
discusses design for inexpensive quality in Section 6.

The fourth point the literature makes is that product design is an 
information-processing activity; its cost and duration depend on product 
complexity. This view in- forms the studies of design undertaken by Clark and 
Fujimoto (1991) and Simon (1981). The former, for example, state that 
“Throughout the book we look at the development process as a total 
information system and identify important problems from the perspective of 
information processing” (p. 18). They also have separate chapters on the 
management of complexity (ch. 6) and on problem-solving (ch. 8). 
Complexity of design can be the binding constraint on a firm’s ability to 
improve. Lengauer (1990, p. 938) in his survey of VLSI theory, states: “It is a 
generally accepted fact that the design problem dominates the fabrication 
problem. Put differently, the fabrication technology provides us with means 
to produce circuits that are so complex that we do not know how to design 
them effectively. This is the reason why circuit design is one of the most 
critical areas in computer science today.” Design was also one of the binding 
constraints that resulted in GM’s market share loss in the 1980s: “In 1987, 
GM’s share of car sales skidded all the way down to 36.6%, a drop of nearly 
five points in a single year. Unlike Chrysler and Ford, wealthy GM had 
redesigned almost its entire car line in the early 1980s. It had changed four 
rear-wheel drive to front-wheel drive to reduce weight and improve fuel 
economy. In the rush to get the redesigned cars to market, GM neglected to 
remove all the bugs. The new models weren’t nearly as good as those they
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replaced......GM had taken on too much -  and done it badly. Switching the
drive wheels of a car from the rear to the front requires entirely new 
mechanical systems and changes the dynamics of the car. Once the project 
got under way, corporate momentum demanded that it be completed on 
time” (Taylor, 1992, pp. 76, 77). Design was also the binding constraint on the 
timely completion of the GM-10 program; when the new models were ready, 
demand was no longer there: “it would be the largest new model program 
ever, the ultimate expression of GM’s ability to capitalize on its enormous 
economies of scale. But GM couldn’t pull it off. The world’s largest 
corporaton choked. ... Eight years after the project began, the final GM-10 
car came to the market in 1990 -  but the market had moved. James Womack 
calls GM-10 the biggest catastrophe in American industrial history” (ibid., p. 
731). It is complexity that prevents a firm from taking full advantage of the 
opportunities afforded by its equipment, knowledge, and people, i.e. from 
eliminating waste.

The fifth, and probably most important, point the literature makes is that 
complexity can be managed; and that the way it is managed matters for the 
cost and timeliness of design, and hence for the extent of waste elimination. 
Toyota’s and Honda’s ability, despite their smaller scale, to offer lower cost, 
higher quality, more variety and faster model replacement than the Big 
Three, led to studies of their design processes. The surprising result was that 
their advantage was not due to greater engineering effort: “a totally new 
Japanese car required 1.7 million hours of engineering effort on average and 
took forty-six months from first design to customer deliveries. By contrast, 
the average US and European projects of comparable complexity and with 
the same fraction of carryover and shared parts took 3 million engineering 
hours and consumed sixty months. This, then, is the true magnitude of the 
performance difference between lean and mass production: nearly a two-to- 
one difference in engineering effort and a saving of one-third in development 
time” (Womack et al., 1990, p. 111). These firms had developed distinct ways 
of information processing and problem-solving. Clark and Fujimoto (1991) 
describe concurrent engineering; Hauser and Clausing (1988) quality 
function deployment; and Ward et al. (1995) concurrent set-based design. 
The Big Three understood the design advantages of these rivals and based 
their turnaround efforts on changing their own design methods. Naughton 
(1995, p. 58) comments on the appointment of J. Nasser as head of Ford’s
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product development: “it puts him on the spot to fix Ford’s biggest problem: 
spending too much money and time to bring out new cars. ... By 1999 Nasser 
expects to cut development time from 37 months to 24 months, equal to 
industry leader Toyota. Key steps will be reducing cars’ complexity and 
eliminating redundant parts.” Taylor (1997 (a), pp. 61, 65) describes his visit 
to a GM site where new product designs are kept: “No place is more vital 
than Rigorous Tracking Room. It contains a wall chart 45 feet long that plots 
42 new vehicle programs -the very lifeblood of GM- through their three-year 
gestation. The programs are measured for timeliness, quality, and financial 
performance, and color-coded by complexity. ... It is one thing to design a car 
[AN: here “design” is used to mean “specify”] and quite another to engineer 
it so that customers get it quickly. A chart in the Rigorous Tracking Room 
shows GM’s progress. In 1992 the company needed 42 months to start 
production on a new model once the final design had been set, vs. 31 months 
for Toyota. Now GM can do it all in 31 months, Toyota in 26.” Finally, 
Ingrassia and White (1994, ch. 19) document how Chrysler studied the design 
methods of Honda and Mitsubishi, and then adapted them to achieve 
significant gains in the cost and speed of model replacement.

2. Design Problems

Design aims at achieving desired product behavior at reasonable cost by 
eliminating waste. Several ways of doing this are presented in this paper; they 
all provably eliminate waste, but differ in the time and effort they need to do 
so. By comparing them, our attention is directed towards the specific 
activities that make the difference. In this particular case, our attention is 
drawn to the many, rather unexpected ways problem representation, division 
of design labor, and product architecture matter for the timely elimination of 
waste. This is done in the simplest model of design that does some justice to 
its complexity.

Let D = (0,1} be a two-element set, and Dn its n-fold Cartesian product. 
The Introduction motivates the definition of product behavior as a function f 
mapping Dn (the inputs) into Dm (the outputs). Behavior of electronic 
circuits, and of other products after coding their inputs and outputs as zero- 
one strings, can be thus described. When there is only one output (m = 1), as 
in this section, behavior f can also be described by the set L1 (1). The case 
m > 1 will be considered in the section on design for variety.
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SMinition_2il -  Product behavior (functionality) is a function Dn -* D or 
equivalently a subset B of Dn intended to represent T1 (1).

Design consists in the search for components that, put together, define a 
product with the desired behavior. Components will be made of elementary 
pieces called gates.

Definition 2.2 -  A gate is any function mapping D or D2 into D.
There are four gates mapping D into D: always 0, always 1, identity, and 

negation or NOT (mapping 0 into 1, and 1 into 0). There are sixteen gates 
mapping D2 into D. This section considers only two: logical sum (OR), 
defined by 0+0 = 0, 0+1 = 1+0 = 1 + 1 = 1; and logical product (AND), 
defined b y lT  = l ,T 0  = 0 , l = 0 , 0 = 0. Any function mapping Dn into D can 
be obtained by combining AND, OR, and NOT gates. To see this, we need the 
identity f(x: · · · x. · · · xn) = xif(x1 · · · 1 ·· · xn) + x'f(x1 · · ■ 0 · · · xn), where x' 
denotes the negation of x: both sides of the identity equal f(x: · · ■ 1 · · · xn) 
when Xj = 1, and both sides equal f(x2 · · · 0 · · · xn) when x{ = 0. Repeated 
application of this identity, each time for a different variable, yields a form, 
called a cover, involving only AND, OR, and NOT. For example, the function f 
defined by f(l, 0) = 0, f(0, 0) = f(0, 1) = f(l, 1) = 1, decomposes as follows: 
f(Xp X2) = Xj f(l, X2) + x; f(0, X2) = Xj [x2 f(l, 1) + x2 f(l, 0)] + x' [x2 f(0 ,1) + 
x2 f(0, 0)] = Xj x2 + x' x2 + x'j x'2.

I now formalize this discussion.

Definition 2.3. A literal is a member of D, a variable, or a negated variable. 
Equivalently, a literal is a form xA, where x{ is a variable and A a subset of D, 
where x* = 0, x® = 1, x1. = x{, x°j = x '. Members of D are trivial literals.

Definition 2.4. A cube is a product of literals, i.e. a form n/Ljxf* · If all A  are 
singleton, the cube is called a minterm, and we say that all variables are 
present in it. A cover is a sum of cubes.

Definition 2.5. The behavior b(F) of cover F is a subset of Dn inductively 
defined by

•  b (xf) = D x ... x A x ...x D , where A is in the i-th position;

b (n in=1xfi) = n in=in b (x ^ )= A 1xA2x ...xA n;

2 i = 1 Q ) — Uf=1b(Q ), where F = 2 i = 1 Q1 is a sum of cubes.
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Two covers F, G with the same behavior are called equivalent; 
equivalence is denoted by F ~ G.

As an example b(XjX2 + XjX2 F x '^ )  = Mxi x2) Ub(x'x'2) Ub(x'1x'2) = {11, 
01, 00}. This behavior, however, can also be realized by the less costly cover 
x' + x2. Note also that each behavior B is realized by the maximally redundant

cover FB = 2 p GBmp , where m ^ I l ^ x ?1 ; b(Fg) = UpeBb(mp) = UpeB{|3} =

B.

Any behavior, therefore, can be specified by a cover.

Definition 2.6. A design problem is a cover G. The cost of a cover is the 
number of cubes it contains. A solution to a design problem G is a minimum- 
cost cover F equivalent to G.

In terms of the discussion in the Introduction, the product is a cover and 
its components are the cubes in the cover. The search for minimum-cost 
covers can be focused if some of their properties are known in advance.

Definition 2.7. Let F, G be covers; G is covered by F (G < F) if b(G) Cb(F).
For example, G = x2 x2 + x3x3 is covered by F = x ,. When F, G are cubes, 

G < F iff every nontrivial literal in F is also in G: xix2x3 ^ xix3 ^ xi· Equival

ently if G = II. = t x^i, F = r i j = 1x1Bi are cubes, then G < F iff A  is a subset of

B. for all i.1

Definition 2.8. A cube p is an implicant of cover F if p < F. A cube p is a 
prime implicant of F if p < F and, in addition, p < q < F implies p = q; in 
other words, if any literal is dropped from p, it ceases to be an implicant of F.

For example, x3x2x3 < x}x2 < F = XjX2x'3 + XjX2x3 + x'x'2x3; x; £ F, i = 1, 2; 
XjX2x3 is an implicant of F, but not a prime one; x:x2 is a prime implicant of F; 
neither x. is an implicant of F. Note also that equivalent covers have the same 
set of primes, because F ~ G implies that p < F iff p < G.

Definition 2.9. A cover F is prime if every cube in F is a prime implicant of F.
The covers F = x\ + x1x2, G = x' + x2 are equivalent, but only G is prime: 

XjX2 is not a prime of F since XjX2 < x2 < F, x2x2 * x2.
Primes are interesting because of

Theorem 2.1. Every design problem G has at least one prime solution.
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Proof- L e tF  = 2 iGIqi solve G. Then

b(G) = b(F) = Uieib(q'). (1)

Let Ij be the set of all i in I such that q1 is not a prime of G, and I2 its 
complement.

For each i in Ip drop literals from q1 until it becomes a prime q1 of G. Then

b (q1) £  b (q1) C b (G). (2)

The cover F = 2 iei q‘ + 2 jel q‘ has the same cost as F does; it is prime by

construction; and it is equivalent to G by (1) and (2). Hence F is a prime 
solution of G.

Note that if cost was also increasing in the number of literals in a cover, 
then aU solutions of design problems would be prime. In any case, the search 
for solutions can be restricted to prime covers. Although a prime solution of 
G consists of primes, it does not necessarily consist of all primes of G. For 
example, G = x3x2 + XjX3 + x2x3 is a prime cover, but only the first two cubes 
constitute a solution of G: the third cube, x ^ ,  is prime but redundant. One 
obvious division of design labor, therefore, is to first compute all primes of 
the design problem and then search for, and eliminate, redundant primes.

Definition 2.8. The Quine-McCluskey (QM) procedural division of labor 
comprises two steps:

1. For each design problem G, compute its set of primes jt(G).
2. Find the smallest subset F of ji(G) that covers G  (G  < F  C jc(G)).

3. Computation of Primes
Primes are the components out of which a product exhibiting the desired 

behavior will be built. The set of all primes of a design problem is uniquely 
characterized by two properties, maximality and compactness. Every method 
of computing primes will have, therefore, to transform the design problem G 
into a compact, maximal cover with the same behavior. It will turn out that 
maximality is achieved by removing cubes while preserving behavior; while 
compactness is achieved by adding cubes while preserving behavior. The
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properties of the cubes to be added or removed will delimit the possible 
divisions of the labor of computing primes, and will allow comparisons of 
their efficiency properties.

Definition 3.1. A cover F is compact if every cube p covered by F is covered 
by some cube q in F. A cover F is maximal if for any two cubes p, q in F, p < q 
implies p = q.

The cover ¥ l = x\ + x2 is compact; the equivalent cover F2 = x\x'2 + x2 is 
not, because x\ < F2 but x\ £ XjX'2 and x'j £ x2. The cover F3 = x' + x2 + x2x3 is 
compact and nonmaximal; F2 is maximal but not compact; while Fj is both 
maximal and compact. Definition 3.1 is interesting because of

Theorem 3.1. A cover F consists of its primes (F = jt(F)) iff it is both compact 
and maximal.

Behavior-preserving maximality is easy to achieve, because p < q implies 
p + q ~ q: If p, q are in F and p < q, then remove p from F. This gives rise to

Definition 3.2. The maximal equivalent M(F) of F is what remains of F after 
all non-maximal cubes are removed.

Behavior-preserving compactification of F involves adding cubes to F. 
For example F = x 'x '2 + x2x3 is noncompact because x'3x3 < F but x'3x3 ^  XjX'2 
and x'x3 ^ x2x3: hence any compactification of F must add to F a cube 
covering XjX3, namely either x'1? or x3, or x'x3 itself. Since neither x' nor x3 are 
implicants of F, the only behavior-preserving compactification of F is F + x' x 
To understand the general case, we need the next two definitions.

Definition 3.3. The distance dip. q) of hvn nonzero cubes p = Tl"=lxp ,

<1= 1̂  = i is the number of their opposed literals, i.e. d(p, q) = #{i: AflBj = 0 }.

For example, d(Xlx2, x ^ )  = 0, d(xp X;x2) = 1, d(Xlx2, x;x 'x3) = 2, 
d(XjX2x3, x'jX2x3) = 3.

Definition 3.4. Let dpq = 1, and let x( be the unique variable such that A  D B. = 0 . 
Then the consensus c(p, q) of the two cubes is obtained by multiplying p and 
q after removing the opposing literals x(Ai and x^, i.e. c(p,q) = T ^ ^ x p ^ i .

For example, c(xp x;x2) = x2, c(Xlx2, x'2x3) = x ^ .

Theorem 3.2. Let p, q be two cubes in F at distance one from each other. 
Then F ~ F + c(p, q).
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Proof. Since dpq = 1, p = xu, q = x'u for some variable x not in u or u. Then 
F = p + q + G, while F + c(p, q) = p + q + uu + G. Hence, it suffices to show 
that xu + x'u + uu ~xu + x'u. In fact, both sides equal u when x = 1, and both 
sides equal n when x = 0.

Theorem 3.2 shows that adding to F the consensus of any two cubes in F 
isbehavior-preserving. The next theorem suggests that adding consensus 
cubes is necessary for compactification.

Theorem 3.3. A cover F is compact iff the consensus of any two cubes in F is 
covered by some cube in F.

The last three theorems suggest how to compute primes.

Theorem 3.4. The primes of design problem G can be obtained by repeated 
application of the following two rules, until neither applies:

1. If p, q are in G, and p < q, then remove p from G;

2. if p, q are in G, but their consensus c(p, q) is not covered by any cube in G, 
then add c(p, q) to G.

Proof. By Theorem 3.2, application of rule 2 preserves behavior. By the fact 
that p < q implies b(p + q) = b(q), application of rule 1 preserves behavior. 
Hence, all the covers derived from G by application of those rules behave as 
G does. If neither rule applies to a cover, then this cover is maximal and, by 
Theorem 3.3, compact. Hence, if the process terminates, the resulting cover 
is maximal, compact, and equivalent to G, i.e., by Theorem 3.1, it is the set of 
primes of G. To prove termination, note that rule 2 can add to G at most all 
cubes formed out of Xj... x ; that rule 2 can be applied only once to each pair 
of cubes; and that rule 1 can only reduce the number of cubes. Hence, both 
rules will cease to apply after a finite number of applications.

The division of prime-generating labor can thus be based exclusively on 
efficiency grounds, since by Theorem 3.4 the order of cube additions and 
removals will affect neither correctness nor termination. The earliest such 
division, due to Quine and McCluskey, is based on the observation that rule 2 
can be simplified if the original cover G consists of minterms only. If p, q are 
minterms at distance one from each other, then p = xu, q = x'u for some 
variable x, i.e. their nonopposed parts have to be equal. Rule 2 replaces xu + x'u 
by xu -I- x'u + u; rule 1 then replaces the latter, by u. Hence, the two rules can 
be combined into one: replace any instance of xu -1- x'u by u.
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For example, when n = 3, the cover F1 = x '^ x ^  + x^x'-, + x ix2x3 + 
XjXjXj + x1x2x3 reduces to F2 = x'2x'3 + x\x!3 + x2x'3 + x2x'3 + x:x2 after applica
tion of xu + x'u = u to all possible pairs in Fr  It is remarkable that although 
F2 consists no longer of minterms, the same rule applied to F2 suffices to 
generate a prime cover. It is not necessary, for instance, to add to F2 the 
consensus of x}x2 and x'2x'3, namely x ^ ,  because this term is already in F2. It 
suffices to apply the rule xu + x'u = u to F2 to obtain the prime cover F3 = 
x3x2 + x'3. The next definition and theorem establish the correctness of the 
procedure just outlined.

Definition 3.4. Let F be a cover; then
A(F) = {t: there exists a literal t  such that it, V t GF}.
S(F) = (p: there exists a literal l  and a cube t such that p = it  E F, 1 1E F}.

The set A(F) represents the new cubes generated from applying the rule 
it  -I- l 't -* t on F; while S(F) represents the cubes deleted from F as a result of 
the application of the same rule. The next theorem shows that the labor of 
computing primes can be split into n + 1 phases, where n is the number of 
variables in F.

Theorem 3.5. Let G be a cover, and b(G) the set of its minterms. For each t = 
n, n -1 ,..., 1, let Fn = b(G), Ft_1 = A(Fl), S* = S(Fl), tcx = F l \ Sl. Then the set 
of primes of G is rc(G) = Utn=1Jil.

The search for pairs (xp, x'p) does not have to consider all pairs of cubes 
in F: note that xp contains one more positive, nontrivial literal than x'p does. 
Hence, cubes in F can be sorted according to the number of such literals they 
contain; and application of the rule xp -I- x'p = p restricted to cubes differing 
by one in this measure.

Definition T5. The number ^(p) of positive nontrivial literals in cube p = 
is X(p) = # { j: A. = {1}}.

For example, ¿.(x') = 0, X(x'y) = 1, A(x'yz) = 2.

Definition 3.6. Iterative prime generation method (Quine - McCluskey). 
Given an arbitrary design problem G

1. Change problem representation, i.e. compute the behavior b(G) of G 
(Def. 2.5) and replace G by the equivalent cover Fn consisting of all 
minterms in b(G).
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2. Sort the minterms in Fn into groups Fj,F",...,F", where F" = {pE Fn : 
X(p) = i}.

3. Divide the labor of computing F t_1 = A(Fl). For each i = 0, 1, n, 

compute F* 1 = A(F| U F |+1); then set F* 1 = U ^ F j -1.

4. Divide the labor of computing Sl = S(Ft). For each i = 0, 1, t,

s : = s (f | u f ;+1), St= u ; , 0s;.

5. Set Jtt = Ft\St, n(G) =

The next example shows that step 1 of the QM method cannot be omitted.

Example 3.1. G = x  ̂ + x2x2 is not a cover of minterms, since x' is not a 
minterm. Although G is not prime (% < G but x2 £ x'p x2 £ x1x2), neither A 
nor S apply on G; hence, the iterative method without step 1 cannot find the 
primes of G. Applying step 1 on G yields F2 = XjX2 + x 'x '2 + XjX2, A(F2) = 
( x'p x2), S(F2) = F2. Hence, F1 = A(F2) = x  ̂+ x2 = the primes of G.

The cost of step 1 of the iterative prime generation method is the cost of 
generating and storing the minterms in the behavior of G. For example, when 
G = Xj + x ̂ x2x3, then F3 = x1(x2x3 + x2x'3 + x'2x3 + x'2x'3) + x ix2x3· Each p G G 
that contains k = k(p) variables has to be replaced by an equivalent cover 
consisting of 2n-k minterms. Hence Fn can contain up to 2 pGG2n k(p)

minterms, i.e. is an exponential function of the descriptional economy 
coefficients n -k (p ). The next example exhibits a family < Gn > of covers with 
each Gn containing exactly two cubes, but with |b(Gn)| = 2n_1 + 1.

Example 3.2. G = x, + x 'x ,x„... x , Fn = x,K + x 'x^x,... x_, n > 2, where 
Kn ~ 1 is a cover recursively defined by = x2 + x'2, Kn = xnKn 2 + x/nKn_r  Kn 
contains all minterms built from x ^ ..., xn and is thus a cover of 2n_1 minterms.

The cost of step 2 (sorting) of the QM prime generation method is 
proportional to nN logN, following standard sorting algorithms described in 
Cormen et al. (1990,chapter 9.1). Step 2 has to be performed only once. Step 
3, however, has to be repeated T times; T is bounded from above by the 
number of variables n, since each application of A adds cubes with one 
variable less. Step 3 requires, for each i = 0 ,..., n checking each pair (p, q) in

F jxF t
i +1 for the pattern p = x'w, q = xw. There are such pairs,
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and each check takes up to n comparisons. Hence step 3 takes in all

n2 ni =0 F F i +1 comparisons. Recalling that F — U^gFj , this number is

bounded by n F* . In many cases s N for all t, so total cost is n T N2 < n2N2.

In these cases, the strategy of the QM method, namely trading off a 
maximally explicit problem representation for a better division of search 
labor, pays only if the descriptional economy coefficients n-k(p) are small, 
i.e. if the original cover G is already nearly maximally redundant.
There are other cases, however, where Fn has more primes than minterms

(hence forsome t Fl > N ), as shown in Example 3.3 below. In such cases,

the only upper bound on Fl is 3n, namely the number of cubes formed out

of n variables. The labor of step 1 is then wasted, since it is inevitable to write 
down the primes of Fn.

Example 3.3. Let Bn be the set of all 0-1 vectors x in Dn such that the 
(arithmetic) sum + ... + xn is not divisible by 3. Let jrn be the number of

i· jtprimes of Bn. Then h m ^ ^  — = <*> along the subsequence n = 6k + 2.
2

This statement (proven in the appendix) shows that there are covers that 
have many more primes than minterms, since the number of minterms is 
bounded above by 2n.

QM’s iterative prime generation method illustrates a design philosophy: 
Represent a problem in a maximally explicit way in order to apply better

divisions of search labor (only cubes in adjacent groups F[, F|+1 need to be

compared). A different design philosophy is to maintain the descriptional 
economy of cubes relative to minterms, divide the design problem itself into 
subproblems, compute the primes of subproblems, and then combine them to 
form the primes of the original problem. This philosophy, divide-and- 
conquer, is different from the iterative one of QM: QM never divides the 
design problem itself; each iteration produces either primes of the original 
problem or cubes to be used by later iterations, not primes of subproblems. 
Divide-and-conquer expresses a design problem as a product of two simpler 
ones; it then computes primes for each element of the product separetely, 
and finally combines them into primes of the original problem.
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Definition 3.7. The product of two cubes p = 11,1 , x f '. q = 11", :1 xf* is the 

cube p q =  ITi = 1xfinBi. The product of two covers F = 2 iGIp1 and 

G = 2 jGJq‘ is the cover FG  = 2 iGI2 jGJp‘qj .

The product of F = x1 + x2x3, G = x'jX4 + x3x'4x5, for instance, is FG = 
x1x3x'4x5 + x2x3XjX4 + x2x3x4x5 (zero cubes and duplicate literals deleted). 
Note that pq * 0 only if dpq = 0.

Definition 3.8. Let F be a cover and x a variable. The cofactor Fx of F with 
respect to x is F with every instance of x deleted, and every cube containing x
deleted. Similarly, F* is F with every instance of x deleted, and every cube 
containing x deleted.

If F = XjX'2 + x'x3 + x2x3, for instance, then F = x'2 + x2x3, Fx' = x2x3 + x3, 
FX3 = X2 + Xj + XjX'2, FX3 = Xlx'2.

Recall that M(F) is the maximal equivalent of F (all nonmaximal cubes 
deleted); and that jr(F) is the cover consisting of all primes of F. The result 
that allows a divide-and-conquer computation of primes is

Theorem 3.6. Let x be any variable occurring in cover F. Then ji(F) = M((x' +
"(Fx)) (x + "(Fx-)))·
Example 3.4. Let G = x' + xy. Then Gx = y, Gx, = 1; Jt(Gx) = y, Jt(Gx,) = 1; x' + 
jt(Gx) = x' + y, x + ji(Gx,) = x + 1 ~ 1. Hence jt(G) = M(x' + y) = x' + y. Note 
that step 1 of QM was avoided.

Straightforward application of Theorem 3.6 may require computation of 
all 2n cofactors of a design problem in n variables. It is thus important to split 
the design problem along variables x such that cofactors with special 
properties, requiring no further decomposition, are obtained as early as 
possible.

Definition 3.9. A cover F is monotone in x if all instances of x in F have the 
same sign, i.e. they are either all primed or all unprimed. F is monotone if it is 
monotone in each variable.

The cover F = XjX3 + x'2x3 + xjl'2 is monotone (increasing) in xv 
monotone (decreasing) in x^ and nonmonotone in x3; it is not monotone. The 
cover G = x:x3 + XjX̂  is monotone. The next theorem suggests a good division 
of the design problem in order to compute primes.
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Theorem 3.7. If F is a monotone cover, then Jt(F) = M(F).
The cover G = x2x3 + XjX2, for instance, satisfies G = Jt(G) since G is 

monotone and contains only maximal cubes. The cover G + XjX^ satisfies 
jt(G  + XjX^) = G, since it is monotone and XjX'^ is covered by x1x3.

Theorem 3.7 suggests that design problems should be divided along their 
non-monotonic variables, so that subproblems become monotone after the 
fewest possible decompositions. This helps avoid exponential blowup.

Another problem of divide-and-conquer prime computation is that Fx 
and Fx, may share many cubes, resulting in unnecessary duplication of effort. 
The cover F = x:x2 + x'jX3x2 + x'2x3 contains two nonmonotonic variables, x1 
and x2. The cofactors with respect to xp namely, F = x2 + x'2x3, Fx, = x2x3 + 
x'2x3, share the cube x2x3, and would share any cube independent of xr  The 
cofactors with respect to x^ namely Fx = x + x'x^ F , = x3, do not share any 
cubes because all cubes in F depend on It pays, therefore, to divide the 
design problem along the nonmonotonic variable that appears in most cubes. 
In case of a tie, it pays to choose a variable x that minimizes the difference 
between positive and negative instances, so that size differences between Fx 
and Fx, are minimized. This is because detection of non-maximal cubes in F 
requires checking each pair (p, q) in F x F  for the pattern p < q, and there are 
|F|2 such pairs, i.e. the cost of constructing M(F) is a convex function of |F|. A 
variable that satisfies these requirements (nonmonotonic, most instances in 
F, most balanced instances) will be called “appropriate” in the next definition.

Definition 3.10. The divide-and-conquer prime computation method. Let F 
be a cover. Then

1. If F = 0, or F contains exactly one cube, then ji(F) = F.
2. If 1 £ F , then jt(F) = 1.
3. If F is monotone, then jt(F) = M(F).
4. If F is not monotone, then pick an appropriate variable x and divide the 

problem as follows

Jt(F) = M((x' + jc(Fx))(x + Jt(Fx,)).

The algorithm will terminate, since decomposition will eventually reduce 
each co-factor to one of the three first cases. By Theorems 3.6 and 3.7, the 
algorithm will compute the primes of F. Its cost is determined by the number 
of decompositions required to arrive at cofactors that satisfy one of the three
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first cases; and on the number of primes of F. Note that if only one 
decomposition is required, say along x, then the algorithm will perform one 
multiplication of covers, namely jt(Fx) x ji(Fx,), since (x' + jt(Fx)) (x + jr(Fx,)) 
= xjt(Fx) + x'jt(Fx,) + jt(Fx) x jt(Fx,). If two decompositions are needed, say 
along x and y, then the algorithm will perform three cover multiplications, 
namely ^(F^) ji(F^,), ji(Fx,y) Jt(Fxy), and jr(Fx) x Jt(Fx,). In general, if 
decomposition along T variables is needed, 2T- 1 cover multiplications need 
to be performed.

An upper bound on T is the number of nonmonotonic variables of F: 
Another upper bound is maxpeF k(p), where k(p) is the number of variables 
in cube p, since at least one of cofactors Fx, F- contains a cube of F with one 
variable less. Hence, divide-and-conquer will save labor relative to QM on 
covers that contain many monotonic variables, and/or have high descriptional 
economy coefficients n-k(p). Labor will be wasted, on the other hand, on 
covers that are nearly compact but have few monotonic variables. This is 
because divide-and-conquer, unlike QM, does not seek cubes at distance one 
from each other in order to form their consensus; it avoids this search by 
subdividing the design problem in search of monotonic, or at worst single
cube, subcovers. It will thus fail to recognize a cover that is already (nearly) 
compact, as the next example shows.

Example 3.5. Let the family of covers < Fn > be inductively defined by F2 = 
x .x ', Fn = Fn_1x' if n is even, Fn = Fn-1x' -1- x.x,,... x if n is odd. Fn is the cover 
that contains, for each odd k < n, a minterm with exactly k positive literals. 
For example F5 = F4x'5 + xx... x5 = F3x'4x'5 + xl . . . x5 ~ (F2x'3 + XjX2x3) X4X5 + 
x3x2 ... x5 = x ^ x ^ x 'g  + x ^ x ^ x ^  + x f a x ^ X y  Each Fn is already prime, 
since any two of its cubes are at distance two or more, and all are maximal. 
Each Fn contains Nn = n/2 cubes. QM will sort Fn into groups F", FI], F", ..., 
each consisting of one cube, and then stop; it will thus spend only sorting 
labor nNlogN = n - lo g -  . Divide-and-conquer on the other hand will divide

each Fn along xn if n is odd, or along xn-1 if n is even. Hence, recursively, it will

split the design problem exactly Tn = |̂ times, and will then perform 2 n- l

cover multiplications. It will thus be exponentially more costly than QM on 
this cover.

Ruddel and Sangiovanni-Vincentelli (1987, p. 739) briefly describe a
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third prime generation method that, like QM but unlike divide-and-conquer, 
derives a more explicit problem representation before starting generating 
primes; and, like divide-and-conquer but unlike QM, it seeks to exploit 
properties of monotonic covers. The design problem G is first rendered more 
explicit by deriving a complementary cover G', i.e. a cover whose behavior 
b(G') equals Dn-b(G ). Then a new monotonic cover IG is derived, such that 
jc(Ig) = M(Ig) = jt(G). As the next example will show, the construction of IG 
is based on a different division of labor, inspired from inductive 
generalization. The goal of deriving primes of G is (roughly) split into the 
subgoals of generalizing each implicant p of G (by dropping literals) until any 
further generalization would cause the behavior b(p) of p to intersect b(G'), 
namely the (forbidden) behavior of G’s complement.

Example 3.6. Let G = x1x2x3 + x'^Xg + xix2x3· ^  complementary cover of G is 
G' = x'3 + x 'x2. It is obvious (and shown in the Appendix) that any implicant p 
of G must be at distance one or greater from each cube in G', since b(p) C 
b(G), b(G) fl b(G') = 0 . To express this, let zk., k = 0,1, j = 1, 2, 3 be new 
binary variables with the following interpretation: z.. = 1 if there is an 
implicant of G that contains xk, zkj = 0 if no implicant of G contains xk (recall 
that x® = xj, xj = x.). For each j we must have zQj + zV} = 1, since each x. appears 
in G, either primed or unprimed, or both. By inspection of G' in this example, 
z03 = 0 because no implicant of G can contain x'3; and either zQ1 = 0 or z02 = 0, 
because no implicant of G can contain x'x'2. The formula that expresses these

two conditions is Ig = zo3(zoi + zo2) = zo3zoi + z03z02· Ig by construction
monotonic decreasing, and in this example prime (all its cubes are maximal). 
To obtain the primes of G, take each prime of IG and replace zkj by Xj1-k. To

see why this makes sense, take z03z01 , the first prime of IG; it is equal to 1 iff
Z03 = zoi = 0, i.e., from the equations z0j + zx] = 1, iff z13 = zn = 1, i.e. from the 
interpretation of the zkj, iff there is an implicant of G that contains x3 and x1?
namely x3xr  This is also the result of replacing z03: by x3~° = x3 and z01 by
x i-o — y Ai xr

To see why XjX3 is a prime of G, note that d(x3, XjX'2) = 0 and d(x1? x'3) = 0, 
i.e. any cube covering x:x3 is at distance zero from some cube in the 
complement of G. In this example, then, jt(G) = x1x3 + x2x3; this can be 
verified by applying QM on G.
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The next two definitions describe a systematic way of constructing IG out 
of G'.

Definition 3.11. Positional notation for subsets of D : {0} is represented by 
the vector 10, i.e. the first element of D = (0,1} is present and the second is 
absent; {1} is represented by 01; and D by 11 (0  is not represented).

Definition 3.12. For each j = 1, ..., n and each cube q * 0, a (q )  is positional 
notation for the exponent of x. in q, i.e. a (q )  = 10 if q contains x j; 01 if it 
contains x .; and 11 if q does not depend on x . The first element of cc(q) is 
a 0j(q), and the second a ^ q ) .

Definition 3.13. The “inductive generalization” prime generation method. 
Let G, G' be implementary covers. First construct the (monotonic) cover IG 
in four stages:

1. Hj(q) = (a0j (q) + zoj)(a^(q) + z\.) for each q e G '. j  = 1 ,.... n.

2. H(q) = 2 jn=1Hj(q).

3- I = n q e o H(q).

4. IG is obtained from I by performing the multiplications in I’s definition 
and deleting any cube that contains a term (this enforces the 
constraint zQ. + z}. = 1).

Secondly, extract the primes of IG and G:

5. ji(Ig) is obtained from IG by eliminating nonmaximal cubes.

6. jt(G) is obtained from ji(Ig) by replacing every instance of z'kj by x1_k.

The correctness of this procedure is guaranteed by

Theorem 3.8. For any design problem G, Jt(G) and Jt(IG) = M(IG) are 
isomorphic. Each prime of IG gives rise to a prime of G by replacing every 
instance of z'kj by x |_k.

The benefit of generating primes by “inductive generalization” is that 
fewer cubes are first generated and then discarded during prime generation, 
because excessive cube generation is checked by our explicit knowledge of G'. 
To see this, recall that in Example 3.6, every cube of IG gives rise to a prime of 
G, i.e. waste in the prime generation process has been eliminated. The 
following example shows that his is not the case with divide-and-conquer.
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Example 3.6 (... continued). We compute the primes of G = xyz + x'yz + xy'z 
by divide-and-conquer: Gx = yz + y'z, Gx, = yz, G^ = z = G ^,. Hence Jt(Gx,) -  
yz, ji(Gx) = M(y' + ^(Gxy))(y + ^(G^,)) = M((y' + z)(y + z)) = M(y'z + yz + 
zz) = z. Finally, Jt(G) = M((x' + jt(Gx))(x + ji(Gx,)) = M((x' + z)(x + yz)) = 
M(x'yz + xz + yzz) = xz + yz. The cubes first generated and then discarded 
are y'z, yz (in the computation of jt(Gx)), and x'yz (in the computation of 
ji(G)).

An example of a more explicit problem representation developed by 
Toyota is described in Ward et al. (1995). Engineers have to pick parts 
specifications out of “engineering check sheets” (or lessons-learned books) 
that describe explicitly those specifications that are likely to be 
manufacturable. At GM, on the other hand, “designers were encouraged to 
draw the cars unencumbered by technical specifications that were believed to 
inhibit creativity” (Peters, 1993, p. 730). Lessons-learned books render the 
design problem more explicit, and thus guide search in the same way that a 
complementary cover guides the search for primes, namely by providing an 
easy check (no derivations) of what is feasible and what is not. These books 
were being developed for the last 15 years (ibid., p. 52). An idea of the design 
effort involved is given by Okino (1995, p. 82): “Toyota has as many as 
300.000 specifications relating to quality standards for its parts. Specs for 
structural components cover materials, processing methods, precision levels, 
strengthen factors, and so on. One could say this book represents the bible of 
Japanese auto quality.”

The cost of generating primes by “inductive generalization” is the cost of 
two backroom operations, namely multiplication and complementation. Note 
that multiplying two covers F, G using only the definition of product cover 
takes |F| |G| operations. It follows that to multiply N covers, F j . . . FN, each of 
size |F‘| = M, takes |F j |F2| ... |F j  = MN operations. Exponential cost is 
unavoidable when, for instance, the covers multiplied do not share variables. 
To reduce the cost of this backroom operation, therefore, good design has to 
exploit the special structure of the covers multiplied. First note that each 
H.(q) term, after performing the (four) multiplications involved in its 
definition and eliminating the z'^z'^ term, contains at most one literal, namely 
Hj(q) = Z'0J if cij(q) = 10; H^q) = z'n if «¡(q) = 01; H^q) = 0 if c^q) = 11. 
Covers such as H(q) that are sums of literals will be called atomic.
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Definition 3.14. The monotonic-atomic (MA) cover multiplication problem 
consists of N covers F1... Fk ... FN such that:

(a) Each cover is a sum of literals, i.e. for each k = 1, ..., N, Fk = 2 "=1 x ^ j; 
Ak. * D for all k, j.

(b) Each variable j has the same sign in all covers Fk, i.e. if Akj * 0 , Atj * 0 , 
then A .. = A . .kj tj

The covers H(q), for instance, are such that A . * 0  implies A . = {0} (all 
variables are primed).

The examples that follow show some important factors to be taken into 
account when dividing cover multiplication labor. The end result of the 
discussion will be a tree whose leaves are the covers to be multiplied. This 
tree determines exactly which covers are to be multiplied first, second, etc., to 
save labor; and is thus a “good” division of such labor.

Example 3.7. Order of multiplications. Let < Fn > be a sequence of MA 
covers with |F I = n and such that if n * m then F , F have no variables in 
common. An example of such a sequence is Fj = xp F2 = x2 + x3, F3 = x4 + x5 + 
x6, ... . When N = 4, for instance, multiplying in the order ((F1F2)F3)F4 takes 
1x 2 + 1x 2 x 3 + 1x 2 x 3 x 4 = 2 !+3 !+4 !=32  operations; while multiplying

in the order Fj (F2(F3F4)) takes 3x4 + 2 x 3 x 4  + Ix 2 x 3 x 4  = 2! + p + ot = 

60 operations. For general N, the corresponding cost figures are AN = 2 k=2 k! 

and BN = 2  k=2 n -~  = 2  k=2 £ j k !, respectively. The ratio BN / AN is always

larger than 2N-2, as shown by a simple inductive argument.

Example 3.8. Shared cubes. Covers F = p + A, G = p + B share cube p. Their 
product FG = p + AB is smaller in size than |F| |G |; and requires only 1 + |A| |B| 
operations, i.e. fewer than |F| |G |.

Example 3.9. Covered cubes. Let p < q, and let F = p + A, G = q + B. Then 
FG = p + qA + AB is smaller in size than |F| |G|; and requires only |A|(1 + 
|B|) operations, i.e. fewer than |F| |G |.

Example 3.10. Elimination of nonmaximal cubes. Let Fj = Xj + x2, F2 = x3 + 
x F3 = x1 + x3, F4 = x2 + x4, F5 = x5 + x6, and consider the multiplication
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((F1F2)(F F4))F5. Letting i stand for xj5 F jF2 = 13 + 14 + 23 + 24; F3F4 = 12 + 
14 + 23 + 34; (F1F2)(F3F4) = 14 + 23 + (13 + 24)(12 + 34) = 14 + 23 + 123 + 
134 + 124 + 234. At this point (the last four) nonmaximal cubes can be 
eliminated, and multiplication with F5 will take only four operations, as 
opposed to 12 if nonmaximal cubes are not eliminated.

Definition 3.15. The cost c(F, G) of multiplying two MA covers, and also the 
size of the resulting cover, is given by

c(F, G) = |F flG | + |F \G |- |G \F |.

For example, if F = x + y, G = x + u + u, then F fl G = {x}, F \ G = {y}, 
G \F  = {u,u}, c(F, G) = 1 + 1x2 = 3. The product cover FG = x + uy + uy is 
of size 3.

The information contained in c(F, G) can be used to order the covers 
F' ... FN of an MA multiplication problem: Covers that cost less to multiply 
should be closer together in the ordering.

Definition 3.16. Let M = < F1, ..., FN > be an MA multiplication problem. To 
order its elements by the least-cost principle, pick any Gj E M and set T1 = 
{Gj}. Then, for each t, 2 < t < N -  2, pick G G M \T ‘ to be the cover least 
costly to multiply with any of the covers in Tl, i.e. G is a solution of minHeM̂ xt 
mini <i<t c(Gj, H). Finally, Tt+1 = Tl U {G}; and G is ordered immediately 
after the cover Gj of T* that, together with G, solves this minimization 
problem. Rename the covers in Tt+1 to reflect the new order.

A least-cost ordering of the covers in example 3.10 for instance is Fp F3, 
F2, F4, F5. Creating a least-cost order takes N -  2 steps; at each step, the 
minimum of at most N2 numbers c(F', F )  is chosen. Choosing the minimum 
of L numbers takes exactly L - 1 comparisons (Cormen et al., 1990, p. 186). 
Hence, the total cost of creating a least-cost order cannot exceed (N -2)(N 2- 1),
i.e. it is cubic in N.

A least-cost order, while excluding most options, does not completely 
determine how to multiply N covers. For example, if Fl < F2 < F3, we know 
that F1F3 will not be performed; but we don’t know whether to perform 
(F1F2)F3 or F j(F2F3). In what follows, L. is an estimate of the least cost of 
multiplying F F i+1 ... F , and Sj. an estimate of the size of the resulting cover. 
F j ... Fn are assumed to be in least-cost order.
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Set b„ = 0, s„ = |Fj, bu+1 = s. i+1 = c(F, Fi+1). For i < j, we compute 
recursively:

b ij =  .mtin. {b.k + b k+ l,j +  s iks k+ , j } ;
J isk<j J J

kij = arg min {bik + bk+,; + siksk+k j>;
1 isk c j  3 3

S ij = S ikS k+lj»  k  =  k ij

The computation ends when b1N has been obtained. The recursive 
equations have to be invoked N -  2 times, in order to decompose b1N into 
parts that involve only the known quantities b», s ,̂ b{ j+1, s. i+1. The discussion 
of divide-and-conquer showed that, in general, the cost of solving such 
equations is exponential in the depth of recursion (N -2 ). In this particular 
problem, however, the exponential cost is avoidable, because it is due to 
solving the same subproblems repeatedly. The estimate b46, for instance, will 
be computed every time bij is computed, i < 4 < 6 < j, namely 3(n -  6) times. 
To avoid this we solve the recursive equations bottom-up (by dynamic 
programming). We first compute bj i+2, i+2 for each i = 1 ,..., N -  2 using the
recursion equations and E i+1, Sj i+1; then we compute bj i+3, si j+3 for each i = 
1 ,..., N -3  in the same way. In each round we use data from previous rounds, 
but we don’t recompute them.

Example 3.11. Let Fj = Xj + x2, F2 = xx + x3, F3 = x3 + x4, F4 = x2 + x4, F5 = x5 + 
x6, be an MA multiplication problem in least-cost order. Clearly, s- = 2, bu = 
0, b12 = b23 = b34 = 2, b45 = 4. We first compute bi>i+2, i = 1,2,3. For example,
bi3 = m'ni<k<3̂ bik + bk+i,3 + siksk+i,3> = min<2 + 2X2, 2 + 2X2} = 6; k13e  {1,2},
say k13 = 1; s13 = sn s23 = 2x2  = 4. Similarly, b24 = 6, k24 = 2, s24 = 4; b35 -  6, 
k35 = 4, s35 = 4. In the next round, we compute bj i+3, i = 1, 2. For example,

b25 = min2<k<5<b2k + bk+1,5 + S2kSk+l,5> = m*n<b35 + S22S35’ b23 + fe45 + S23S45>
b24 + s24s55} = min{6 + 2x4, 2 + 4 -I- 2x4, 6 -I- 4x2} = 14; k25£  {2,3,4}, say 
k25 = 2; s25 = s22s35 = 8. Similarly, b14 = 8, k14 = 2, s14 = 4. Finally, in the last 
round we compute bij+4 for i = 1, i.e. b15. By the recursion equation b15 =
mini<k<5^bik + bk+i 5 + siksk+i 5  ̂ = mini 1 4  + 2x8, 2 + 6 + 2 X4, 6 + 4 + 4x4, 
8 + 4x2} = 2 + 6 +  2x4  = 16; k15 = 2; s15 = s12s35 = 8. The information con
tained in k.. is now used to determine the order of multiplications: Fj ... F5 = 
(F1F2)(F3F4F5) = (F1F2)((F3F4)F5), because, respectively, k15 = 2, k35 = 4.
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The dynamic programming algorithm goes through N 2 rounds. At each 
round t = 2, 3,. . . .  N -1 , we compute bij? sij? k̂  for i = 1, . . . ,  N - t ,  j = i + t. For 
each i, 1 < i < N -t, we compute t numbers bik + bk+lj + siksk+1>j, where j = i + 1, 
and we take their minimum; these operations take time proportional to t. 
Hence each round requires time (N -t)t, namely one t for each i — 1 ,..., N -t.

Summing over all t, the algorithm takes time proportional to S t=2 (N -t)t*N  .

It also needs memory space N2 to store the values of b», s ,̂ L·. Given that a 
good division of multiplication labor can generate exponential-size savings 
(Example 3.7), these costs are reasonable. The discussion so far motivates

Definition 3.17. Multiplication of N MA covers F1... FN.

1. Create a least-cost total order on {Fp ..., FN).

2. Determine exactly the order of multiplications using the values kij 
provided by the dynamic programming algorithm.

3. Perform the multiplications in this order. After each multiplication, 
eliminate nonmaximal cubes from the resulting product cover.

The use of dynamic programming might create the impression that 
finding a good division of multiplication labor has been reduced to solving an 
ordinary optimization problem. This is not the case; there is not, for instance, 
an objective function that attaches to each way of multiplying N covers its 
true cost. What is more, such an objective function cannot be defined. There 
are several reasons for this. First, given a total order on (Fp ..., FN}, there

ways to multiply them while respecting the order (Cormenare CNT =_ l
N + l

2N  
N ,

et a1., 1990, p. 504). CN, the N-th Catalan number, is of the same order as
4n

6N3/2’ a number that exceeds the age of the universe even for moderate

values of N. Secondly, it is not always possible to find the true cost of each 
way of multiplying N covers; because it is not possible to predict in advance 
how many nonmaximal cubes will be created from partial multiplications. 
Thirdly, the number of options is even greater if we allow for different total 
orders on {Fp ..., FN}. “Optimal” cover multiplication is therefore an ill- 
structured problem (Simon, 1973), that has to be “solved” by considerations 
other than minimization of a given objective function subject to given 
constraints.
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Complementation of covers, the other backroom operation involved in 
prime generation by “inductive generalization”, provides an example of the 
more obvious division of labor being less efficient. Recall that, given a design 
problem G, and a complement of it G', we multiply |G'| covers to obtain the 
primes of G (Definition 3.13). We are thus interested in deriving a short 
complement of G in reasonable time. The obvious way to complement covers 
is to use De Morgan’s laws, namely (x + y)' = x'y', (xy)' = x' + y'. If G = xy + 
uwd, for instance, then G' = (xy)'(uwu)' = (x' + y')(u' + w' + o') = x'u' + x V  + 
x V  + y'u' 4- y'w' + y V . The next definition describes this particular division 
of complementation labor.

Definition 3.18. Complementation reduced to multiplication. Given a cover 
G, the labor of deriving a complement G' is divided as follows:

__ t
1. For each cube p = I I ^  1 xfi in G, obtain its complement p = 2 . = 1 x f i .

2. Multiply these cube complements to obtain G = r ip eG p ·

Note that the covers multiplied are all atomic, but this is not an MA 
multiplication problem, since the same variable can appear unprimed in one 
cover and primed in another. The discussion that follows will show that, when 
G is nonmonotonic, this division of complementation labor will generate 
excessively long complementary covers.

Example 3.12 (a). In this example variable x is represented by i, x' by i'. Let 
G = 1'2 + 3'4 + 12'4'5. Then G' = (1 + 2') (3 + 4 ')(1# + 2 + 4 + 5') = 1'2'3 + 
1'2'4' + 123 + 124' + 134 + 2'34 + 135' + 14'5' + 2'35' + 2'4'5'; all cubes are 
maximal. We call G'a this complement of G, for future reference.

Another, less obvious, division of complementation labor is based on the 
identity G' = x(Gx)' + x'(Gx,)', proven in Theorem 3.9 in the Appendix. The 
same proof shows that (Gx)' = (G ')x, so both can be denoted by G'x.

Example 3.12 (b). The complement G'b of G obtained by Boolean decom
position: G'b = 1G; + l'G j, = 1[4G'14 + 4'G'14,] + l'[2G 'r2 + 2'G'r r ] = 1[4(3')' + 
4'(2'5)'] + l'[20+2'(3'4)'] = 143 + 14'2 + 14'5' + 1'2'3 + 1'2'4'. Note that 
while G'a ~ G'b, G'b contains only half as many cubes as G'a does. To see why, 
we obtain G'b from G'a by applying the rule xp -I- x'q + pq ~ xp + xq (the rule 
itself holds because both sides are equivalent to p when x = 1, and to q when 
x = 0).
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G' = 1(23 + 24' + 34 + 35' + 4'5') + 2'(1'3 + 1'4' + 34 + 35' + 4'5') ~ 1(24' + 
34 + 4'5') + 2'(1'3 + 1'4' + 34 + 4'5') = 3(14 + 2'4 + 1'2') + 4'(12 + 15' + 1'2' + 
2'5')~3(14 + 1'2') + 4'(12 + 15' + 1'2') = G'b.

It is no accident that Boolean decomposition obtains a shorter comple
ment of G without the extra labor of applying the rule xp + x'q + pq = xp + 
x'q . To see why, let G = xp + x'q + pq. Then G'a = (x' + p') (x + q') (p' + q') = 
(x' + p')(q' + xp') = x'q' + xp' + p'q'; while G'b = x(Gx)' + x'(Gx,)' = x(p + 
pq)' + x '(q  -(- pq)' ~xp~ + x'q'. Hence, the essential difference between the 
two methods is that the Boolean decomposition method, in the process of 
eliminating nonmaximal cubes, will also apply (without any extra effort) this 
rule; while the multiplication method, simply because it divides the problem 
differently, will not. For these reasons, for nonmonotonic covers, only 
complementation by Boolean decomposition will be further analyzed.

An obvious point is that labor should be divided first along 
nonmonotonic variables, so that the rule xp + x'p + pq = xp + x'p gets a 
chance of being costlessly applied. Another obvious point is that, among 
nonmonotonic variables, labor should be divided first along the variable 
appearing in most cubes, so that cofactors share as few cubes as possible, and 
unnecessary duplication of labor is avoided. Finally, in case of a tie, the 
variable that minimizes the difference between positive and negative 
instances in G should be preferred, to produce cofactors with the least size 
difference. This is to minimize the labor of eliminating nonmaximal cubes 
from each cofactor. A variable that satisfies these three requirements 
(nonmonotonic, most instances in G, most balanced instances) will be called 
“appropriate” in the next definition.

How should monotonic covers be complemented? The method based on 
multipli-cation can take advantage of the MA multiplication techniques 
contained in Definition 3.17. The method based on Boolean decomposition 
can take advantage of the identities G' = xG'x + G x, if G is monotonic 
decreasing in x, and G = x Gx, + G'x if G is monotonic increasing in x (see 
Theorem 3.10 in the Appendix). The examples that follow show why the 
multiplication method is likely to take less work on monotonic covers.

Example 3.13. Let G = x'y' + uV w ' (cubes share no variables). Using the 
multiplication method G' = (x + y)(u + u + w) = xu + X1, + ^  + yu + yl, +
yw. Using the Boolean decomposition method, G' = xG'x + G'x, = x(u'u'w ')' +
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(y' + uV w ')' = x(u + d + w) + H'. H' = yH'y + H'y = y(u V w ')' + (1 + u V w ')' = 
y(u + u + w). Boolean decomposition is less efficient than multiplication 
because it generates needlessly the term (1 + u V w ') ' that has to be detected 
and eliminated. Any other choice of decomposition variables will also 
generate superuous terms.

Example 3.14. Let G = x'y'z' + y'w' (cubes share some variables). Then, using 
the multiplication method, G' = (x + y + z)(y + w) = y + xw + zw. Boolean 
decomposition, instead, works as follows: G' = yG' + G \ = yO' + (x'z' + w') = 
y + H ' = y + wH'w + H'w, = y + w(x'z')' + (x'z' + 1)' = y + w(x + z) = y + wx + 
wz. The term (x'z' + 1)' is again superuous, and any choice of decomposition 
variables will generate superuous terms.

Definition 3.19. Complementation reduced to Boolean decomposition and 
multiplication. Let G be an cover, and G' its complement. Then,

1. If 1E G, then G '= 0.
If G = 0, then G' = 1.

2. If G contains exactly one cube p = n . n= {x p , then G = p = 2 "=1 x^j.

3. If G is monotonic, then G = Ilp<EGP , where multiplications are

performed as indicated in Definition 3.17.
4. If G is nonmonotonic, then for some appropriate variable x, G' = xG'x + 

x 'G ',.X
The discussion so far illustrates some points relevant to design for cost 

reduction. Problem representation is important. The most compact, implicit 
representations (covers) require more search to generate the desired result 
(primes), because they “hide” information from the algorithm. The less 
compact, more explicit representations (cover of minterms, complementary 
covers) are costly to produce and store; but admit morespecialized algorithms 
that spend less of their time in unproductive search (exploringblind alleys).

Division of labor (iterative, divide-and-conquer, “inductive generaliza
tion”, dynamic programming, Boolean decomposition) is important for 
efficiency. A good division of labor will avoid solving the same problems 
twice; generating partial results that will be discarded later; using a general 
method when a more efficient, specialized method applies due to special 
properties of the problem at hand; ordering decisions in such a way that
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partial results are unnecessarily complicated, or not as informative as 
possible.

Finding good problem representations and good divisions of labor are 
ill-structured problems, in the sense that they cannot be usefully formulated 
as optimization problems.

The performance difference between good and not so good problem 
representations and divisions of labor is quantitatively important, and can be 
exponential in some parameter of the design problem. It seems, though, that 
no problem representation and division of labor is uniformly better on all 
design problems. For example, when the design problem represents a 
symmetric, nonmonotonic function, methods that exploit special properties 
of symmetry rather than monotonicity will do better.

4. Elimination of Redundant Primes

In this section, we are given a compact, maximal cover F and we look for 
a minimum cardinality subcover H of F such that H ~ F; it is implicitly 
understood, but irrelevant for this section, that F = jt(G) for some design 
problem G. Large saving in product cost can be realized at this stage, as 
evidenced by Example 3.3. These savings, however, can easily be exceeded by 
the cost of searching for redundant components; efficient search is thus 
important. All methods described will first represent in some way the 
covering relationships among cubes in F, i.e. the functions fulfilled by each 
component and any redundancies present (functions fulfilled by more than 
one component). They will then try to extract the smallest set of components 
that fulfills all functions of F. We first discuss the Quine-McCluskey (QM) 
problem representation, that is conceptually simple but not as efficient as 
possible.

Example 4.1. Let F = xyz + x'uu + yzuo. QM represents the functions of each 
component in the most explicit way, namely by listing the minterms covered 
by each cube. Using the notation K = x + x', K = xK + x'K , K = xK + 
x yZ’ etc·’ ior the sets of minterms of one, two, three, ..., variables, 
respectively, we have, in this example: M(xyz) = xyzKui) = xyz(uKy -I- u 'K J = 
xyz(uu + u i/ + u'u + u V ); M(x'uu) = x'uuKyz; M(yzuo) = yzuuKx. Note that 
the first two sets contain four minterms each, while the last contains two. QM 
then eliminate redundant components by solving a set-covering problem, 
namely they find a minimum cardinality subset H of F such that UpeHM(p) =
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Up£FM(p). This is done by representing the problem in matrix form. Let N be 
the number of minterms in b(F) (8 in this example), and let K be the number 
of cubes in F (3 in this example). Form the N x K matrix A by setting Amp = 1 
if m E M(p), i.e. if minterm m is covered by cube p, Amp = 0 otherwise. Let xp 
be a binary variable with the following interpretation: xp = 1 means that 
component p E F will be part of the final product, while xp = 0 means that

component p E F  will be discarded. Then, any solution x* of m in 2 p=1xp,

subject to, for each m = 1, ..., N, 2 p=1Ampxp^ l ,  is a solution of the set

covering problem, with H = {p : x * = 1}. This is because each constraint 
guarantees that the corresponding minterm is coveredby some cube in H, so 
that H ~F; and minimization guarantees that H is of minimum cardinality. In 
this example, the (three) columns of A are 1111000000, 0000111100, 
10001000; the unique solution is H = (xyz, x'uo}.

It is well known that the set-covering problem (and the equivalent zero- 
one linear programming minimization problem) is NP-complete; a proof of 
this can be found in Wegener (1987, Theorem 5.1, p. 35). An implication of 
this is that all known methods for solving such problems take time 
exponential in the size of the set-covering problem, namely in Nk. It is thus 
important to find problem representations that reduce the number of rows 
and columns of A, i.e. that represent redundancies in a more compact, 
implicit way. The main idea is that covering relationships between cubes in F 
can be discovered and recorded directly, without listing the minterms covered 
by each cube. To do this, we need the following definitions and results.

Definition 4.1. A cover F in n variables is a tautology if b(F) = Dn.

The covers F0 = x', Fl = x, for instance, are not tautologies, since b(x') = 
{0}, b(x) = {1}; the cover F = x + x' is a tautology since b(F) = b(x) U b(x') =
(0,1} = D.

Definition 4.2. Let p = I l jn:=1xJAi, q = n jn=slxfj be two cubes. The restriction

of p on q, is the cube pq obtained from p by setting Xj = t if = {t}, t = 0, 1. 
Equivalently, if d(p, q) > 1, then pq = 0, while if d(p, q) = 0, then
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If p = xy, q = uuw, s == xu, t = x'uw, for instance, then pq = p, qp -  q; ps -  y, 
'w, Sq = x; qt = U, tq = x'; st = 0 = ts.

Definition 4.3. Let F be a cover and q a cube. Then the restriction of F on q,

If F = xy + uvw + xu, and t = x'vw, for instance, then Ft -  u.

Theorem 4.1. Let F be a cover and q a cube. Then q < F iff Fq is a tautology.

In the previous example, Ft is not a tautology; to see that t ^  F, note that 
xyuuw = 00011 belongs to b(t) but not to b(F). For q = xu < F, however, Fq = 
y + uw + 1 ~ 1.

We can now describe the construction of a reduced-size set-covering 
problem. This will be first done in Examples 4.2 and 4.3.

Example 4.2. Let F = xyz + x'uu + yzuu; name the cubes 1, 2, 3 in the order 
they appear. The notation F \p  will denote F without p; for example F\xyz = 
x'uu + yzuu. We test whether each cube p in F is covered by the other cubes 
in F, by testing whether (F\p) is a tautology. For example (F \ 1)1 = uv is not 
a tautology, i.e. xyz is not covered by the remaining cubes, and has to be part 
of any solution of the set-covering problem. Similarly, (F \ 2)2 = yz is not a 
tautology, and x'uu has to be part of any solution. Finally, (F \3 )3 = x + x' is a 
tautology, i.e. yzuu is covered by the other cubes in F. It is the case in this 
example that the cubes covering yzuv, namely xyz and x'uv, will be part of any 
solution, so yzuu can safely be discarded. Note that we did not have to 
generate, store, or process the minterms covered by each cube (ten in all in 
this example).

In Example 4.2, a solution was found without representing the problem 
in matrix form. In general, the matrix form is unavoidable as a way to record 
mutual covering relationships. The next example illustrates the construction 
of such a (reduced-size) covering matrix.

Example 4.3. Let F = xu + yu + zu + x'y + y'z + z'x -I- xu -I- uu' + vy; the cubes 
of F are named 1, 2 ,..., 9 in the order they appear. We first compute, for each 
p in F, (F \p)p. If (F \p) is not a tautology, then p is called relatively essential; 
recall that in this case p is not covered by the remaining cubes in F, and will 
thus be part of any solution. In this example, cubes 4, 5, 6, 7, 8 are relatively 
essential; we call this set E. If, on the other hand, (F \p ) is a tautology, then

Fq, is the cover 2 pGFPq-
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we record the minimal sets of cubes covering p. For example (F\ 1): = y + z + 
yz + τ' + υ + υ ' + yu. After eliminating nonmaximal cubes, we have (F\ l)j = 
z + τ' + υ + υ '; we also record the source of each term in this expression. For 
example, z = 3p τ' -  6p υ = 7p υ ' = 8p where 3: = zu|xu, etc. Since z + τ' ~ 1, 
υ + υ ' ~ 1, cube 1 is covered either by cubes {3, 6}, or by cubes {7, 8}, or both. 
We record this information by writing φ0(1) = {36, 78}. We obtain similarly 
φ0(2) = {14, 89}, φ0(3) = {25}, φ0(9) = {47}. This is the end of the first stage 
in the construction of the reduced-size covering matrix. In the second stage, 
we discard from each φ0(ρ) all relatively essential cubes, to obtain qpj(p) = 
qp0(p)\E . In this example, φ ^ Ι)  = {3}, φ1(2) = {1, 9}, φ1(3) = {2}, φ:(9) = 0 . 
All relatively essential cubes will be present in all solutions, so it is not useful 
to record cubes covered by them. We then form the set = {p : cp^p) = 0}  
of totally redundant cubes, i.e. of cubes that are covered solely by relatively 
essential cubes; such cubes can safely be discarded. Finally, we iteratively 
eliminate totally redundant cubes using the equations Φι+1(ρ) = Φ{(ρ) \ Tt, 
T j = {p : Φι+1(ρ) = 0} , until the first k, such that Tk = 0 . In this example, 
k = 2, T l = {9}, φ2(1) = {3}, φ2(2) = {1}, φ2(3) = {2}, and T2 = 0 . The set of 
totally redundant cubes is T = U*=1Tt = {9}. The set R = F \(E  U T) is called 
the set of partially redundant cubes, and forms the columns of the covering 
matrix A. In this example, R = {1, 2, 3}. While relatively essential cubes have 
to be in the product, and totally redundant cubes can safely be discarded, 
partially redundant cubes stand in mutually covering relationships with each 
other, given by functions φ(ρ) = φ1ί(ρ), and their removal has to take them 
into account. To do this, we take the graph of function φ, where graph (φ) = 
{(r, C ) : C E φ(γ)}. In this example, graph (φ) = {(1, 3), (2, 1), (3, 2)}. We 
create a row of A for each element of this graph. We finally define ArC = 1 if 
p = r or p E C, ArC = 0 otherwise, where r, C E graph (φ), p E R. In this 
example, the rows of A are 101, 110, Oil. The first row, for instance, means 
that either cube 1 or cube 3 have to be in the product, because 1 is a required 
product function (1 E F), and if 1 is omitted, cube 3 (and the relatively 
essential cubes) will fulfill its function. The covering problem is then minx1 + 
x2 + x3 subject to Xj + x3 > 1, x3 + x2 > 1, x2 + x3 > 1, x = 0,1. All solutions have 
value two; one solution is x3 = x3 = 1. The corresponding solution of the 
overall problem is {1, 3} U E = {1, 3, 4, 5, 6, 7, 8}; cubes 2 and 9 have been 
eliminated. Note that the covering matrix is of size 3 x 3 ; while the cor
responding QM covering matrix is of size 28 X 9, where 28 is the number of 
minterms in b(F) and 9 the number of cubes in F.
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The correctness of this method is established by

Theorem 4.2. Let F be a compact, maximal cover. Let A be its reduced-size 
covering matrix, E the set of its relatively essential cubes, and R the set of its 
partially redundant cubes, as defined in Example 4.3. Let x solve the 0-1
linear programming problem m in 2 pGRxp subject to Ax ^  1, where 1 is a

vector of Is. Then H = E U (p E R : xp = 1} is a minimum-cost cover 
equivalent to F.

The 0-1 LP problem can be solved by standard methods that will not be 
covered here; see De Micheli (1993, p. 91, algorithm 2.5.4) for a branch and 
bound algorithm, and Balas and Ho (1980) for a cutting-plane algorithm.

In all the examples covered here, it was easy to check whether each cover 
Fq was a tautology or not, since each Fq was a short expression. In general, 
checking whether a cover is a tautology is an NP-complete problem. Recall 
that tautology checking is needed to avoid solving impossibly large set
covering problems of dimension |b(F)| x |F|, where F is the given prime cover. 
What the reduced-size A problem representation does, then, is to avoid 
solving one very large NP-problem (set-covering of dimension (b(F))x |F|); 
by solving several smaller-size NP-complete problems (tautology checking for 
each Fq; setcovering for the reduced-size covering matrix A). This strategy is 
likely to generate large cost savings, precisely because tautology-checking 
and set-covering are worst-case exponental: The cost of solving N problems

of size n; each, namely 2 =̂1exp(nj), is much smaller than the cost of solving

one problem of size 2 i = 1n,, namely exp(2^=1nj). Since this strategy

depends on performing |F| tautology checks, it is important that tautology
checking is done efficiently, even if it is a backroom operation for product 
design.

Efficient tautology checking will be based on two pieces of knowledge. 
First, on our knowledge of special properties of covers that make tautology 
checking easy. Secondly, on divisions of labor that first split the original cover 
into smaller covers until covers with these special properties are obtained; 
and then put the parts back together for the purposes of tautology checking.

In what follows, the notation F G means that for the purposes of
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tautology checking F can be replaced by G; F -* 1 means that F is a tautology, 
and thus can be replaced by 1; F -» 0 means that F is not a tautology, and thus 
can be replaced by 0.

Theorem 4.3. Covers easy to check for tautology.

Bl. F + 1 -* 1.
B2. 0  -» 0, where 0  is the empty cover.
M. F -* m(F), if F has at least one monotonic variable; m(F) is the subcover 

of F consisting of all cubes that do not contain monotonic variables.

Proof. The first two are obvious. For the third, assume that F has monotonic 
variables. We show that F is a tautology iff m(F) is. Since m(F) is a subcover 
of F, one direction is clear. Suppose now, that F is a tautology and that, for 
contradiction, m(F) is not. Then there exists a vector u of values of 
nonmonotonic variables such that m(F)(u) = 0. Let v be a vector of values for 
monotonic variables, defined as follows: v x = 0 if x appears uncomplemented 
in F; v x = 1 if x appears complemented in F. Finally, let K(F) be the cubes of 
F that contain monotonic variables. Then F(u, u) = K(F)(u, u) + m(F)(u) = 
K(F)(u, u) + 0 = K(F)(u, u) = 0, a contradiction. The last step follows from 
the fact that, at v, every cube containing monotonic variables evaluates to 0.

The cover G = xy' + xuu + y 'u 'u ', for instance, contains two monotonic 
variables, namely x and y; all its cubes contain x and y, hence m(G) = 0 . 
Then, by Theorem 4.3, G ^  m(G) = 0 ^ 0 ,  i.e. G is not a tautology; in fact, 
G(xy = 01) = 0.

In this paper I will examine three kinds of division of tautology-checking 
labor. The first one, disjunctive division of labor, is based on the following 
result.

Theorem 4.4. Let F = G + H, where G and H do not share variables. Then F 
is a tautology iff at least one of G, H is a tautology.

Proof. Suppose that F is a tautology but, for contradiction, neither G nor H 
are tautologies. Let S(F), S(G), S(H) be the variables in F, G, H, respectively. 
By assumption S(F) = S(G) U S(H), S(G) Pi S(H) = 0 . Let u E DS(G\  u E DŜĤ 
be such that G(u) = 0, H(u) = 0. Then (u, u) E DŜF̂ and F(u, u) = G(u) + 
H(u) = 0, a contradiction.

Definition 4.4. The graph of cover F has the cubes of F as nodes; there is an 
edge between two cubes iff they share variables.
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The graph of F = xy + x'z + uv, for instance, has one edge, namely (xy, x'z).

Theorem 4.4 and Definition 4.4 suggest the following division of labor: If 
the graph of F has more than one connected components, check each 
component for tautology separately. Then declare F a tautology if at least one 
component is a tautology; and declare F a nontautology if no component is a 
tautology.

Definition 4.5. Disjunctive division of labor.

D. F-* 0 K(Fp ..., FK), if F j, ..., FK, K > 2, are the connected components of 
the graph of F.

O. For each K > 2
0 K(sr  ..., sK) -> 1 if Sj = 1 for some i = 1 ,..., K 
0 K(Sj, , sK) —> 0 if Sj = 0 for all i = 1 ,   K.

The cover F = x + y, for instance, has two connected components, 
namely Fj = x and F2 = y. Each F. is monotonic, so 111(E) = 0 . Hence,

F ^  0 2(x, y) ^  O2( 0 ,0 )  ^ O 2(0,0) ^  0, i.e. F is not a tautology.

Conjunctive division of labor is based on the fact that a cover is a 
tautology iff both its cofactors are.

Theorem 4.5. A cover F is a tautology iff, for any variable x, both Fx and Fx, 
are tautologies.
Proof. Let F be a tautology. Let u be a vector of values for all variables except 
x. Then Fx(u) = F(l, u) = 1; Fx,(u) = F(0, u) = 1. Hence, both Fx and Fx, are 
tautologies.

For the converse, let both Fx and Fx, be tautologies. Then for each to G Dn, 
the identity F = xFx + xF- yields F(a>) = Fx(a)_x) = 1 if w = 1; F(co) = Fx ( © j  =
1 if (ox = 0. Hence F is a tautology.

Recall, for the next definition, that an appropriate variable of F is a 
nonmonotonic variable that appears in most cubes of F; in case of a tie, a
variable that minimizes the difference between positive and negative 
instances in F.

Definition 4.6. Conjunctive division of labor.

C. F A(F, Fx, Fx,), where x is an appropriate variable.
A. A(F, 1, G) G, A(F, G, 1) -» G.
A(F, 0, G) -* 0, A(F, G, 0) -» 0.
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The cover F = y + z + y'z', for instance, contains no monotonie variables; 
and its graph is connected. Hence, none of the rules B, M, D, O apply. Using

conjunctive division of labor, however, we obtain F -* A(F, 1 + z, z + z') -»

A(F, 1, z + z') ^ z  + z' ^ A (z  + z', 1,1) 1. Hence, F is a tautology.

The last division of labor to be presented here is motivated by covers like 
F = xy + xy' + x'y + x'y' + x'yu'u + xyuu'. Only conjunctive divisions of labor 
apply to F. Any conjunctive division of labor is wasteful, because F is a 
tautology by virtue of its first four cubes only; while any cofactor of F involves 
the irrelevant last two cubes of F. What is needed is a criterion that isolates 
subcovers like G = xy + xy' + x'y + x'y'. To visualize it, consider the bipartite 
graph BG(F) of F, with nodes F U S(F); and edges (p, x) for any p E F, x E S(p). 
Its incidence matrix is given by

X y u V
xy 1 1 0 0
xy' 1 1 0 0

x'y 1 1 0 0
x'y' 1 1 0 0

x yu d 1 1 1 1
xyuu 1 1 1 1

Note that G is associated with the largest block of zeros in the incidence 
matrix. Equivalently, if Aj = G U S(G), A2 = (F U S(F)) \ A j, then (Ap A2) is a 
minimum cut of BG(F); in the sense that (Ap A2) is a partition of F U S(F) 
that minimizes the number of edges connecting nodes in to nodes in A2. 
Minimum cuts can be efficiently computed by standard network flow 
algorithms (Cormen et al., 1990, ch. 27). Given a cut (Ap A2), let ^(Aj) = 
{pE A  fl F, s(p) fl A. = 0} . Then the desired subcover p(F) of F is the largest 
of [a(Aj), p(A2). In the example, ^(A ^ = G, |x(A2) = 0 , ^(F) = G.

The theorem that follows shows how to use the subcovers p(F), v(F) for 
tautology checking.

Definition 4.7. Let F be a cover, and (Ap A2) a minimum cut of BG(F). Then 
p(F) is the largest of ^(A^, ¡¿(A^). The cover v(F) consists of all cubes 
obtained from cubes in F \ p(F) by dropping all literals involving variables in 
p(F).
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The value of F, a measure of F’s decomposability, is given by

H(F)| (|S(F)|-|S(H(F))
x,(F) =

S(F)

In the example, v(F) = u u '+  u'u, u (F) = — .
6x4 3

Theorem 4.7. Let F be a cover. Then

(a) F is a tautology if p(F) is a tautology.
(b) F is not a tautology if neither n(F) nor v(F) are tautologies.
(c) If p(F) is not a tautology and v(F) is a tautology, then F may or may not 

be a tautology.

Proof.

(a) Obvious, because p(F) < F.

(b) Since neither p(F) nor v(F) are tautologies, there exist vectors u, u, 
u E DS(p(F)), u E DS(v(p)) such that p(F)(u) = 0 = v(F)(/u). Since S(v(F)) = 
S(F) \ S(p(F)), (u, o) E DS(F), and F(u, 'u) = ^(F)(u) + (F \ p(F))(u, v) = 
(F\p(F))(u,o) < v(F)(v) = 0, i.e. F is not a tautology. The last inequality 
follows from the fact that each cube in v(F) is derived from a cube in 
F\ p(F) by dropping all literals involving variables in p(F).

(c) Consider the covers F1 = x + x'z + x'z', F2 = xu + yu' + xy. Then [¿(F^ = x, 
v(Fj) = z + z'~  1; p(F2) = xy, v(F2) = u + u '~  1. Hence, for both i, v(F) is 
a tautology but p(F) is not. Note that F2 is a tautology, while F2 is not.

Definition 4.8. Semidisjunctive division of labor.

S. F -» R(F, p(F), v(F), if v(F) > v  ,
where v  is a parameter between 0 and 1.

R. R(F, 1, G) -  1; R(F, 0, 0) ^  0;
R(F, 0, 1) -» A(F, Fx, Fx>) for some appropriate variable x.

Note that application of rule S is restricted by raising the value of 13 . The 
rule R(F, 0,1) -* A(F, Fx, Fx') changes division of labor from semidisjunctive 
to conjunctive when the former is inconclusive.

When F = x + x' + xuv' + xu'u, for instance, then |li(F) = x + x', v(F) =
f su i/ + u'v. Hence we obtain the following derivation: F ->R(F, x + x', ud' +
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u'u) ^*R(F, A(x + x', 1, 1), ux/ + u'v) ^ R ( F ,  1, in / + u'u) 1.

The tautology-checking algorithm will simply order the rules presented 
so far, and will put some restrictions on their application. First note that each 
division of labor appears as a pair of rules, namely < D, Ok >, < S, R >, and 
< C, A >. The first element of each pair is a rule that decomposes covers; 
while the second element of each pair is a rule that combines the parts for the 
purposes of tautology-checking. We call D, S, C analytic rules, and Ok, R, A 
synthetic rules. Synthetic rules may not require evaluation of all their 
arguments: for example, A(F, 0, H) -*■ 0, whatever the value of H is. Hence, 
to prevent useless decompositions, synthetic rules should be applied before 
analytic rules, and analytic rules should be applied when synthetic rules no 
longer apply. Secondly, no rule should apply on F when F appears as the first 
argument in some Ok, R, or A term, i.e. as Ok(F, G, H), R(F, G, H), or A(F,
G, H). This prevents useless rule applications, and guarantees termination. 
The notation A(F, G, H), for instance, means that F has been conjunctively 
decomposed into G and H; all further rule applications should be on G and
H. Thirdly, rules B should precede all others, to avoid useless decompositions 
(D, C, S) or reductions (M). Fourthly, application of rules B and M should 
precede all others, to avoid useless decompositions. Disjunctive decom
position should precede semidisjunctive decomposition, as easier to apply; 
and semidisjunctive decomposition should precede conjunctive decom
position, to exploit any block structure before calculating cofactors.

Definition 4.9. Tautology-checking algorithm. Given a cover F, apply the 
following rules on F and on any resulting cover, in the order they appear: B, 
M, O, R, A, D, S, C. Do not apply any rules on a cover that is the first 
argument of an O, R, or A term. Do not apply any rule unless all rules 
preceding it have ceased to apply. Stop when either 1 (tautology) or 0 
(nontautology) have been derived.

Example 4.4. Let F = x'y' + x'y + xy' + xyu' + xyui/ + xyuu. F does not 
contain monotonic variables, and its graph is connected; p(F) = x'y' + x'y +
xy', v(F) = 6/24 = 1/4, v(F) = u' + m / + uu. For v  < 1/4, we apply first

s csemidisjunctive decomposition, to obtain F -* R(F, |i(F), p(F)) R(F, 

A(n(F), y', y + y')> A(v(F), u + v ’, 1)) ^  R(F, A(n(F), y + y', y'), u + V )  
£· R(F, A(n(F), y + y', y'), A(u + v ’, 1, 1)) -  R(F, A(n(F), y + f ,  y'), 1)
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—» R(F, A(n(F), A(y + y', 1, 1), A(y', 0, 1)), 1) ~* R(F, A(^i(F), 1, 0), 1) 

^>R(F, 0,1) ^>A(F, Fx, F(,) = A(F, y' + yu' + yun' + yuu, y + y') ^ A (F , Fx, 

A(y + y', 1 ,1)) A  A(F, Fx> 1) - F x -A (F „ , F^, F^,) = A(Fx, m>' + uv + u \ 

1) A h  = ui>' + uv + u' ^ A (H , Hu, Hu.) = A(H, u + v ', 1) + v ' ^»A(v+

v ' , 1, 1) ^ 1.
For 13 > 1/4, on the other hand, disjunctive decomposition is not 

allowed, and the derivation starts from F A(F, Fx, Fx,) i.e. from the
tenth step of the previous derivation. The example shows that even in a 
problem with substantial block structure, semidisjunctive decomposition may 
be wasteful. The cubes needed to establish tautology may not all belong to 
one of the subcovers created by such decomposition. The choice of 13 is 
another ill-structured problem: There is no objective function that assigns to 
each choice of v  its true benefit (net number of steps saved).

The reduction of the derivation of a minimum-cost cover to standard 
problems(covering, connected components, minimum cut, tautology) allows 
a firm to benefit from continuing improvements in algorithms that solve such 
standard problems, simply by buying off-the-shelf. A firm that relies 
exclusively on buying, however, has to accept the existing division of labor. 
For example, a firm that uses QM’s problem representation will demand only 
new and improved covering algorithms; but will have no use for new and 
improved tautology algorithms. Only a firm that has consciously examined 
the way it represents problems and divides labor will be able to achieve 
efficiency gains that are not available to all. Whitney (1995, p. 116) 
emphasizes this point in his study of Nippondenso (NDCL in the quotation):

“Many companies see the need to implement product design using 
computer-aided design (CAD) or to improve their ability to 
assemble their products efficiently using design for assembly (DFA). 
Fewer see the need to be able to manufacture their products in 
unique ways, much less to be able to build in-house the specialized 
equipment necessary to do so. Fewer yet are those who see the need 
to write their own CAD software to tie together their own carefully 
groomed product-process design methodology. Fewer of all are 
those who see the need to do all of these. NDCL is one of the most 
advanced in understanding that all these actions must be taken
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together systematically. ... Many of NDCL’s make-buy choices in 
technology often seem uneconomical or indicative of a not- 
invented-here attitude. An engineer at another Japanese firm put it 
bluntly: ‘You learn by trying, not by buying.’”

5. Product Architecture

All products up to this point in the paper were assumed to consist of 
components (cubes) linked together by OR gates. The objective of design was 
to minimize the number of components taking this architecture as given. This 
section will show that choice of product architecture, i.e. of the way 
components are linked, is an important determinant of cost. It will also 
describe a way to choose a good architecture. The importance of this issue 
was stressed by Henderson and Clark (1990, p. 10):

“Xerox was confronted in the 1970s with competitors offering 
copiers that were much smaller and more reliable than the 
traditional product. The new products required little new scienti'c 
or engineering knowledge, but despite the fact that Xerox had 
invented the core technologies and had enormous experience in the 
industry, it took the company almost eight years of missteps and 
false starts to introduce a competitive product into the market. In 
that time Xerox lost half of its market share and suffered serious 
financial problems. In the mid-1950s engineers at RCA’s corporate 
R& D center developed a prototype of a portable, transistorized 
radio receiver. The new product used technology in which RCA was 
accomplished, but RCA saw little reason to pursue such an 
apparently inferior technology. In contrast, Sony, a small, relatively 
new company, used the small transistorized radio to gain entry into 
the US market. Even after Sony’s success was apparent, RCA 
remained a follower in the market as by introduced successive 
models with improved sound quality and FM capability.... for many 
years Sony’s radios were produced with technology licensed from 
RCA, yet RCA had great difficulty matching Sony’s product in the 
marketplace. ... we define innovations that change the way in which 
the components of a product are linked together, while leaving the 
core design concepts (and thus the basic knowledge underlying the 
components) untouched, as architectural innovation. This is the
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kind of innovation that confronted Xerox and RCA. It destroys the 
usefulness of a firm’s architectural knowledge but preserves the 
usefulness of its knowledge about the product’s components.”

Architectural issues would be of less interest if all product architectures 
for a given design problem G resulted in roughly the same number of 
components, and hence the same cost. The next well-known example shows 
that this is not the case.

Example 5.1. The behavior Pn C Dn consists of all 0 -1  vectors that contain an 
odd number of ones. For example, P2 = (01,10}, P3 = (001, 010,100, 111}. It 
will be shown that (a) the product architecture that links cubes with OR gates 
requires 2n_1 cubes to represent Pn; (b) there is a product architecture that 
requires only n cubes to represent P . Hence, the right product architecture 
can result in exponential-size cost savings. I start with (b): Consider the 
exclusive-or (XOR) gate © defined by0© 0 = 0 = l© l ,  1©0 = 0©1 = 1, and 
the covers Fn = xt © ... ©xn. Let u £ D " contain an odd number of ones. Then 
Fn(u) = 1. To see this, suppose without loss of generality (© is commutative- 
associative) that the first m = 2k -I- 1 components of u equal 1, and the 
remaining n - 2 k - 1 components equal zero. Then

Fn(u) = (u, ©... ©  u j  © (um+1 ©  ... ©  un)

(1© . . . © 1) ©( 0 ©. . . © 0)
( 1 © . . . © 1)©0
(1 © 1) © (1 © 1)... © (1 © 1) © (1 © 0) 
v ---------------- ------------------ /

k-times

(0 © . . . © 0)©1 
0 © 1 = 1.

Let u £ D n contain an even number of ones. Then a similar argument 
establishes Fn(u) = 0. Hence, b (F J  = Pn.

To prove (a), note that each Pn contains all minterms with 1, 3, 5, ..., n 
ones when n is odd; and all minterms with 1, 3, 5, ..., n -1  ones when n is 
even. Hence each Pn is already compact, because any two cubes in P are at 
distance two or greater. At the same time, each Pn is maximal, since no 
minterm can cover another minterm. It follows that Pn = rc(Pn) for all n. What 
is more, no prime is redundant, in the sense of being covered by the (logical)
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sum of the other primes. This is because if p, q are distinct minterms, then 
d(p, q) ^  1 and therefore cofactors pq and qp equal 0. Hence, (Pn\q)q  = 0 for 
all q in Pn, i.e. by Theorem 4.1, q is not covered by Pn\q. Hence, the minimum- 
cost cover with behavior P is P itself. P , however, contains 2n_1 minterms, 
since there are 2n minterms in n variables, and half of them contain an odd 
number of ones. It follows that the OR-based product architecture results in 
a product with 2n_1 components; while the XOR-based product architecture 
in an equivalent product with n components.

A design problem G may include parts that can best be realized by a 
XOR-architecture, and other parts best realized by an OR-architecture. 
Detection of such parts can be done by spectral decomposition methods 
(Hurst et al., 1985), illustrated in the next example.

Example 5.2. Consider the design problem G = x3x'2 + XjX'3 -I- x3x2x3; G is a 
minimum-cost cover in the OR-architecture, since it is compact, maximal, 
and irredundant. A less expensive cover equivalent to G is H = x1 ©x2x3; this 
can be verified by direct substitution (for example, G ( ll l )  = H ( l l l )  = 0). To 
derive H, we first derive the spectrum of G, i.e. a vector of correlation 
coefficients of the output values of G with constant, projection, and parity 
functions.

Step 1. Compute the value of G at each minterm and record it in a vector Y of 
length 2n = 23 = 8. Minterms are written in the form x3x2xp and ordered 
lexicographically, i.e. x3x2x3 < y ^ ^  if (a) x3 < y3 or (b) x3 = y3 and x2 < y2 or 
(c) x3 = y3, x2 = y2 and x1 < yr  In this example, 000 < 001 < 010 < Oil < 100 < 
101 < 110 < 111, and y = (0, 1, 0, 1, 0, 1, 1, 0).

Step 2. Rewrite Y by replacing 1 by -1, and 0 by 1, to obtain Y = (1, -1,1, -1,

1 , - 1 , - U ) .
Step 3. Form the Hadamard matrix Tn for n = 3; T 1 is a 2 x 2 matrix with rows 
(1,1), (1,-1); Tn+1 is computed inductively using the formula

r p J l  r j j l  

rpH  rj-JI
Each Tn is of dimension 2n x 2n.

The rows of T3 are 11111111,1-11-11-11-1,11-1-111-1-1,1-1-111-1-11, 
1111-1-1-1-1,-11-1-11-11, 1-1-1-1-111, 1-1-11-111-1. Each row represents 
the vector of output values of a function: constant, xp x2, x1 © x2, x3, x1 © x3,
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X © x , x. © x7 © xv This can be verified by direct computation, remembering
2 V  1 2 «3

the change of notation in Step 2.

Step 4. Compute the spectrum S = TnY of Y. In this case, S = 0404040-4 = 
(s0, sp s2, s12, S3, s13, s23, s123). The components of S are correlation 
coefficients: s0 = 0 means there is no correlation between Y and a constant 
function, s123 = -4 means that Y and x3 © x2 0  x3 are negatively correlated, 
etc.

Step 5. Maximize the values of the zero and first-order coefficients s0, sp s2, s3 
by permuting the values of S. To explain this, we need two facts. First, if every 
instance of Xj in a cover G is replaced by Xj © x ., j * i, then the spectrum of G 
changes in a precise way: the values of and s», sik and sjjk, sikt and sijkt, ..., are 
interchanged. Secondly, the spectrum of G © is obtained from that of G by
interchanging the values of s0 and sp s» and sj5 s^  and sjk, __The objective of
maximizing the values of zero and first-order coefficients by these two kinds 
of permutations, then, fulfills our original objective of splitting the design 
problem G into a core part best realized with an OR-architecture (the cover 
corresponding to the spectrum with s0, Sj maximized); and a part best realized 
with an XOR-architecture (the XOR transformations corresponding to these 
permutations that, when applied on the core cover, make it equivalent to the 
original cover). In this example, performing the second kind of 
transformation for i = 1, we obtain a new spectrum = 404040 -  40: the 
values of s1 and s0, s12 and s2, s13 and s3, s123 and s23 have been interchanged. 
We transform Yj back into the original domain by multiplying it with the 
inverse (T")"1 of Hadamard’s matrix, where (Tn)_1 = 2“nTn. We obtain Yj = 
2-3T3S1 = 111111- 1- 1. Remembering the notation of Step 2, Y l is the vector 
of output values of the cover x^x 'j + x3x2xi ~ X3X2- We finally apply on this 
cover the XOR transformations associated with the permutations necessary 
to obtain Sp to obtain x2 © x2x3.

The example shows that spectral methods are expensive, involving as 
they are the creation and manipulation of 2n x 2n matrices. At this point, no 
cheaper methods are known. It follows that existing product architectures are 
not likely to be close to optimal, even if they are part of a dominant industry 
design and are universally accepted. Dominant firms, as Henderson and 
Clark (1990) document, can make the mistake of considering their current 
product architecture the best possible. Writing about photolithographic
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alignment technology, they state: the technology has seen four waves of
architectural innovation. In each case the core technologies remained largely 
untouched. ... Yet in each case the industry leader was unable to make the 
transition ... the established firm invested heavily in the next generation of 
equipment, ... with very little success. Our analysis of the industry’s history 
suggests that a reliance on architectural knowledge derived from experience 
with the previous generation blinded the incumbent firms to critical aspects 
of the new technology” (ibid., pp. 23(24). In fact, belief in the optimality of 
the current product architecture can reduce a firm’s ability to recognize why a 
competitor has a better product: “... GCA first pronounced the Nikon stepper 
a ‘copy’ of the GCA design. Even after GCA had fully recognized the threat 
posed by the second-generation stepper, its historical experience 
handicapped the company in its attempt to develop a competitive machine. 
GCA’s engineers were organized by component, and cross-departmental 
communication channels were all structured around the architecture of the 
first-generation system. While GCA engineers were able to push the limits of 
the component technology, they had great difficulty understanding what 
Nikon had done to achieve its superior performance” (ibid., p. 27).

Product architecture also affects cost predictability. To understand this, 
consider a firm that supplies a product with behavior B. A customer calls and 
asks for product B'; the order-handling department has to give this customer 
a price quotation and an expected delivery date. It seems natural to quote the 
price of B plus the price of a NOT gate; and to promise delivery equal to B’s 
delivery time plus the time it takes to assemble the extra NOT gate. This rule 
seems natural because it is based on the assumption that product cost is 
predictable from product description. To see that this can be misleading, 
consider a product with behavior B = x^y'j + x'2y2. Then B' = (xl + y2) (x2 + y2) =

χχχ2 + xxy2 + x2yx + x2y2. In general, if Β = Σ ί = 1χ ^ ,  then B' requires 2n

components xiyj in the sum of products architecture, but only n components 
x. + yi in the product of sums architecture. A firm that wants to provide fast 
and reliable customer service must discover off-line where product 
architecture matters. An example of this is provided by Stalk and Hout 
(1990). They discuss heavy vehicles, where “... it takes 45 days to prepare an 
order for assembly, but only 16 hours to assemble each vehicle” (ibid., p. 76). 
In the 1980s, new companies (Freightliner and Paccar) took market share 
away from GM, Ford, and Mack because “... they delivered faster and
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handled product variety better than traditional producers could. In fact, 
many traditional firms gave price incentives to customers who would limit the 
custom features they ordered.” (ibid., p. 174). These authors then stress the 
importance of predictability in providing fast and reliable price and time-of- 
delivery information to customers: “The most important improvement in 
support systems has been the pre-engineering of a variety of truck 
combinations. Before the streamlining effort, truck assemblers had custom- 
engineered most of the orders after they received them. Some orders 
demanded more engineering than others, causing a lumpy flow of on-line 
work. As a result, the custom engineering was hasty, which led to errors and 
rework. Freightliner decided to invest heavily in pre-engineering hundreds of 
combinations of components and truck styles so that nearly all orders would 
be from a pretested menu. They were able to eliminate lumpy and hasty work. 
This dramatically collapsed the processing time on the order before it got to 
the assembly plant. In recent years, nearly all heavy-duty, on-highway truck 
producers have followed Freightliner’s and Paccar’s changes.”

6. Product Quality

Recall from the Introduction that the main puzzle about quality is that 
some firms seem able to offer products with fewer defects and lower cost than 
their competitors: elimination of waste both reduces product cost and 
renders products easier to test. This section provides some modelling of this 
issue.

Definition 6.1. Let G be a cover. A fault in G can be either a variable in some 
cube that is stuck at some value; or a cube whose output is stuck at some 
value; or G itself, when its output is stuck at some value.

Example 6.1. Let F = xy + xy' + xz + x'y. Suppose first that x is stuck at 1 in 
xy'. The faulty F is then Ff = xy + y' + xz + x'y. The behavior of faulty F on xyz = 
000, (Ff(000) = 1) is different from desired behavior (F(000) = 0). The vector 
xyz = 000 is called a test for this fault. Similarly, if the output of cube xy is 
stuck at zero, the corresponding faulty cover is Ff = xy' + xz + x'y; xyz = 110 is 
a test vector for this fault. Finally, if the output of F is stuck at 1, any vector in 
the complement of its behavior is a test; while if F is stuck at 0, any vector in 
b(F) is a test.

Consider now the faulty cover Ff = xy + xy' + x'y resulting from xz being
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stuck at zero; Ff is equivalent to F, because xz is covered by xy + xy'. Hence, 
no test vector exists for this fault, because xz is redundant. Similarly, if x' is 
stuck at one in cube x'y, then the resulting faulty cover Ff = xy + xy' + xz + y is 
equivalent to F, because y is covered by F. Again, no test vector exists for this 
fault, because x'y is not a prime of F.

Definition 6.2. Let F be a cover in n variables and Ff the faulty cover 
corresponding to some faults in F. A test vector for these faults is a vector u 
in Dn such that F(u) * Ff (u). A cover F is single-fault testable if for any single 
fault in F there is a test vector. A cover F is multiple-fault testable if, for any 
combination of faults in F, there is a test vector.

Recall that a cover in n variables accepts 2n inputs (the number of 
vectors in Dn). One could test a cover by comparing its actual behavior to 
desired behavior at each u in Dn. This is too costly even for moderate values 
of n; for example, when n = 117 and 217 ~ 131,000 tests per second are 
performed, it would take 267 millennia to perform these tests. The main task 
of design is to generate the smallest possible set of test vectors that can alert 
us to the presence of any kind of fault. Hill and Peterson (1993, p. 456) state 
this concisely: “Testing is part of manufacturing. Test generation is properly 
part of the design process.” We first characterize the covers that are single
fault testable. Recall that a cover is irredundant if none of its cubes is covered 
by the rest of its cubes, i.e. if no (F \p )p is a tautology.

Theorem 6.1. A cover F is single-fault testable if, and only if, it is prime and 
irredundant. In particular, any minimum-cost cover is single-fault testable.

Proof. The second statement of the theorem follows from the fact that 
minimum-cost covers are prime (they are constructed to be so) and 
irredundant (this is a necessary condition to achieve minimum cost).

Suppose F is prime and irredundant. Faults in the output of F are easily 
testable: u Eb(F) tests a stuck at 0 fault, and v  ^  b(F) tests a stuck at 1 fault. 
Consider a fault in literal l  in cube p, p E F. The fault “i  in p is stuck at zero” 
is as testable as the fault “p’s output is stuck at zero”, so we will consider it 
later.

Suppose, for contradiction, that the fault “t  in p is stuck at one” is not 
testable: let p = ¿q, F = p + G, Ff = q + G. By the contradiction hypothesis, 
Ff ~ F. Hence, q < q + G ~ F, i.e. q < F; this contradicts the primality of p = Iq.

Consider now faults in cube outputs. If p is stuck at one, then F is stuck
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at one, so this fault is testable by any v £  b(F) If p is stuck at zero, then Ff = G. 
Suppose, for contradiction, that this fault is not testable; then G = Ff ~ F. 
Hence, p < F~ G, i.e. p < G, a contradiction to the irredundancy of F.

For the converse, let F be single-fault testable. Suppose, for 
contradiction, that p E F is not prime. Then there exists a literal l  such that 
p = ¿q, q < F. The fault “i  is stuck at one” generates the faulty cover Ff = q + 
G. Since F = p + G and q < F, we have Ff = q -I- G < F -I- G = F; on the other 
hand, p = /q < q , soF = p + G < q  + G = Ff. Hence, Ff~F, i.e. F is not single
fault testable, a contradiction.

Suppose, for contradiction, that F is redundant. Then there exists p E F, 
F = p + G, such that p < G (and hence F ~ G). Consider the fault “p’s output 
is stuck at zero”. The resulting faulty cover is Ff = G. Hence, Ff~F, i.e. F is 
not single-fault testable, a contradiction.

This theorem is valuable because it allows the construction of a complete 
set of test vectors much smaller in size than 2n; these vectors test each cube 
for primality and irredundancy.

Theorem 6.2. A prime and irredundant cover F in n variables has a complete 
set of test vectors for single faults, of cardinality (n -I- 1)|F| + 2.

Proof. The faults “F is stuck at d”, d = 0,1 are detectable by any u E b(F), for 
d = 0, and by any u ÿ  b(F), for d = 1. Hence, we need two test vectors for 
these faults.

The fault ul  is stuck at one in p”, where F = p + G, p = ¿q, is detectable 
by any vector v  E b(q) \ b(F) (the primality of p ensures that q £ F, i.e. b(q) £ 
b(F). To see this, note that Ff = q + G, and that Ff (u) = 1 because u Eb(q), 
while F(u) = 0 because v  ÿ  b(F). Hence, we need n|F| test vectors for this 
type of fault, one for each cube and variable).

The fault “p’s output is stuck at zero” is detectable by any u E b(p) \b(G), 
where F = p + G. (Since p is not redundant, p ^  G, i.e. b(p) £ b(G).) To see 
this, note that Ff = G, Ff(u) = 0 because v  ÿ  b(G), while F(u) = 1 because 
v  Eb(p). There are |F| such tests, one for each cube in F.

It has been established so far that cost reduction in the form of waste 
elimination has as a byproduct full testability with respect to single fault. It is 
also true that, in covers that are not prime and irredundant, generating test 
vectors is more difficult (for those faults that are actually detectable). To see 
this we will need the concept of Boolean derivative. The significance of this is
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that quality is harder to obtain the more redundancies a cover contains. 
Hence, even partial elimination of redundant components reduces the cost of 
quality.

Definition 6.3. Let F = p + G, p = Iq, t a literal. The Boolean derivative of p
dP

with respect to L is = pz © p/( = q © 0 = q. The Boolean derivative of F

dFwith respect to p is — = (1 + G) © (0 + G) = 1 © G = G'. Finally, the

Boolean derivative of F with respect to t in p is dF 
». dL

= dfdp 
p dp dl

Boolean derivatives of F identically equal to zero imply that F is 
independent from the variable of differentiation, and hence that a fault in 
this variable is undetectable; this is because x © y = 0 if, and only if, x = y. 

dFHence ~  = 0, for instance, means that 1 + G = 0 + G, i.e. that F is in

dependent of the value of p. If, on the other hand, a Boolean derivative is not 
identically zero, it can be used to construct test vectors for faults in the 
variable of differentiation.

Theorem 6.3. Let F = p + G, p = ¿q, t  a literal. Fault “p is stuck at zero” can

be detected by any vector u that satisfies
dp

(u) = 1. Fault “t is stuck at

fdF̂
one in p” can be detected by any vector v  that satisfies h (v) = l. If

either equation has no solution, the corresponding fault is not detectable.

Proof. Let [ ^ p ] ( ^ )  = 1· Then %  (v ) = 1 = P ^ ) ’ i.e. G'(d) = 1 = p(v), i.e.

G(u) = 0, p(u) = 1. The faulty cover corresponding to p being stuck at zero is 
Ff = G. Hence, Ff(u) = 0, F(u) = p(u) + G(n) = 1. It follows that “p is stuck at

zero” is detectable by v. If, on the other hand, — p| (u) = 0 for all v, then
dP I

for each u either p(u) = 0, or ^  (u) = 0 or both. If ^  (u) = 0 , then G '(u) = 

0, i.e. G(u) = 1, i.e. Ff(u) = 1 = p(u) + 1 = p(u) -I- G(d) = F(o), i.e. “p is stuck
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at zero” is undetectable. If ^ ( u )  = 1, then p(u) = 0 and G'(u) = 1, i.e. G(u) =
dp

0. Hence ¥{(v) = G(u) = 0 = 0 + 0 = p(v) + G(u) = F(u), i.e. “p is stuck at 
zero” is again undetectable.

For the other part, let ' ' d f ]  
. di )

\

t (U) = 1, i.e. ^ ( v )  = l>

¿'(u) = 1. It follows that G(v) = 0, q(u) = 1, ux = where x is the variable 
involved in literal t. The faulty cover corresponding to “i  is stuck at one in p” 
is Ff = q + G. Hence Ff(u) = 1, F(u) = (lq)(u) + G(u) = ¿(u)q(u) + G(u) =

01 + 0 = 0, i.e. u detects this fault. If, on the other hand, dF
I dZ , L (u) = 0 for

all v, then for each v  either or “7 Cu) = 0> = ^  i-e· ^ther

G(u) = 1, or q(o) = 0, or £(u) = 1. Hence, if G(u) = 0 then either q(u) = 0 or 
¿(u) = 1, so Ff(u) = q(u) + G(v) = q(u), F(o) = p(u) + G(u) = ¿(u)q(u). 
Then, if F(u) * Ff(u), we must have q(u) = 1, ¿(u) = 0, which is not possible. 
Hence F(u) = Ff(u), i.e. any v  with G(u) = 0 cannot detect that t in p is stuck 
at one. Consider now v  such that G(tj) = 1; Ff(u) = q(/u) + G(tj) = 1, while 
F(u) = p(u) + G(u) = 1, i.e. again v cannot detect this fault. Hence, this fault 
is not detectable.

We can now explain why, in covers that are not prime and irredundant, 
the more redundancy there is, the harder it is to compute a test vector for the 
subset of faults that are detectable. Quite simply, redundant terms make the 
calculation of Boolean derivatives harder.

Example 6.3. Let F = xy + xy' + xz + x'y, p = xy', 1 = x, q = y', G = xy + xz + x'y.
A  Th d D f  ' ^

The test vectors for “1 is stuck at one in p” are given by =G  ql  =

(xy + xz + x'y)'y'x' = (x' + y')(x' + z')(x + y')y'x' = (x' + y'z')(x + y')y'x' = 
(x'y' + y'z')y'x' = y'x' + y'x'z' ~y'x'. Solving the equation y'x' = 1 we obtain 
x = y = 0, i.e. xyz = 000, 001 are the test vectors for this fault. If, on the other 
hand, we had eliminated waste from F we would get H = x + y. (xy + xy' ~x,
x + xz~x, x + x'y~x + y.) Checking for “x is stuck at 1” involves computing 
d H d x  '
dx dxX x · We have obtained the same test vectors with a much shorter 

computation.
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The next theorem shows that a prime and irredundant cover is also 
multifault-testable, by the same test vectors that form a complete test set for 
single faults. This generates a further economy in testing, since the number of 
multifaults is much larger than the number of single faults.

Theorem 6.4. A cover F is multifault-testable if, and only if, it is prime and 
irredundant.

Proof. If F is multifault-testable, it is also single-fault testable; hence, by 
Theorem 6.1, prime and irredundant.

For the converse, let F be prime and irredundant. A collection of faults 
(i.e., a multifault) splits F into three disjoint sets, F = L + H + G; L is the set 
of cubes that lose some of their literals due to stuck-at-one faults; H is the set 
of cubes that disappear due to stuck-at-zero faults; and G is the set of cubes 
not afected by the faults in this collection. The faulty cover corresponding to

this multifault is Ff = 2 pGLq(p) + G, where q(p) > p, q(p) * p, is the cube

resulting from p by dropping all stuck-at-one literals in p. If L = 0 , then any 
vector u E b (p )\b (F \p ), p EH , is a test vector for this multifault, since Ff(/u) = 
(F \ p)(u) = 0, F(d) = H(d) + G(u) = 1 + 0 = 1 ; b(p) \ b(F \ p) is nonempty by 
irredundancy of F. If, on the other hand, L * 0 , then any u E b(q(p))\b(F), 
p E L, is a test vector for this multifault, because Ff(u) = q(p)(u) + ... = 1, 
while F(u) = 0 because v £  b(F); b(q(p)) \ b(F) is nonempty for any p E L due 
to primality, which implies q(p)^ F.

To conclude, this section has shown that cost reduction by eliminating 
waste in the form of redundant components renders a cover fully testable, 
both for single faults and multifaults; the number of tests needed is (n+ l)|F | + 
2; the precise test vectors can be generated using Boolean derivatives, whose 
calculation becomes easier in the absence of redundancies. Products that 
contain redundancies, on the contrary, are not fully testable; and the 
calculation of test vectors for those faults that are testable is harder, due to 
the presence of redundancies. Quality may not be free, but its cost decreases 
as a free byproduct of cost reduction through waste elimination.

7. Design for Product Variety
Recall that the literature surveyed in the Introduction claims that 

inexpensive variety can be achieved through product design; and that GM’s
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inability to achieve it was due to its misdiagnosis of a design (waste- 
elimination) problem for an investment problem (more robots and exible 
manufacturing systems). Nippondenso (NDCL) is cited in this literature as a 
pioneer in design for variety. Whitney (1995, pp. 117-118) describes 
Nippondenso’s approach, and also motivates the treatment of variety in this 
section:

“An important feature of NDCL’s approach is avoiding complex 
assembly technology such as ‘intelligent dexterous’ robots. Instead, 
NDCL put as much as possible of the ‘intelligence’ into the product 
itself, by focusing the design process on supporting high-volume 
mixed-model JIT automated assembly. Large numbers of robots are 
indeed used at NDCL, but they and other complex technology are 
not the core of the approach. ... The difficulty of achieving high- 
volume model-mix JIT automated production can be put in the 
context of a generic, long-standing conflict in manufacturing: the 
flexibility efficiency tradeoff. ... Although the flexibility-efficiency 
tradeoff appears alive and well in most factories, it can be beaten in 
two basic ways: by designing equipment so that ‘wasters’ are small 
(see Shingo, 1989) and by designing products so that ‘wasters’ are 
not needed. NDCL has used the second method: embedding 
exibility in the product during the design process. ... Imagine the 
phone ringing each day at NDCL and a voice from Toyota 
demanding, ‘we want 4.316 of motor type A, 301 of type B, 1.633 of 
type C, and 4 of type D, tomorrow morning’. The next day, totally 
different distributions might be ordered. One cannot possibly 
respond to this kind of customer by order-picking from a warehouse 
or by adjusting fabrication patterns. This customer at one point, 
however, accounted for 90% of the business and still commands 
more than 50%.”

To understand how product design lowers the cost of variety, imagine 
that tomorrow Toyota will ask NDCL to supply a product in the set {fQ, fp f2), 
but does not know yet which. For the sake of the argument, let fQ = x + y'z', 
fi = xy + xz, f2 = xy -l- z. Each f  is a minimum-cost cover; hence, as long as 
products are designed separately, no design activity need take place. NDCL 
now faces two unpleasant alternatives, namely either to manufacture in 
advance components x, y'z', xy, xz, z and supply Toyota quickly with the
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product demanded, say f0, bearing the inventory cost of the unused 
components xy, xz, z; or to make components x and y'z' in response to 
Toyota’s order, keeping Toyota waiting in the meantime. There is, however, a 
third alternative that combines speedy response to Toyota’s demands at 
moderate cost. It involves joint design of the possible set of products (fQ, f , f2} 
to maximize shared parts. The outcome of such design in this case is fQ = xy + 
xz + y'z', f: = xy + xz, f2 = xy + xz + z. (Note the redundancies in f0, f2.) NDCL 
can now build in advance xy + xz, and respond quickly to Toyota’s orders 
building y'z' or z ex-post. Inventory cost is zero (xy + xz is needed by all three 
products). The cost of modular design, or component standardization (the 
standardized components are xy, xz), is the redundancy introduced in f0, f2: 
“There are some circumstances under which the use of a standard component 
may incur higher unit costs than the use of a special component. Sometimes 
in an effort to standardize, firms will use a component with excess capability 
for a particular application.” (Ulrich, 1995, p. 431). Note that this is not a 
necessary cost, as evidenced by the family of products f  = x + yi? i = 1, . . . ,  k.

Product design for variety does not require any more apparatus than that 
developed in Section 4 for cost reduction. It is only the cover to be minimized 
that changes, to take into account all potential products together.

Example 7.1. Let f0 = x + y'z', ^  = xy + xz, f2 = xy + z. Create a new variable u 
that can take three values, namely 0,1, or 2. By analogy with binary variables, 
for each subset A of {0, 1, 2}, uA is a literal whose value is one if, and only if, 
the value of u belongs to A. The cover to be minimized, then, is F = fQu° + 
f y  + f2u2 = (x + y'z')u° + (xy + xz)u! + (xy + z)u2 = xu° + y'z'u0 + xyu1 + xzu1 + 
xyu2 + zu2. Note that, by definition, u° + u1 + u2 = 1, u‘uj = 0 if i * j. 
Minimization of F, exactly as in Section4, starts with finding primes.

We first compute cofactors Fz ~ u3 + xu1 -I- xu2, Fz, = xu1 + y'u1 -I- xyu2 + 
xyu3, F^ = u1 + u2 + u3~ 1, Fa , = u3, Fz,y = xu1 + xu2 + xu3~x, Fzy = xu1 + u1 ~ 
u1.
Then we use the divide-and-conquer formula to compute 

ji(Fz) = M[(x' + Ji(Fzx))(x + Jt(Fzx,)] = M[x + u3]= x  + u3;
ji(Fz,) = M[(y' + Jt(F,y))(y + J t(F y ))] = M[(y' + x)(y + u1)] = y'u1 + xy +

+ xu1;
u(F) = M[(z' + Ji(Fz))(z + ji(Fl,))] = M[(z' + x + u3)(z + y'u1 + xy + xuI)] =

= xy + xu1 + xz + z'y'u1 + zu3.
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We then discover, by applying the tautology-based algorithm in Section 
4, that only xu1 is redundant. (In this simple example, this can be done 
directly: If xu1 = 1, for instance, then x = u1 = 1, and the sum of the remaining 
cubes in ji(F) is y + z -I- y'z' ~ 1. Since y + z + y'z' is identically 1, xu1 is covered 
by jt(F) \ xu1.) We finally extract from the minimized cover expressions for 
each of f0, fp f2: cubes that do not contain any uj term will appear in all f., 
while a cube that contains uj will appear in f  with uj dropped. Hence, fQ = xy + 
xz + y'z', = xy + xz, f2 = xy + xz + z.

Toyota was traditionally weak in parts sharing. Womack and Jones 
(1996, p. 238) report that in 1992 Toyota introduced a new division of labor in 
its product development system in order to “... focus on product families 
which share components rather than on standjalone products”. A similar 
division of labor had been introduced earlier by Chrysler, under the names of 
“platform teams” and “value engineering”. The Economist (1995) reports that 
“The RAV4 ... was designed in a novel way. ... Toyota has copied value 
engineering techniques from Chrysler and Ford: these minimize the number 
of parts in a new model. Nearly half the parts in the RAV4 were already 
knocking around in other Toyota models. The aim now is to have each new 
Toyota model 70% built from parts common to its predecessor.” This was 
achieved, as Taylor (1997 (b), p. 42) reports, by joint design of several models 
simultaneously: “Most auto companies develop models sequentially. First 
you design a Camry sedan; then you design a Camry coupe. That lightens the 
engineering load and ensures that problems on one model get resolved 
before the next one is started. But Toyota has begun developing similar 
models simultaneously, so that engineering tasks overlap. MIT’s Cusumano 
believes that Toyota can save 15% in lead time and 50% in engineering hours 
by overlapping projects. Under this new system, Toyota’s product fecundity 
has been unrivaled. In the past two years it has introduced 18 new or 
redesigned models. Several Japanese models went into production as little as 
14.5 months after their designs were approved -  probably an industry record. 
Overall, Toyota has doubled its engineering output over the past four years, 
while increasing its budget by only 20% -  an astounding achievement.”

In conclusion, design for variety is design for cost reduction applied to 
the set of all potential products. Variety may not be free, but its cost 
decreases as a free byproduct of waste elimination.
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8. Summary and Conclusions

This paper has proposed circuit design as a model of waste elimination 
and its role in achieving simultaneous improvements in cost, quality, variety, 
and speed performance variables.

Waste elimination involves three steps: (a) definition of the product as a 
desired behavior rather than as an historically given artifact; (b) mapping of 
desired behavior into physical components that realize it; and (c) elimination 
of redundant components. The activity that accomplishes these tasks is 
design. The key bottleneck in design is complexity. This has two effects. It 
makes design expensive; and/or it prevents waste elimination.

One way to manage complexity, outlined in Sections 3, 4, and 5 of this 
paper, is to look for better problem representations, divisions of labor, and 
product architectures. If such changes fit the product, they can yield 
exponential-size savings, revolutionizing an industry.

No currently known method of waste elimination works equally well on 
all design problems; all are worst-case exponential, although they differ in the 
type and frequency of worst cases. A necessary consequence of this is that all 
known methods have to be applied incrementally. After designers eliminate 
some, but not all waste, production takes place; at the same time, another 
design exercise begins, to eliminate some more waste. Given the complexity 
of design problems, each design effort can yield significant savings, even if no 
change in the underlying technology has taken place. Womack et al. (1990, 
ch. 6) report that Toyota and its suppliers, after joint analysis of costs, agree 
on an initial price for a part and on a schedule of continual future price 
decreases over the life of the part. Suppliers are expected to keep redesigning 
parts, eliminating some waste each time.

Improving design productivity involves discovery of better problem 
representations, divisions of labor, and product architectures. Each one of 
these constitutes an ill-structured problem, i.e. it cannot be usefully 
represented as an optimization problem with explicitly stated objective 
functions and constraints. While occasional discoveries are made, there is no 
systematic search procedure for improving design productivity. Drucker 
(1991) has associated this fact with the slow rate of increase of the 
productivity of knowledge work.

Given the complexity of waste elimination, and the lack of systematic 
procedures that improve design productivity, it is unlikely that any firm, or
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value stream, is producing near an optimum. Production functions, cost 
functions, learning curves and other such representations of past experience 
are unlikely to summarize all of the economically relevant aspects of 
technology. A substantial amount of research has suggested that firms 
“managed by the numbers” generated by such summaries of past experience 
forego large improvement opportunities. Hayes and Abernathy (1980, p. 74) 
made this point while discussing management by the numbers: “... its first 
doctrine is that neither industry experience nor hands-on technological 
expertise counts for very much.... it encourages the faithful to make decisions 
about technological matters simply as if they were adjuncts to finance or 
marketing decisions. Complex modern technology has its own inner logic and 
developmental imperatives.” The belief that summaries of past experience 
describe a firm’s possibility frontier implies that the only way to improve is to 
shift this frontier by investing in equipment, R&D, and training. Baldwin and 
Clark (1994, p. 73) summarize the consequences of internal control systems 
based on such beliefs: “... these systems obscured the value of investments in 
organizational capabilities, because such investments were hard to quantify 1 
indeed, even to describe, within the financial models in use. As a result, 
companies often invested vigorously [ but in the wrong things.” Jensen (1993) 
has provided a well-known quantification of the costs of failure of internal 
control systems: “It is clear that GM’s R&D and investment program 
produced massive losses. The company spent a total of $67.2 billion in excess 
of depreciation in the period [1980-1990] and produced a firm with total 
ending value of equity of $26.2 billion.... the difference between the value of 
GM’s actual strategy and the value of the equivalent-risk bank account 
strategy amounts to $-100.7 billion.” (ibid., p. 858). In the light of these 
observations, this paper can be seen as an attempt to analyze some aspects of 
economic performance not visible through the standard apparatus of 
production functions, cost curves and learning curves.
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Appendix A

This Appendix contains proofs of Theorems 3.1 through 3.7, except for 
Theorems 3.2 and 3.4 proven in the main text. It also contains a proof of the 
statement in Example 3.3.

Theorem 3.1. F consists of its primes (F = Jt(F)) if, and only if, it is compact 
and maximal.

The proof is split into several lemmas.

Lemma A .l. F is compact if, and only if, it contains all primes of F ( i.e., 
Jt(F)ÇF).

Proof. Let F be compact. To show jt(F) Q F, let p E jt(F). Then, by definition 
of primality, p < F; and by compactness of F, there is a q in F such that p < q. 
Since q E F, q < F, so p < q < F. By the definition of primality, p = q; hence 
p EF.

For the converse, let F contain all its primes, i.e. let jt(F )  E  F. To show 
that F is prime, let p < F; we need to show that there exists q E F such that 
p < q. If p E F, there is nothing to show. If p ÿ  F, start dropping literals from p 
until a prime q of F is obtained. Then p < q, q E p(F) Q F.

Lemma A.2. Prime covers are maximal.

Proof. Let F be prime. To show maximality, we need to show that p, q E F, 
p < q imply p = q. If p * q, then p < q < F, a contradiction to the primality of

P-
Lemma A.3. A compact, maximal cover F consists exclusively of the primes of 
F, i.e. F = Jt(F).

Proof. By Lemma A .l, Jt(F) Ç F. To show that FÇ  Jt(F), let p E F \p(F ) (for 
contradiction). Since p is not a prime of F, there is a prime q such that p < 
q < F. Since Jt(F) Ç F , q E F. The maximality of F then implies p = q, a 
contradiction.

Proof of Theorem 3.1. If F is compact and maximal, then F = Jt(F) by Lemma 
A.3. If F = jt(F), then F is maximal by Lemma A.2 and compact by Lemma 
A.l.

Theorem 3.3. F is compact if, and only if, the consensus of any two cubes in F 
is covered by some cube in F.
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The proof is split in several lemmas.

Lemma A.4. Let p,q be two cubes. Then p < q if, and only if, pq' = 0.

Proof. Let p = IT xfi, q = H  xfi · Then q' = 2  xfi, and p q' = 2  (pxfi). For

each j, pxfi = (Hj ^  xfO · xfj nBi · If p < q, then A  C B. for all j, so A  D B' = 0

for all j, i.e. pq' = 0. If pq' = 0, then either p = 0 < q; or p < q = 1; or A  f! Bj =
0  for all j, i.e. A  f! Bj for all j, i.e. p < q.

Lemma A.5. Let p, q be two nonzero cubes. Then p + q is compact if, and 
only if, d(p, q) * 1.

Proof. It is first shown that d(p, q) = 0 implies p + q is compact. Suppose, for 
contradiction, that p + q is not so. Then there is a cube s < p + q, s ^  p, s ^  q; 
s ^  p means that p contains a literal i  not in s; s ^  q means that q contains a 
literal m not in s. Hence, p = iu, q = mo, i (£ u, m (fc o, i  £  s, m ^  s. By Lemma 
A.4, s < p + q implies sp'q' = 0, i.e. s(^' + u')(m ' + o ') = 0, i.e. s^'m' = 0. Since
1 i  s, m (£ s, it must be that ¿'m' = 0, i.e. 1 + m = 1, i.e., for some variable x, 
L = x, m = x'. Hence, p = xu, q = x'o, i.e. d(p, q) > 1, a contradiction.

It is now shown that d(p, q) > 2 implies p + q is compact. There exists a 
literal i  and cubes u, o such that p = iu, q = t v ,  uo = 0. Let s < p + q, s * 0; it 
is to be shown that s < p or s < q. By Lemma A.4, sp'q' = 0, i.e. s(/' + u')(^ + 
o ') = 0, i.e. s^'o' = 0 = s^u'. By Lemma A.4 again, st  < v , s i <  u. The last two 
inequalities imply that s must contain either i  or t ,  for if it doesn’t, s^u ' = 0 
implies so' = 0, and s^u' = 0 implies su' = 0; hence, s < u, s < o, i.e. s < uo = 0, 
a contradiction. Suppose that s contains i, so that s = si; then s = si <p, 
Q.E.D. Suppose that s contains t ,  so that s = s^'; then s = s^' < q, Q.E.D.

Finally, it is shown that d(p, q) = 1 implies p + q is not compact. There 
exists a literal i  such that p = iu, q = t v ,  uo * 0. It is to be shown that uo < 
p + q, but uo p and uo ^  q. First, uo(p + q)' = uop'q' = uo(^' + u')(£ + o ') = 
uo(/'o ' + iu' + u 'o ') = 0, hence, by Lemma A.4 uo < p + q. Secondly, uop' = 
uo(^' + o ') = ¿'uo * 0, since uo * 0 and i(fc u, i  ^  o; hence uo ^  p. Finally, 
uoq' = uo(^ + o ') = uo^ * 0, since uo * 0, t  (£ u, t  o; hence uo ^  q.

Lemma A.6. If p + q is not compact, then p + q + c(p, q) is compact and 
equivalent to p + q.
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Proof- Equivalence was shown in Theorem 3.2. Since p + q is not compact, 
Lemma A.5 implies d(p, q) = 1, so c(p, q) is well-defined. To show compact
ness of p + q -I- c(p, q), it suffices to show that s < p  + q, s ^ p ,  s ^ q  implies 
s < c(p, q). Since d(p, q) = 1, there exists a literal l  such that p = lu, q = t v ,  
uu * 0. By assumption and Lemma A.4, sp'q' = 0, i.e. s^u' = st v '  = su'd ' = 0. 
Neither l  nor t  can belong to s. For if L is in s, for instance, s = si, st  = 0 and 
therefore sp' = s ( t  + u') = su' = s£u' = 0, i.e. by Lemma A.4, s < p, a 
contradiction. Similarly for t .  Hence, stu' = 0 implies su' = 0, because t  £  s 
and L (£ u; su' = 0, by A.4, implies s < u. Similarly, s /V  = 0 implies su' = 0, i.e. 
s < v. Hence s < uu = c(p, q).

Proof of Theorem 3.3. Let F be compact, and p, q be cubes in F at distance 
one from each other. It is to be shown that c(p, q) is covered by some cube in 
F. Note that c(p, q) < p + q < F, hence by F’s compactness, there is a cube s in 
F such that c(p, q) < s.

For the converse, let F be a cover such that for any two p, q in F, c(p, q) is 
covered by some cube in F. Suppose, for contradiction, F is not compact. Let 
n be the number of variables in F. Then any t < F not covered by some cube in 
F must contain strictly less than n literals, i.e. it must not be a minterm. For 
if t is a minterm, b(t) is a singleton, so b(t) C b(F) = UpeFb(p) implies 
b(t) C b(p) for some p E F, i.e. t < p, a contradiction. Let t < F contain the 
maximum number of literals among the implicants of F not covered by any 
single cube in F. This number is less than n, so there is a variable x appearing 
in F but not in t. Hence xt < t < F, x't < t < F. The maximality property of t 
implies that xt, x't are each covered by single cubes in F, namely xt < p, x't < q, 
p, q in F. Then t = xt + x't < p + q. By assumption, t ^  p and t ^  q, i.e. p + q is 
not compact. By Lemma A.5, d(p, q) = 1, so c(p, q) is defined. By our 
assumption on F, c(p, q) < s for some s in F. By Lemma A.6, p + q + c(p, q) is 
compact and equivalent to p -1- q. Then we have t < p + q ~ p + q +  c(p, q), 
t ^  p, t ^  q, and p + q + c(p, q) is compact. It follows that t < c(p, q) < s, s E F, 
a contradiction.

Theorem 3.5. Let Fn = b(G), and for each t = n, n-1, ..., 1, Ft_1 = A(Fl), 
Sl = S(Fl), jt1 = Fl \ Sl. Then the set of primes of G is ji(G) = UJ=1 nl.

The proof is split into several lemmas.

Lemma A.7 (Wegener, 1987, p. 25). Let G be a cover and p a cube. Then p < F 
if, and only if, for any variable x not in p, xp < F and x'p < F.
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Proof. Let p < F, x a variable not in p. If xp ^  F, then there exists a vector co = 
(tox, to x) with cox = 1 such that p(co_x) = 1, F(w x) = 0; this contradicts p < F. 
Hence xp < F; similarly, x'p < F. For the converse, if xp < F, x'p < F, then p = 
xp + x'p < F + F = F.

Lemma A.8. For each t = n, ..., 1, Fl consists of all implicants of G that 
contain exactly t literals.

Proof. This is true by construction for Fn = b(G). Suppose it holds for t > 1; 
then Ft_1 = A(Fl) = {p: there exists a variable x such that both xp and x'p 
belong to F1}· By the induction hypothesis, xp and x'p are implicants of G 
containing exactly t literals. Hence p contains exactly t-1  literals; and is an 
implicant of G by Lemma A.7. For the converse, let p be an implicant of G 
that contains exactly t-1 literals. By Lemma A.7, both xp and x'p are 
implicants of G, for any x not in p. By the induction hypothesis, both xp and 
x'p are in Fl, hence p is in Ft_1.

Lemma A.9. For each t = n, ..., 1, ji1 consists of all primes of G containing 
exactly t literals.

Proof. Jtl < Fl, so all members of jc‘ are implicants of G, by Lemma A.8. 
Suppose p G jd is not a prime of G. Then there exists a literal i  and a cube q 
such that p = Iq and q is still an implicant of G.

By Lemma A.7, both iq  and V q are implicants of G; and by Lemma A.8, 
both belong to F*. Hence p = Iq is not in jd, a contradiction. Hence every 
member of id is a prime of G containing exactly t literals.

For the converse, let p be a prime of G containing exactly t literals. By 
Lemma A.8, p G Fl. Suppose, for contradiction, that p G Sl, i.e. that for some 
literal l  and cube q, p = Iq, and I'q G Fl. By Lemma A.8, iq  and Vq are 
implicants of G, while by A.7 q is an implicant of G, a contradiction to p’s 
primality. Hence p G Fl, p £  Sl, i.e. p G F l\S l = it1.

Proof of Theorem 3.5. ji(G) = UJ= x jd by Lemma A.9.

Example 3.3. Let Bn be the cover consisting of all minterms m in n variables 
whose number of positive literals ?i(m) is not divisible by 3. Let Jtn be the 
number of primes of Bn. Then, along the subsequence n = 6k + 2,
lim 2-njt = oo .n^oo n

Proof. Let a  = 12, 45, 78, ... be the sequence of numbers not divisible by 3,



MANAGING DESIGN COMPLEXITY... 69

arranged in pairs. Let B = { m £ B ;  X(m) = i}. Then B = U{B . U B : 
(i, i + 1)E o , 1 < i < n -  1}. Let Cni = {c(p,q); p E B ni, q E B n>i+1, (i, i + l)E o }  
be the set of consensus cubes formed by minterms in B , B Then the set 
of primes of Bn is jr(Bn) = U{Cni: (i, i + l)E o , 1 < i < n-1}, because if j* i  + 1 
and j is not divisible by 3, |i - j | > 3, hence no consensus forms can be built out 
of cubes in C C the QM method will stop after one iteration and delivern,i n,j

( \
ji(B ). Each C . contains n (n-i) cubes, because B . contains n cubes;

and because each cube m in Bni is at distance one from exactly n -  i cubes in
B namely those that contain an nnnrirneH variable if m does. Hence the

n ’ 1 V  ininumber of primes in Bn is *„ = 2 ,(.i + 1)eo|" J (n - i) . Setting n = 6k + 2, we

(3k+l). By this inequality andobtain ttn = 2 ; :  ' 6k+2:0 3t + l (6k -3 t+ l)>
i \6k + 2
3k+1

Stirling’s formula 2 njrn> 2 6k 2(3 k -h l)i^^^ •2“6k_2(3k+l)26k+V 1/2(3k +

+ 1) 1/2 = (3k+ l)1/zjr_1/2 = n1/2(2ji) i/z^-oo as n. 1/2 - 1 / 2
00

Theorem 3.6. Let x be any variable in cover F. Then ji(F) = M[(x' + jt(Fx)) (x + 
jt(Fx'))].

The proof is split into several lemmas.

Lemma A. 10. b(FG) = b(F) fl b(G).

Pmof. Recall that FG = 2 peF 2 qGGpq. Then

b ( F ) n b ( G )  =  ( U p £ F b ( p ) )  n  ( U q e G b ( q ) )  =  U p £ F U p 6 G b ( p )  O b ( q )  =

=  U p e F U P e o b ( p q )  = b ( S peF S q e o p q  ) = b ( F G ) .

Lemma A .l l . F~  (x' + Fx)(x + Fx,).

Proof. Both sides equal Fx when x = 1; both sides equal Fx, when x = 0.

Lemma A. 12. The product of compact covers is also compact.

Proof. Let F, G be compact covers, p < FG. Then p < F, p < G, since by 
Lemma A. 10 FG — F, FG — G. By compactness, then, there exist uE F , d E G  
such that p < u, p < v. Hence p < uv E FG, Q.E.D.
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Lemma A. 13. Let F , G be compact covers equivalent to F, G, respectively. 

Then F G is a compact cover equivalent to FG.

Proof. FG is compact by A.12. By A.10, b(FG  ) = b(F  ) f | b(G ) =

= b(F) flb(G) = b(FG),i.e. FG ~FG.

Lemma A.14. If G is compact, then so is M(G).

Proof. Let p < M(G). Since G~M (G), p < G. G’s compactness implies p < q, 
q E G. If q i  M(G), then there exists s £  M(G), q < s; hence p < s. Hence in all 
cases p < s, s E M(G), and thus M(G) is compact.

Lemma A. 15. Let ji(F) be the set of primes of F. Then ji(F) = M[jt(x' + Fx)

P(x + Fx.)]·
Proof. By A .ll, F ~  (x' + Fx)(x + Fx,). By Theorem 3.1, Jt(x' + Fx), jt(x + Fx,) 
are compact covers equivalent to x' + Fx, x + Fx>, respectively. By A. 13 then, 
jt(x' + F ) Jt(x + F ,) is a compact cover equivalent to F. By A.14, M[jt(x' + Fx) 
ji(x + F ,)] is a compact, maximal cover equivalent to F; by Theorem 3.1, it 
equals ji(F).

Lemma A.16. If G does not depend on x, then no prime of G depends on x.

Proof. Let p < G be a prime of G. If p depends on x, then p = xq or p = x'q. 
Suppose, for instance, that p = xq, and let p(co) = 1; then cox = 1, q(a)_x) = 1. 
Since p < G, we have G(co) = 1, and since G does not depend on x, G(a)_x) = 1. 
Hence, we obtain: q(co_x) = 1 => p(l, a)_x) = 1 => G((o_x) = 1, i.e. q < G, a 
contradiction to p’s primality. Hence p does not depend on x.

Lemma A. 17. Let i  be a literal, and G a cover independent of the variable in 
t. Then ji(G) C p{i + G).

Proof- Let p E p(G). By A.16, p is independent of the variable in l, say x. 
Suppose, for contradiction, that p n(l + G). Then there exists a literal m, 
m * l, m * i', and a cube q independent of x, such that p = mq, q < L + G. 
Suppose without loss of generality, that l = x. Since q is independent of x, 
q(co) = 1 with (ox = 1 implies q(co x, 0) = 1. Hence q(co) = 1 => q(co , 0) = 1 => 
(i + G)(co x, 0) = 1 =s> G(co x) = 1 => G(co) = 1, i.e. q < G, contradicting the 
primality of p. Hence p E  ji(  ̂+ G), Q.E.D.
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Lemma A.18. Let ί  be a literal and G be a cover independent of the variable 
in L. Then any prime of ί  + G is either ί or independent of the variable in l.

Proof- Suppose, without loss of generality, that ί  = x \ Let p E n(t + G). If p 
contains x', i.e. p = x'q, then p = x'; for if not, p = x'q < x' < x' + G, i.e. p is not 
a prime of ί  + G, a contradiction. Now suppose, for contradiction, that p * ί  
but p depends on x; then p = xq for some q independent of x. Since q is 
independent of x, q(co) = 1 => q(co_x, 1) = 1 => ρ(ω χ, 1) = 1 =» (χ' + G)(to χ, 1) = 
1 => G(o) x) = 1, i.e. q < G < x' + G, contradicting p’s primality. Hence, any 
prime p * ί  has to be independent of x.

Lemma A.19. Let ί  be a literal and G a cover independent of the variable in t. 
Then π(ί + G) C ί  + ji(G).

Proof. Let p E π{ί + G). By A.18, either p = i  or p is independent of the 
variable in ί. If p = ί , there is nothing to prove. If p is independent of the 
variable in x, then (for L = χ), ρ(ω) = 1=> ρ(ω_χ, 0) = 1 => (i + G)(to x, 0) = 1 
=> G(o) ) = 1 => G(co) = 1, i.e. p < G, i.e. p is an implicant of G. Suppose, for 
contradiction, that p is not a prime of G; then p = yq, q < G < t  + G, a 
contradiction to p’s primality. Hence p E ji(G), Q.E.D. The same proof works 
when ί  = x', by setting ωχ = 1.

Lemma A.20. For any cover G, and any literal t whose variable is not in G, 
π(ί + G) = ί  + ji(G).

Proof. We show ί  + K (G )C n(i + G), since the other half is Lemma A.19. By 
A. 17, we need only show ί  E π(ί + G). If ί  + G is not identically one, then ί  < 
ί  + G and 1 £ ί  + G, hence /Ε π ( /  + G), Q.E.D.

If ί  + G ~ 1, then G ~ 1 (to see this, let ί = x; if G 7-1, then G(o)) = 0 for 
some ω; since G is independent of χ, ωχ can be set to zero. But then (ί + 
G)((d) = 0. Since jt(G) ~ G, both sides of the equality to be proven equal 1.

Proof of Theorem 3.6. By Lemmas A. 15 and A.20, and the fact that Fx, Fx, are 
independent of x.

Theorem 3.7. If F is a monotone cover, then Jt(F) = M(F).

Proof. M(F) is maximal and equivalent to F. To show compactness, note that 
for any two cubes p, q in F, d(p, q) = 0, since each variable appears with the 
same sign in all cubes. By Theorem 3.3, F is compact; by A. 14, so is M(F); by 
Theorem 3.1, M(F) = tc(F).
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Appendix B

This Appendix provides a proof of Theorems 3.8, 3.9, and 3.10.

Theorem 3.8. For any design problem, ji(G) and ji(Ig) = M(IG) are iso
morphic. Each prime of IG gives rise to a prime of G by replacing every 
instance of z'.by x,1_k.

KJ J

The proof splits into several lemmas.

Lemma B .l. Let F, G be complementary covers, p a cube. Then p is an 
implicant of F if, and only if, for each q in G, d(p, q) > 1.

Proof, p < F b(p) C b(F) b(p) fl b(G) = 0  ^  b(p) D Uq E Gb(q) = 0  ** 
Vq E G, b(p) fl b(q) = 0  Vq E G, d(p, q) > 1.

Lemma B.2. Let F, G be complementary covers. An implicant p = r i jn=1xJAi 

of F is prime if, and only if, it satisfies the following condition C:

(C) If A  is singleton, then there is a q = II .n=1 xf» in G such that A. fl B. = 0 ,
A. Pi B. * 0  for all i * j.1 1  J

Proof. Let p < F be a prime of F. Let A  be singleton; without loss of generali

ty, set A  = {1}. Suppose, for contradiction, that for every q = I ^ n=1 xf? in G,

either A  fl B9 = 0  or 3i * j such that A { fl = 0 ;  equivalently, either 1E B9 
or 3 i* j such that A  fl BS = 0 . Let Gj = {q E G : 1EBS }, G2 = (q E G : BS = 
{0}} be a partition of G. If q E G p then Aj fl B9 * 0 ; since, by B.l, d(p, q) > 1, 
there is i * j such that A  D B9 = 0 . If q E G2, then by the contradictions 
hypothesis, 3i ^ j, A  Pi B*1 = 0 . Hence, for each q in G, 3i * j, A  D B9 = 0 . It

follows that the cube s = 11 x. j defined by C = D, C = A, i ̂  j, satisfies d(s, q) >

1 for each q in G. By B.l, s < F; by the definition of s, p < s. Hence p < s < F, 
a contradiction to p’s primality.

For the converse, let p = I I j = 1xJA3 be an implicant of F that satisfies 

condition C. Suppose, for contradiction, that p is not a prime of F. Then there 

exists a cube s = I I j = l xf:i such that p < s < F. Hence A  C C  for all i; and 

there exists a j such that A  is singleton and C. = D. By property C of p, there



m a n a g in g  d e s ig n  c o m p l e x it y ... 73

is a q = xfi in G such that A  H B. = 0 ,  A  Pi B; * 0  Vi * j. Hence B Pi C *

0 , Bj fl C  2  Bj fi A  * 0 , i.e. d(s, q) = 0. This contradicts, by B.l, the fact that 
s < F.

The next two definitions establish some useful notation.

Definition B .l. Let E = {{0}, {1}, D} be the set of nonempty subsets of D, 
ordered by set inclusion; E n is ordered componentwise, and is isomorphic to 
the set of cubes p = I l . n= 1 x JAj in n variables, since each p can be identified

with (Aj ... An) E En. Let D0 = {10, 01, 11} be ordered as follows: 10 < 11, 
01 < 11; DJ is ordered complementwise.

Definition B.2. The function &.■: E -» D0 maps each nonempty subset of D 

into its positional notation, namely {0} -* 10, {1} -» 01, D -*■ 11; the function 

p j : DQ->E, given by 10 -> {0}, 01 -* {1}, 11 -> D, is its inverse. Given a cube

p = (Ap ..., An) E En, a (p )  = a- (A); given a vector d = (d1, ..., dn)E D J  , 

b.(d) = Pj (dj). The functions a : E n -* DJ , p: DJ -> En, are defined by a(p) = 

(a,(P)>..., a n(p)), |3(d) = (p ,(d ),..., pn(d)).

Lemma B.3. The pairs (ctj, P j) , (a, P) are strictly increasing, inverse functions. 

Proof. Obvious from Definition B.2.

Lemma B.4. Let p = (Ap ..., An), q = (Bp ..., Bn) be two cubes. Then A  fl Bj = 

0  if, and only if, a^ p ja^ q ) = 2 ^ =0a kj(p )akj(q) equals zero.

Proof. Note that A. D B. = 0  if, and only if, A; = {0} and B; = {1}, or vice- 

versa; a (p )  = «j (A ) = o.· ({0}) = 10; <x(q) = aj (B^ = «j ({1}) = 01; and 

a j(p) a j(q) = 1 '0  + 0 '1  = 0. The converse follows from the fact that 

a.(p)a.(q) = 0 iff a (p )  = 01 and <x(q) = 10, or oc(p) = 10 and a (q ) = 01.

Lemma B.5. Let F, G be complementary covers. If p is an implicant of F, 
there exists a vector z that satisfies condition S:

(S) V qE G  Bj = jq such that ctj(q)zJ = 0 ,z E D J .

Conversely, if z satisfies S, then P(z) is an implicant of F.
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Proof. Let p -  .j be an implicant of F. By Lemma B.l, Vq E G d(p, q) >

1; i.e. Vq E G 3i = i such that A. D B? = 0 ; i.e. by Lemma B.4, Vq E G 3j = j 
such that a j(q )aj(p) = 0. Hence, set zj = a (p ) , z = (z1, zn) = a(p). Con

versely, let z satisfy S. Let p = |3(z) = I ^ n=1xfl. By Lemma B.3, a(p) =

a((3(z)) = z, i.e. zj = cc(p). By this and condition S, Vq E G 3j = jq such that 
a j(q)a j(p) = Lemma B.4 then implies that V qEG  3j = jq such that A  fl B9 = 
0 , hence d(p, q) > 1. Lemma B.l then shows p < F, Q.E.D.

Lemma B.6. Let F, G be complementary covers. If p is a prime of F, then a(p) 
is a maximal solution of S (if a(p) < go and if oo satisfies S, then oo = a(p)). 
Conversely, if z is a maximal solution of S, then b(z) is a prime of F.

Proof. Let p be a prime of F. By Lemma B.5, z = a(p) satisfies S. Let z < go, 
with w also satisfying S. By Lemma B.5, (3(go)  < F. Hence, by Lemma B.3, p = 
|3(a(p)) = (3(z) < (3(go)  < F; by primality of p, p = |3(go) ,  i.e. |3(a(p)) = |3(go) ;  by 
B.3 again, a(p) = go . Q.E.D.

For the converse, let z be a maximal solution of S, and p = P(z). By 
Lemma B.5, p < F. Suppose p < s < F. Then, by Lemma B.5, both a(p), a(s)

B 3
satisfy S, and by Lemma B.3 a(p) < a(s). We obtain, then, z = a((3(z)) = 

B.3
a(p) < a(s); since both z and a(s) satisfy S, and z is maximal, z = a(s). Hence 
a(p) = a((3(z)) = z = j3(s), i.e. by B.3, p = s. Hence p is a prime of F.

Note that (a, (3) is an isomorphism pair between primes of F and 
maximal solutions of S. The next definition will introduce transformations 
that will turn out to be an isomorphism pair between maximal solutions of S 
and primes of IG. Note that (E2)n is (isomorphic to) the set of cubes in 
variables (zQj; z^), j = 1, ..., n, since each such cube can be identified with a 
point ( A q .A y ^ e i E 2)".

Definition B.3. The function y : (E2)n —* DJ maps cubes formed out of 
variables (z0j, z^), j = 1, —, n, into vectors in D^, hence candidate solutions of 
S. If e = e1... en,ej E E 2, then y(e) = (y ^ e 1) ... y n(en)), where y .: E2 -» D0 is 

given by y .(eJ) = (£(ej,), ^(ej)); and E -» D is given by ^({0}) = 0, ?({1}) = 
1 = 5(D).

Definition B.4. The function d : DJ -» (E2)n maps candidate solutions of S
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into cubes formed out of variables (z0j, z^), j = 1, n. If d = (d1, dn), 

then 6(d) = (6 ^ d 1), 6 n(dn)), where 6 D0 -» E2 is given by6 .(d!) =
(0(dJo), ©(d^)); and 0: D -» E is given by 0(0) = {0}, 0(1) = D.

Definition B.5. Let X, Y be partially ordered sets, and f: X -> Y , g: Y X 
increasing functions. The pair (f, g) is a projection-embedding pair if

(a) x — g(f(x)), all x in X,

(b) y = f(g(y)), ally in Y.

Lemma B.7. The pairs ft, 0), (Y 6 .), (y, 6) are all projection-embedding 
pairs.

Proof. Consider first the pairs E -> D, 0: D -> E. £ is increasing; and 0 is 
increasing and one-to-one. To show (a), we need to show e < 0ft(e)) for each 
e E E. If e = {0}, then 0ft(e)) = 0(0) = {0} = e; if e = {1}, then 0ft(e)) = 
0(1) = D 2  {1} = e; and if e = D, then 0ft(e)) = 0(1) = D = e.

To show (b), we need to show d = ^(0(d)) for all d E D. If d = 0, then 
5(0(d)) = «{0}) = 0 = d; if d = 1, then £(0(d)) = ?(D) = 1 = d.

Pairs (Y ., § .), (y, 6) simply inherit properties (a) and (b) from ft, 0).

For example, 6 -(Y ^ d ))  = 6 j(z(ej), z(e})) = (0ft(ej)), 0ft(e}))) >

(ej, ej) = el.

Lemma B.8. Let ln be the cover defined in Def. 3.13. Then its behavior is 
b(IG) = {d E D q·. there exists a z that solves S and d < z} = all vectors 
dominated by some solution of S.

Proof. Recall that I = I I qGG' 2 j=1 Hj(q) , and that

Hj(q) = K j(q )  + Zoj)(a 'ij(q) + zij)·
Performing the multiplications involved in I’s definition, we obtain

l = ± . . . ± . . . ±  n qeo-H (q), N =
i l - l  iq = 1 JN = 1 q q

( 1 )

By the definition of H (q), R (q ) = z'oj if <x(q) = 10; H^q) = z’tj if ctj(q) 
01; and Hdq) = z^z'y if a (q )  = 11. We express these equalities compactly
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Hj(q) = z0̂ z^  (2)

A kj =  e ( a 'kj(q ))>  k  =  0 , l  ( 3 )

By (1), we observe that to remove all cubes with z'0j z\. terms from I, we 
need to delete all cubes I I  ^ r  H. (q) such that a. (q) = 11 for some q E G', 
because such a q gives rise, by (2) and (3), to a z'Q. z'  ̂ term.

Let J = {(j1 ? jN): V qE G ', a jq(q) ^ 11}. Then

IG  “
0i>

(4)

It is now shown that each d E b(IG) is dominated by a solution z of S. If 
d E b(IG), there exists a set of indices (jk ... jN) E J such that, for each q E G' 
and j = j , H.(q)(dj) = 1. Hence by (2) and the definition of J,

V qEG ', 3j = j such that dJkE A qkj, k = 0,1 (5)

j = j q>qe G ' imP|y a j(q ),! l1 · (G
Given this information, we can define a z that solves S. First, if j is a 

variable such that j * j for all q E G', set z] = 11. Secondly, if j is a variable 
such that j = jq for some q E G ', there are, by (6), two possible cases: a (q ) = 
01, or a.(q) = 10. If a.(q) = 01, then set z] = 10; and if a (q )  = 10, then set z] =J J J
01. Obviously, then, if j = j then a.(q)zJ = 0, and zE D J. Hence we obtain

V qE G ' 3j = jq, such that a(q)zj = 0, z E D J , (7)

i.e. z solves S. We now show that d < z. In fact, if j = j and a  (q) = 10, then by 
(5), (3), dJ0 E = 0 (aoj(q)) = 0(1') = 0(0) = {0}, i.e'. dJ0 = 0. Hence d* < z* = 
01. If, on the other hand, j = jq and a (q )  = 01, then by (5), (3), d jE A ^  = 
9(a ij(q)) = G(T) = 0(0) = {0}, i.e. dj: = 0, i.e. dj < z] = 10. Finally, if j * jq for 
all q E G', then d̂  < 11 = z] . Hence d < z.

For the converse, let z satisfy S (i.e. (7)) and d < z. We show that 
d E b(IG). If j = jq and <x(q) = 10, then (7) implies z] = 01, and dj < z] implies 
dJ0 = 0; hence dkjE A qkj, k = 0,1, i.e. H (q)(d1) = 1. If j = jq and ct^q) = 01, then 
(7) implies z] = 10, and dj < z] implies d̂  = 0; hence d]kE A qkj, i.e. H (q)(dj) = 1. 
Finally, if j * j for all qE  G', dj < z] does not imply anything definite about dj. 
By (7) and these results, then, V qE G ' 3j = j such that H.(q)(dj) = 1, hence 
n q e G  Hjp(q)(d) = !. i-e. d e b(IG).
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Lemma B.9. For each E D0, b(6 (zJ)) = {d̂  : dJ < ¿}; for each z E Dn0, 
b(S(z)) = {d: d < z}.

Proof. If zi = 10, then 6 i(zi) = (D, 0), b(6 ^zi)) = D x {0} = {dJ: dJ < zi}.

Similarly for z! = 01,11. Finally, b(6(z)) = b(5 ^ z 1)) x ... xb(6  n(zn)) = {d: 
d < z}.

Lemma B.10. If z satisfies S, then 6(z) < IG.

Proof. Let z satisfy S. Then b(6(z)) = {d: d < z} C b(IG), by Lemma B.8.

Lemma B .l l . If p is a prime of a cover F that is decreasing in x, then p does 
not contain x.

Proof. Suppose, for contradiction, that p = xq. Then p(o)) = 1 implies F(co) = 
1; and cox = 1, q(co ) = 1. Since F is decreasing in x, F(0, co x) > F(l, co x) = 
F(co) = 1. Hence q(o) x) = 1 => p(l, co x) = 1 => F(0, co_x) = 1 = F(l, co x), i.e. 
q < F, a contradiction to the primality of p.

Lemma B.12. If e is a prime of IG, then e = 6(y(e)); and y(e) is a maximal 
solution of S.

Proof. By Lemma B .ll and the fact that IG is decreasing in all variables,

eJk*{l} , k = 0,1, j = 1 ,..., n. (1)

By the definition of Y we obtain Y ^({0}) = 0, Y j(D) = 1; hence

Y .(e[) = max eJk. (2)
. (1) . (2) 

By the definition of behavior, b(e) = {d: dJk E eJk} = (d : dJk < max e]k} =

{d: d]k < Y j(eJk)} = {d: d < Y(e)}=9 b(6(Y(e))), i.e.

b(e) = b(6(Y(e))) = { d :d < Y(e)}. (3)

Since e < IG and by (3) y(e) E b(e), y(e) E b(IG).

By Lemma B.8, then, there is a solution z of S such that y(e) < z. Hence 
B 7 B 7 B 10

e < 6(y(e)) < 6(z) < IG. The primality of e then implies

e = 6(Y(e)) = 6(z), (4)

while (4) and the fact that 6 is one-to-one imply z = y(e), i.e. that y(e) solves 
S. To show that y(e) is a maximal solution of S, let co > y(e) be a solution of S.
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We show that co = y(e). We have e = 6(y(e)) < 6(to) < IG; the primality of 
e then implies e = 6(y(e)) = d(w); and the fact that 6 is one-to-one implies 
co = y(e).

Lemma B.13. If z is a maximal solution of S, then S(z) is a prime of IG.

Proof. Bv B.10, 6(z) < Ir . If S(z) is not a prime of IG, there exists a prime e
 ̂ B 7 B 7

such that 6(z) < e < Ir . Hence z = y(6(z)) < y(e); and y(e) is a maximal
B.7

solution of S, by B.12. By maximality of z, z = y(e), hence 6(z) = 5(y(e)) > e > 
6(z), a contradiction.

Lemma B.14. ji(G) and rc(IG) are isomorphic.

Proof. Let X be defined by X = 6 o a. By Lemma B.6, if p E jt(G), then a(p) is 
a maximal solution of S; and by Lemma B.13, X(p) = 6(a(p)) is a prime of IG. 
Hence X maps jt(G) into ji(Ig). Let p = p o y. By Lemma B.12, if eE jr(IG), 
then y(e) is a maximal solution of S; and by Lemma B.6, p(e) = P(y(e)) is a 
prime of G. Hence p maps ji(Ig) into jt(G). We now show that (X, p) are an 
isomorphism pair.

Let eEjr(I ); then (X o p)(e) = (6 o a) o (p o y)(e) = 6 o (a  o P)(y(e))^=6 
B 12

5(y(e)) = e. Let pE jt(G ); then (p o X)(p) = ((p o y) o (6 o a))(p) = (P o 
B 7 B 6

(y o 6))(a(p)) = b(a(p)) = p. Hence ji(G) and jt(Ig) are isomorphic.

Proof of Theorem 3.8. Lemma B.14 has established that ji(G) and jt(IG) are 
isomorphic; if e is a prime of IG, then p = P(y(e)) is a prime of G.

Let p = I l ^ x f i .  Then A. = p .(y j(ej)), where e = e1 ... en, and ej =

(eo ’ ek)> 4  Ihe exponent of zkj. Suppose that z'Q. appears in e; then eJ0 = 
{0}, ej: = D, because (a) eJk * {1}, and (b) eJk = {0} would mean that z'Q. z'V] 
appears in e, a contradiction to the definition of IG and the primality of e.
Then A  = p.(y j({0}), D)) = Pj(01) = {1} = (1 -0 } , i.e. each z'oj in e is 

replaced by x. = xj-0 in p, Q.E.D. Similarly, if z\. appears in e, ej = (D, {0}), 

and A. = p .(y j(D, {0})) = p j(10) = {0} = {1-1}, i.e. z\. in e is replaced by 

xj = Xj1-1 in p. Finally, if neither z'oj nor z'. appear in e, then ej = (D, D), and 

Aj = P j(Y j(D, D)) = p .(11) = D, i.e. xi does not appear in p either. Hence, in
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all cases, z'R. appears in e if, and only if, x.1-k appears in p, Q.E.D.
Theorem 3.9 (Brayton et al., 1984, section 3.1). Let G be a cover, x a variable 
in G. Then (a) G' -  x(G')„ + x '(G % ; (b) (G 'x) -  (Gx)'.

Proof. For (a) we complement the identity G = xGx + x'Gx,, to obtain G' = 
[X' + (G„)'][x + Gx,)'] = x(G,)' + x'(Gx,)' + (G„)'(Gx,)' -  x(G„)' + x'(G 
where the last step follows from the identity xp + x'q + pq ~xp + x'q. Hence

G '-x (G x)' + x '(G x,)'. (1)

At the same time, we have the identity

G '~ x (G ')x + x'(G ')x, . (2)

To show (b), let u E Dn_1 be a vector with the x component missing. Then 
by (1), G '(l, u) = (Gx)'(u), while by (2) G '(l, u) = (G ')x(u). Hence for all 
u E D - 1, (G )'(u) = (G ')x(u), i.e. (GX) '~ (G ')X. Similarly, (G ,) '~ (G ')X, .

Theorem 3.10 (ibid.).

(a) If G is monotone increasing in x, then G' ~x 'G x, + G'x.

(b) If G is monotone decreasing in x, then G' ~xG x + Gx, .

Proof, (a) If G is increasing in x, then no cube of G contains x'. We can thus 
write G = H + R, where H consists of all cubes that contain x, and R of those 
that don’t. Note that H can be written as H = xS, since each cube in H 
contains x. Then Gx = S + R, Gx, = R. Hence G = xGx + x'G , = xS + xR + x'R = 
xS + R = xS + xR + RS + R = (x + R)(S + R) = (x +G x,)Gx. Complementing 
this identity, we obtain G' = x'G x + G'x. Similarly for (b).
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Appendix C

This Appendix provides proofs of Theorems 4.1 and 4.2.

Theorem 4.1. Let F be a cover and q a cube. Then q < F if, and only if, Fq is a 
tautology.

The proof splits into several lemmas.

Lemma C.l. Let p = II , q = II xfi , d(p, q) = 0, pq = II x fi . Then E  = D

if B. * D, and E. = A if B. = D.
j ’ j j j

Proof. Since d(p, q) = 0, E. = A  U B '. If B. * D, then A  Pi Bj * 0 ;  implies
either A. = B. or A. = D; in both cases, A  U B' = D. If B. = D, then C. =

j j j ’  ’  j j j ’  j
A. U B' = A. U D' = A .j ] j j

Lemma C.2. Let p, q, r be cubes. Then (pq)r = prqr .

Proof.

1. Case 1: d(p, r) > 1. Then prqr = 0 qr = 0. Since pq < p, d(pq, r) > d(p, r) > 
1, hence (pq)r = 0.

2. Case 2: d(q, r) > 1. Similar to Case 1.

3. Case 3: d(p, r) = d(q, r) = 0; d(p, q) > 1. Then pq = 0, so (pq)r = 0. Let A ,
Bj, C C D  be the exponents of x. in p, q, r, respectively. Let j be such that 
Aj n  Bj = 0 ; (its existence follows from d(p, q) > 1); without loss of 
generality, let A  = {0}, Bj = {1}. By Lemma C.l, qj = pj = D if C. * D; 
and if C  = D, then pj = A  = {0}, qj = = {1}. Since d(p, r) = 0, A  Pi C  *
0 , i.e. 0 £ C ; since d(q,r) = 0, Bj Pi Cj* 0 ,  i.e. 1 £ C .  Hence C  = D, and 
it follows that pjPl qj = 0 , i.e. prqr = 0 = (pq)r .

4. Case 4: d(p, r) = d(q, r) = d(p, q) = 0; d(pq, r) > 1. This is an impossible 
case. To see this, let A , Bj, C  stand for the exponent of Xj in p, q, r, 
respectively. If d(pq, r) > 1, then there exists a j such that A. Pi B. Pi C. = 
0 ;, i.e. (Aj Pi C ) Pi (Bj Pi C ) = 0 ; without loss of generality, let A. Pi C  = 
{1}, Bj PI C  = {0}; hence C. = D, A  = {1}, Bj = {0}, i.e. A  Pi R = 0 , 
contradicting d(p, q) = 0.

5. Case 5: d(p, r) = d(q, r) = d(p, q) = d(pq, r) = 0. We show that for each j, 
(pq)Jr =p|H  qJr. If Cj ^ D, then by Lemma C.l, pj = qj = (pq)j = D. If C  = 
D, then by Lemma C.l, pj = A , qj = Bj, (pq)j = A  Pi Bj.
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Lemma C.3. Let F be a cover and p, r be cubes. Then (pF )r = prFr .

Proof· (pF)r = (2  GFpq) . By the definition of the cofactor of a cover,

(^q£FPO),* = 2 qGF(pq)r; and by Lemma C.2, (pq)r = prqr. Hence prFr =

P . 2 qe F llr  = 2 qeFprqt = 2 qeF(pq)r = ( 2 qeFpq)r =(pF)r.

Lemma C.4. Let F be a cover and p a cube. Then pF = pFp.

Proof. Note that if d(p, q) > 1, q E F, then pq = 0 and qp = 0. Hence, if R = 

{q E F : d(p, q) = 0}, and G = 2 qGRq , it suffices to show pG = pGp. Let A ,

B*? be the exponents of x. in p, q, respectively. By Lemma C.l, qJp = D if A. * D, 
and qj = Bq if A. = D. Hence (pq V = A. Pi qj = A. if A. * D; and (pq V = Bq if 
A  = D. In both cases, (pqp)j = A  Cl Bq. Since (pq)j = A. fl B  ̂by definition, we 
obtain pq = pqp Vq E R. Hence pG = pGp.

Lemma C.5. p < F if, and only if, pF~p.

Proof. Clearly pF < p, so we need only show p < F <=> p < pF, or equivalently 
pF' = 0 <=> p(pF )' = 0. Since (pF)' = p' + F' and pp' = 0, the equivalence is 
obvious.

C.5 C.3
Proof of Theorem 3.8. p < F = > p F ~ p = >  (pF )p ~ pp => ppFp ~ pp => Fp ~ 1.

C.4 C.5
For the converse, Fp ~ 1 => pFp ~ p = > p F ~ p = > p < F .

Theorem 4,2. Let F be a cover; E = {p E F : p ^  (F \ p)} the set of its relatively 
essential cubes; R = ( p E F \ E :  p ^  E} the set of its partially redundant cubes; 
and A its (reduced-size) covering matrix. Let x* solve the 0 - 1  linear

programming problem m in 2 pGRxp subject to Ax > 1; let suppx = { p ER:  

x* = 1}. Then E + suppx* is a minimum-cost cover equivalent to F.

Before proceeding with the proof, A is formally defined.

Definition C .l. For each cube r in R, let cp(r) consist of all subsets S of R that 
satisfy

(a) F ^ E  + (R \S);
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(b) i f TÇS and F * E  + (R \T), then T = S.
Definition C.2. The (reduced-size) covering matrix A of F has rows in 1 -  1 
correspondence with the elements of graph (cp), and columns in 1 -  1 
correspondence with cubes in R. Its entries are defined as follows: For each 
p E R and C E cp(r), r E R, ArC>p = 1 if p = r or p E C; and ArC p = 0 otherwise.

Definition C.3. The feasible set of the linear programming problem of 
Theorem 4.2 is H = {xE DR: Ax > 1}. The set B is defined by B = {xED R: 
F < E + suppx}.

Lemma C.6. H = B.

Proof. Let x E H; suppose, for contradiction, that x ̂  B. By the contradiction 
hypothesis, R + E ~ F ^ E  + suppx; hence there exists r in R such that r ̂  E + 
suppx. Recall that suppx = {p E R : xp = 1} Q R; it follows that suppx = 
(suppx)" = R \ (suppx)', and that r ^  E + R \ (suppx)'. Let C Q (suppx)' be a 
minimal set with this property; then CEqp(r) by definition C.l. Since Ax > 1,

we must have 2 pGRATCpxp^ l  , i.e. there must exist p E R with xp = 1 and

either p = r or p E C. If p = r, then we obtain a contradiction, because xp = 1, 
p = r imply r E suppx, thus contradicting the fact that r ^  E + suppx. If p E C, 
then again we obtain a contradiction, because xp = 1 implies p E supp(x), 
while p E C Ç (suppx)' imply p ÿ  supp (x). Hence H E B.

For the converse, let xEB; suppose, for contradiction, that x ^  H. By the 
contradiction hypothesis, there is some r E R, C E  (p(r) such that ArC pxp = 0 
for all p E R. By Definition C.2 this implies that p = r or p E C imply xp = 0, 
i.e. C U {r} E (suppx)'. The fact that x E B implies r < F < E + suppx, i.e. 
r < E + R \ (suppx)' < E + (R \ C), a contradiction to C E cp(r). Hence B Ç H.

Proof of Theorem 4.2. If x* solves m in 2 pGRxp subject to Ax < 1, then by

Lemma C.6 and Ax* > 1 we obtain F < E + suppx* since suppx*Ç R Ç F, F~E + 
suppx . If T Ç R satisfies F ~ E + T and contains fewer cubes than suppx*, 
then xT defined by xp = 1 iff p E T, satisfies AxT > 1 by Lemma C.6; and

^ pgrxp < ^ peRXp , thus contradicting the optimality of x*. Hence E +

suppx* is a minimum-cost cover equivalent to F.
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ABSTRACT

This paper contains a model of waste elimination through design. It argues 
for the importance of managing design complexity in improving cost, quality, 
variety, and time -to- market performance variables. Management of design 
complexity is identified with creation, choice, and application of design 
problem representations, divisions of design labor, and product architectures 
that provably eliminate waste. The paper’s thesis is illustrated with a 
comparison of Toyota’s technology strategy (based on waste elimination) to 
that of General Motors (based on frontier - shifting investment).
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