
POLITICAL ECONOMY -1 2 - SPRING 2003 - p.p. 5 - 85

Άρθρα - Articles

Managing Design Complexity
to Improve on Cost, Quality, Variety,

and Time-to-Market Performance Variables

by
Spyros Vassilakis*

1. Introduction

The economic theory of technological change is a theory of investment
subject to appropriability problems. At any point in time, there is a feasible
set of values of cost, quality and variety variables. Each firm is on the frontier
of its feasible set. The only way to simultaneously improve in all dimensions is
investment. A firm that buys a flexible manufacturing system (FMS) and
trains workers in its use, for example, has invested in equipment and training
that allow it greater variety with the same cost and quality as before. The
FMS itself was invented by a firm that invested in research. Investment is
modelled as foregone consumption used as an input into a black box process;
the output of this process is a larger feasible set. Scale is important because of
nonconvexities: in particular some investments are fixed costs to be spread
over as many units as possible. Appropriability problems arise because of
imperfect competition, externalities, or asymmetric information.

Some recent literature has proposed looking into the blac-box process.
Solow (1994, p. 52) suggested that “... the production of new technology may
not be a simple matter of inputs and outputs. I do not doubt that high
financial returns to successful innovation will direct resources into R&D. The
hard part is to model what happens then!” Milgrom and Roberts (1992, p. 93)
argue that not all resource allocation problems are the same: problems with
design attributes require different coordination mechanisms. And Hayek
(1948, p. 196) remarks on the treatment of cost curves as objectively given

* Department of Economics, European University Institute, Badia Fiesolana, Italy.

6 SPYROS VASSILAKIS

data: “What is forgotten is that the method which under given conditions is
the cheapest is a thing which has to be discovered, and to be discovered anew,
sometimes almost from day to day, by the entrepreneur, and that, in spite of
the strong inducement, it is by no means regularly the established
entrepreneurs, the man in charge of the existing plant, who will discover what
is the best method.” I will summarize this literature to motivate the
mathematical model introduced in the main body of the paper.

The first point this literature makes is that existing arrangements do not
usually exhaust the possibilities afforded by current equipment, knowledge
and people. Large improvements can be obtained by discovering and
eliminating waste. Hammer and Champy (1993, p. 37) describe how IBM
Credit reduced its response time to a credit application from six days to four
hours. The first step was the discovery of waste: “Two senior managers at
IBM Credit took a financing request and ... asked personnel in each office to
put aside whatever they were doing and to process this request as they
normally would, only without the delay of having it sit in a pile ... performing
the actual work took in total only ninety minutes. The remainder -now more
than seven days on the average- was consumed by handing the form off from
one department to the next.” The second step consisted in understanding the
relative importance of investment vs. waste elimination. A new computer
system might be able to “double the personal productivity of each individual,
but total turnaround time would have been reduced by only 45 minutes”
(ibid., p. 38). The reason is that waste had not yet been eliminated; the new
computer system “would have done nothing to eradicate the queue time that
awaited the forms when they arrived at each office” (ibid., p. 84). The third
step was to identify the source of waste: “every request (was handled as if) it
was unique and difficult to process, thereby requiring the intervention of four
highly paid specialists. In fact, most of the work those specialists did was
clerical ... and well within the capacity of a single individual when he is
supported by a computer system.” The fourth step was the installation of the
computer system. The fifth step was the routing of difficult cases to a team of
specialists. The result was that IBM Credit reduced turnaround time from
seven days to four hours; increased the number of cases handled one hundred
times (not 100%); and reduced the number of employees involved (ibid., p.
39). The hundredfold increase in productivity could be attributed to investing
in a new computer system. The reasoning in step two shows why this would be

m a n a g in g d e s ig n c o m p l e x it y ... 7

a mistake; the critical step in increasing productivity was the classification of
cases into routine and hard, and their different handling. The next point
illustrates how costly such a mistake can be.

The second point the literature makes is that misdiagnosis of a waste
elimination problem for a lack of investment problem is both possible and
costly. A well-known example is the attempt of General Motors (GM) to
approach the industry leader, Toyota, in the 1980s. In 1980, Toyota could
build a car for $1500 less than GM; in small cars, the difference was $2874
(Keller, 1990, pp. 82, 83). GM had a wide product range, but its models were
considered by consumers and dealers as only cosmetically different, “victims
of badge engineering - changing the nameplate and a few decorative
features” (ibid., p. 72). Finally, GM had a reputation for low-quality, defect-
ridden products: “by the Summer of 1981, GM was forced to recall all of its
1980 standard transmission X-cars (about 245,000 cars) to fix clutch and rear-
brake systems. At Cadillac, the V-8-6-4 engine was fraught with mechanical
problems. It followed the diesel engine, also a disaster, and caused massive
defections from the Cadillac brand. In 1981, the J.D. Power survey ranked
Cadillac number fifteen out of twenty-two brands” (ibid., pp. 74 and 76). At
the same time, the competition was doing better: “... consumers now expected
good performance and high quality to be standard features on their cars. The
Japanese had taught them to demand that” (ibid., p. 69). As a result, “... in
1980, GM posted its first loss in sixty years - a sum of $763 million” (ibid., p.
9)·

GM, and all the Big Three, believed they faced cost-quality-variety
tradeoffs, i.e. that they were on the frontier of their feasible set. Womack et
al. (1990, p. 65) report that “most Western companies concluded that the
Japanese succeeded because they produced standardized products in ultra-
high volume. As recently as 1987 a manager in Detroit confided in an
interview with members of our project that ...[the Japanese]... are making
identical tin cans; if I did that I could have high quality and low cost too.”

This belief was based on experience. One of the most striking findings of
Womack et al. (1990, pp. 93, 98) was that there were no significant relations
between plant cost, quality, and variety. Once, however, Japanese plants were
removed from the sample, tradeoffs appeared. An example of action based
on this belief is reported in Ingrassia and White (1994, p. 167). “Reuss [then a
top GM executive] argue that to achieve high quality GM should dedicate

8 SPYROS VASSILAKIS

three of the four GM-10 factories to building just one model each. One
model, fewer variations, fewer chances for the assembly workers to screw up,
the argument went. Thus the GM-10 factory in Doraville, Georgia, got the
Cutlass Supreme, the new plant in Fairfax, Kansas, got the Pontiac Prix, and
the Oshawa, Ontario, plant got the Chevrolet Lumina. It was another gigantic
error.” The diagnosis for a firm that believes it is on its efficiency frontier but
lags the competition is clear: lack of investment. GM invested $70 billion
during the 1980s (ibid., p. 33). GM’s CFO Alan Smith, as quoted in Keller
(1990, p. 196), provides some perspective on the magnitude of this sum:
“From 1980 to 1985, GM spent $45 billion in capital investment, yet
increased its worldwide market share by only one percentage point, to 22
percent. For the same amount of money GM could buy Toyota and Nissan
outright, instantly increasing its market share to 40 percent.”

The results of the $70 billion investment were not those anticipated by
GM. Its US market share decreased continuously from 46 percent in 1980 to
30 percent in 1996. Average pretax return on assets in the 1982-1991 period
was 2.8% for GM and 4.8% for its suppliers; the corresponding figures for
Toyota were 13% and 7%, respectively (Dyer, 1994, p. 178). GM loses money
in passenger cars: “The Big Three have been able to raise car prices only by
6% a year since 1988, while manufacturing costs have been rising at an annual
rate of 6.5%. ... The magnitude of the profit drain from cars is difficult to
calculate because it depends on the allocation of corporate overhead, but it’s
huge. No US company has made a profit on cars once during the last decade.
Losses have to be in the tens of billions of dollars” (Taylor, 1996, p. 14). GM
makes money in trucks in North America, and is also profitable in Europe;
until very recently, though, it has not faced Japanese competition in either of
these segments. Ingrassia and White (1994, p. 353) state that, in the protected
European market, “GM Europe could charge hundreds or even thousands of
dollars more for its vehicles than GM could have demanded for the same cars
in the US. ... GM Europe would lose money, too, if it had to sell at North
American prices.” Its protected position withstanding, GM Europe in 1994
generated $188,278 in revenues per employee, vs. Toyota’s $939,233
(Automotive Industries 1995, p. 48). Taylor (1992, p. 64) explains the situation
in trucks: “GM and Ford control the full-size pickup market and price their
vehicles as any duopoly would. The Japanese aren’t strong competitors, and a
25% import duty on two-door light trucks puts them at a severe

m a n a g in g d e s ig n c o m p l e x it y ... 9

disadvantage.” The Economist (1997) reports that the import duty is still in
place in 1997.

The $70 billion investment did not improve GM’s relative cost position.
Ingrassia and White (1994, p. 33) report that “... when the 1980s began, GM
had the lowest production costs among the Big Three. By the middle part of
the decade, GM had the highest cost of any major automaker in the world.”
Taylor (1997 (a), p. 62) reports that this was still true in 1996: “[GM] makes
almost no money in North America, where it has higher costs than its
competitors and some of the weakest brands.”

The $70 billion investment did not deliver the expected quality
improvements. GM’s quality problems were probably the main reason for the
decline in its market share. Its warranty costs in 1985 were $2 billion, or $300
per vehicle (Ingrassia and White, 1994, p. 931). Between 1985 and 1991, it
processed 2.7 million warranty claims for a single problem (stalling) in Buick
and Oldsmobile models; they were recalled in 1991 (ibid., pp. 98-99). The
Fiero model was recalled twice, in 1987 and 1989, to fix problems that caused
fires (ibid., pp. 108, 110). The extent of the damage to GM’s reputation is
indicated by a 1989 customer survey that found that “GM cars got fewer
recommendations on average than any brand except the Yugo, a comical
subcompact that had become the industry’s benchmark for bad quality”
(ibid., p. 181). Internal GM studies (ibid., p. 427) showed that in 1992 GM
attained the 1986 quality levels of an average Japanese car; its trucks had the
highest number of defects of all brands in the market; its warranty costs in
1992 were $3 billion, or $829 per car.

The $70 billion investment did not deliver the expected results in variety
and model renewal either. Many of GM’s large number of models were still
perceived as only cosmetically different; and the new models as not being
significantly better than the ones they replaced. An example is described in
Taylor (1992, p. 78): “Buyers not only couldn’t distinguish an Oldsmobile
from a Buick but also had a hard time telling a $9,000 Pontiac Grand Am
from a $25,000 Cadillac Eldorado.... This luxury car fiasco cost GM $1 billion
in 1986 alone.” Ford was able to inflict further damage to GM’s reputation
with negative advertising that satirized look-alike cars (ibid., p. 134). The
GM-10 cars, that were being designed for 8 years (1982-90), were perceived
by consumers as worse than the models they were replacing: “... these cars
had lost GM $7 billion. They had generated nothing but huge losses, steady

10 SPYROS VASSILAKIS

market-share erosion, and a belief among consumers that GM didn’t know
how to design good cars” (Ingrassia and White, p. 431). Womack et al. (1990,
p. 109) report that the A bodies that GM-10 was to replace have proved
much more profitable in the late 1980s, and the company now plans to
continue the production of the Oldsmobile and Buick variant indefinitely.”
This was still true as late as 1997: “The company only recently retired the
midsize Buick Century and Olds Cipra, which dated to 1982, and it still sells
the compact Buick Skylark and Olds Achieva” (Taylor, 1997 (a), p. 65). Five
years after GM’s new management took over and started implementing waste
elimination ideas, GM “has improved its cost structure, streamlined product
development, and improved its image, but it still lags behind the industry”
(ibid., p. 62). Toyota does have more assets per employee, $144,189 vs. GM’s
$37,559 in 1991 (Williams et al., 1994, table 3.3, p. 35). This does not explain
its superior performance. As Womack et al. (1990, p. 236) state, extra
investment rationalizations “did not explain why Japanese firms gained major
benefits from automation while Western firms often seemed to spend more
than they saved.”

The third point the literature makes is that waste elimination is the
outcome of product and process design. Product design eliminates waste in
the form of redundant components; process design eliminates waste in the
form of redundant processing steps. Low cost, high quality and large variety
have to be designed - in the products and processes of the firm; they are not
straightforward consequences of investment (hence GM’s unexpected
experience). To understand this, consider a product as a device that receives
inputs from the environment and the user, and produces outputs that
constitute the user experience. Clark and Fujimoto (1991, p. 5) illustrate this
point using a car driver as an example: “Seated behind the wheel, the
customer receives a barrage of messages about the vehicle’s performance.
Some of these messages are delivered directly by the car: the feel of
acceleration, the responsiveness of the steering system, the noise of the
engine, the heft of the door. ... All these messages influence the customer’s
evaluation. ... In essence, the customer is consuming the product experience,
not the physical product itself.” The behavior of the product, then, is the set
of input-output pairs it allows.

Each such pair represents a function the product has to fulfill. Design
starts from desired behavior. Each function is mapped into a physical

m a n a g in g d e s ig n c o m p l e x it y ... 11

component that realizes it. Product size, mass, ease of fabrication, and
therefore cost, depend on the number and the individual characteristics of
components in the product. Cost reduction at the product design stage is
achieved by mapping as many functions as possible into individual
components, i.e. by eliminating waste in the form of redundant components.
This is called function sharing by Ulrich (1995, p. 433), who also provides the
following example: “A conventional motorcycle contains a steel tubular
frame distinct from the engine and transmission. In contrast, several high-
performance motorcycles contain no distinct frame. Rather the cast
aluminum transmission and motor casing acts as the structure for the
motorcycle. The motorcycle designers adopted function sharing as a means of
exploiting the fact that the transmission and motor case had incidental
structural properties which were redundant to the structural properties of the
conventional frame”.

Product design is probably the major determinant of cost for many
products. Whitney (1988) reports on GM and Rolls-Royce studies to this
effect. He then states: “When senior managers put most of their efforts into
analyzing current production rather than product design, they are monitoring
what accounts for only about a third of total manufacturing costs ... they now
face competition that is reducing drastically the number of components and
subassemblies for products and achieving a 50% or more reduction in direct
cost of manufacture.” Morton (1994, p. 11) stresses the importance of design
for other performance variables: “Good design is the key to manufacturing. It
is the difference between a product that does a great job reliably, is easily
fixed if damaged and is made cheaply and quickly; and a pile of junk.”

GM neglected cost reduction at the product design stage. Ingrassia and
White (1994, p. 112) describe Hamtramck, a GM factory that opened in 1985:
“Hamtramck was supposed to erase the nearly $2000 a car cost advantage
Toyota enjoyed ... (Hamtramck’s) cars were hard to build. The front and rear
bumper of a Cadillac Seville had more than 460 parts and took thirty-three
minutes of labor to put together. Two years after it opened, Hamtramck put a
stunning 100 hours of labor -five times as much as Toyota- into building each
car.” The GM-10 cars were more difficult to build than comparable Ford
Taurus cars, because they had so many parts they were difficult to assemble:
“As GM engineers tore apart Tauruses and gathered intelligence about the
factories in Atlanta and Chicago where they were built, they realized their

12 SPYROS VASSILAKIS

crosstown rival had designed cars that were cheaper to build. Building a
Grand Prix was like assembling a jigsaw puzzle. It required some thirty-five
hours of assembly labor. Building a Taurus took about twenty hours of
assembly labor. In 1988, this translated to a roughly $300 per car advantage to
Ford - on assembly labor alone. Ford’s advantage was all the more stunning
because GM had spent billions to outfit the GM-10 plants with the latest
automation. Eventually GM would lose as much as $1800 on every GM-10 car
it sold” (ibid., pp. 160-161). During the redesign of its J-cars in 1989-90, GM
engineers studied Toyota and Honda cars: “the more the J-car engineers
learned, the harder they worked to eliminate extraneous parts and make the
new mold easier to build. The old Cavalier took nearly 50 percent more labor
time to assemble than a Corolla. The new J-car would have nearly 20 percent
fewer bolts and widgets than the old model” (ibid., p. 423). This paper
discusses design for cost reduction in Sections 3, 4, and 5.

Product variety can be obtained in several distinct ways. The first way is
to design each product separately; no provision is made for parts-sharing
between products. A firm can then either build its product range before
orders come in, and provide fast service at high (inventory) cost; or it can
build to order, providing slow service at lower (inventory) cost. The second
way, modular product design, allows the firm to avoid these two extremes. All
the products are designed together. Waste elimination in the form of
minimizing the number of components is then equivalent to maximizing the
number of shared parts; build shared parts before orders come in; and then
assemble to order. Feitzinger and Lee (1997) report that this is done at
Hewlett-Packard; and Whitney (1988; 1995) at Nippondenso, one of Toyota’s
main suppliers. The same principle applied to equipment, modular equip
ment design, allows a given set of machines to make different products, while
minimizing setup and changeover costs. Shingo (1989) calls this principle
function standardization, and provides numerous examples, many of them
drawn from Toyota. The same author, in his study of Toyota, warns:
“Mechanization should be considered only after every effort has been made
to improve setups using the techniques described. [They] can reduce a two-
hours setup to three minutes, and mechanization will probably reduce that
time only by another minute” (Shingo, 1989, p. 44).

GM neglected design for variety, and Shingo’s advice on automation. It
seems to have reversed the principle of modular product design in two ways.

m a n a g in g d e s ig n c o m p l e x it y ... 13

First, similar cars used different components, foregoing the benefits of
eliminating redundancies: for years the company produced 17 ignition
systems where three would have sufficed, and 40 types of catalytic converters
instead of three or four. The engineering was 180 degrees out of phase. GM
cars looked alike outside but were all different inside” (Taylor, 1992, p. 59).
Secondly, in other instances GM compromised variety in order to share parts
(as opposed to maximizing shared parts keeping variety fixed), foregoing the
extra revenue variety brings: “GM’s aggressive pursuit of commonality of
floor panels and other body parts as a way of holding down the enormous cost
of developing a series of fuel-efficient models during the 1970s and 1980s
seriously hurt its product differentiation” (Clark and Fujimoto, 1991, p. 149).

GM seems to have reversed the principle of modular equipment design
as well: “As recently as the 1980s stamping was split among several divisions
that each produced their own metal parts using different presses and dies.
This segmented approach resulted in some press systems that ran only 20
hours a week. Pieces stamped by Pontiac for a certain model wouldn’t fit on a
nearly identical car made by Buick. GM is now spending $850 million to
standardize the die production at 13 plants and reduce the number of press
line setups from 57 to six. That’s progress, though it won’t send GM to the
head of the class. GM will spend about $2700 per ton of stamping, vs. $2200
to $2300 at Toyota” (Taylor, 1997 (a), p. 62). The same source reports on
GM’s recent effort to adopt modular product design: “GM is thinking of ways
to integrate future Chevies, Pontiacs and Saturns with German-made Opels
to achieve greater economies of scale. ... a compact Pontiac Sunfire is
designed alongside four other brands as part of a global small-car program”
(ibid., p. 65). This paper discusses design for inexpensive variety in Section 7.

Quality, in the sense of a defect-free product, can be attained in several
distinct ways. The first is to build redundant components into the product, so
that if one component is defective, others will perform its function. It makes
the product heavy and expensive to build. The alternative is to eliminate
waste from the product in the form of redundant components, so that testing
and fault-diagnosis become easier. (The same principle applied to production
is the well-known lean technique of removing inventory to expose defects.)
An example is provided by De Micheli (1993, p. 33): “Microelectronic circuits
are tested after manufacturing to screen fabrication errors. Circuit testability
affects its quality. A circuit that is not fully testable is less valuable than

14 SPYROS VASSILAKIS

another one that is. For some kind of fault models, increasing the fault
coverage is related to removing redundancies in the circuit.” In the sense,
then, that quality is a byproduct of design for cost reduction, quality is free.
GM’s quality strategy, on the other hand, was not based on waste elimination
and was bound to produce cost-quality tradeoffs. Alex Mair, then head of
GM’s Vehicle Assessment center, made this point to GM engineers in a
speech given in 1986, quoted by Ingrassia and White (pp. 89-93). Mair first
reminded the audience that GM had invented the automatic transmission in
the 1930s. He then played tapes of a GM Hydramatic transmission (noisy);
and a Toyota Camry gearbox (quiet). Finally, he made the point: “People say,
T don’t believe that. I just drove a Cadillac and it was very quiet.’ That’s true.
Because we spend a lot of money and a lot of engineering talent to mask that
noise - by packing insulation under the hood” (ibid., p. 92). This paper
discusses design for inexpensive quality in Section 6.

The fourth point the literature makes is that product design is an
information-processing activity; its cost and duration depend on product
complexity. This view in- forms the studies of design undertaken by Clark and
Fujimoto (1991) and Simon (1981). The former, for example, state that
“Throughout the book we look at the development process as a total
information system and identify important problems from the perspective of
information processing” (p. 18). They also have separate chapters on the
management of complexity (ch. 6) and on problem-solving (ch. 8).
Complexity of design can be the binding constraint on a firm’s ability to
improve. Lengauer (1990, p. 938) in his survey of VLSI theory, states: “It is a
generally accepted fact that the design problem dominates the fabrication
problem. Put differently, the fabrication technology provides us with means
to produce circuits that are so complex that we do not know how to design
them effectively. This is the reason why circuit design is one of the most
critical areas in computer science today.” Design was also one of the binding
constraints that resulted in GM’s market share loss in the 1980s: “In 1987,
GM’s share of car sales skidded all the way down to 36.6%, a drop of nearly
five points in a single year. Unlike Chrysler and Ford, wealthy GM had
redesigned almost its entire car line in the early 1980s. It had changed four
rear-wheel drive to front-wheel drive to reduce weight and improve fuel
economy. In the rush to get the redesigned cars to market, GM neglected to
remove all the bugs. The new models weren’t nearly as good as those they

m a n a g in g d e s ig n c o m p l e x it y ... 15

replaced......GM had taken on too much - and done it badly. Switching the
drive wheels of a car from the rear to the front requires entirely new
mechanical systems and changes the dynamics of the car. Once the project
got under way, corporate momentum demanded that it be completed on
time” (Taylor, 1992, pp. 76, 77). Design was also the binding constraint on the
timely completion of the GM-10 program; when the new models were ready,
demand was no longer there: “it would be the largest new model program
ever, the ultimate expression of GM’s ability to capitalize on its enormous
economies of scale. But GM couldn’t pull it off. The world’s largest
corporaton choked. ... Eight years after the project began, the final GM-10
car came to the market in 1990 - but the market had moved. James Womack
calls GM-10 the biggest catastrophe in American industrial history” (ibid., p.
731). It is complexity that prevents a firm from taking full advantage of the
opportunities afforded by its equipment, knowledge, and people, i.e. from
eliminating waste.

The fifth, and probably most important, point the literature makes is that
complexity can be managed; and that the way it is managed matters for the
cost and timeliness of design, and hence for the extent of waste elimination.
Toyota’s and Honda’s ability, despite their smaller scale, to offer lower cost,
higher quality, more variety and faster model replacement than the Big
Three, led to studies of their design processes. The surprising result was that
their advantage was not due to greater engineering effort: “a totally new
Japanese car required 1.7 million hours of engineering effort on average and
took forty-six months from first design to customer deliveries. By contrast,
the average US and European projects of comparable complexity and with
the same fraction of carryover and shared parts took 3 million engineering
hours and consumed sixty months. This, then, is the true magnitude of the
performance difference between lean and mass production: nearly a two-to-
one difference in engineering effort and a saving of one-third in development
time” (Womack et al., 1990, p. 111). These firms had developed distinct ways
of information processing and problem-solving. Clark and Fujimoto (1991)
describe concurrent engineering; Hauser and Clausing (1988) quality
function deployment; and Ward et al. (1995) concurrent set-based design.
The Big Three understood the design advantages of these rivals and based
their turnaround efforts on changing their own design methods. Naughton
(1995, p. 58) comments on the appointment of J. Nasser as head of Ford’s

16 SPYROS VASSILAKIS

product development: “it puts him on the spot to fix Ford’s biggest problem:
spending too much money and time to bring out new cars. ... By 1999 Nasser
expects to cut development time from 37 months to 24 months, equal to
industry leader Toyota. Key steps will be reducing cars’ complexity and
eliminating redundant parts.” Taylor (1997 (a), pp. 61, 65) describes his visit
to a GM site where new product designs are kept: “No place is more vital
than Rigorous Tracking Room. It contains a wall chart 45 feet long that plots
42 new vehicle programs -the very lifeblood of GM- through their three-year
gestation. The programs are measured for timeliness, quality, and financial
performance, and color-coded by complexity. ... It is one thing to design a car
[AN: here “design” is used to mean “specify”] and quite another to engineer
it so that customers get it quickly. A chart in the Rigorous Tracking Room
shows GM’s progress. In 1992 the company needed 42 months to start
production on a new model once the final design had been set, vs. 31 months
for Toyota. Now GM can do it all in 31 months, Toyota in 26.” Finally,
Ingrassia and White (1994, ch. 19) document how Chrysler studied the design
methods of Honda and Mitsubishi, and then adapted them to achieve
significant gains in the cost and speed of model replacement.

2. Design Problems

Design aims at achieving desired product behavior at reasonable cost by
eliminating waste. Several ways of doing this are presented in this paper; they
all provably eliminate waste, but differ in the time and effort they need to do
so. By comparing them, our attention is directed towards the specific
activities that make the difference. In this particular case, our attention is
drawn to the many, rather unexpected ways problem representation, division
of design labor, and product architecture matter for the timely elimination of
waste. This is done in the simplest model of design that does some justice to
its complexity.

Let D = (0,1} be a two-element set, and Dn its n-fold Cartesian product.
The Introduction motivates the definition of product behavior as a function f
mapping Dn (the inputs) into Dm (the outputs). Behavior of electronic
circuits, and of other products after coding their inputs and outputs as zero-
one strings, can be thus described. When there is only one output (m = 1), as
in this section, behavior f can also be described by the set L1 (1). The case
m > 1 will be considered in the section on design for variety.

m a n a g in g d e s ig n c o m p l e x it y ... 17

SMinition_2il - Product behavior (functionality) is a function Dn -* D or
equivalently a subset B of Dn intended to represent T1 (1).

Design consists in the search for components that, put together, define a
product with the desired behavior. Components will be made of elementary
pieces called gates.

Definition 2.2 - A gate is any function mapping D or D2 into D.
There are four gates mapping D into D: always 0, always 1, identity, and

negation or NOT (mapping 0 into 1, and 1 into 0). There are sixteen gates
mapping D2 into D. This section considers only two: logical sum (OR),
defined by 0+0 = 0, 0+1 = 1+0 = 1 + 1 = 1; and logical product (AND),
defined b y lT = l ,T 0 = 0 , l = 0 , 0 = 0. Any function mapping Dn into D can
be obtained by combining AND, OR, and NOT gates. To see this, we need the
identity f(x: · · · x. · · · xn) = xif(x1 · · · 1 ·· · xn) + x'f(x1 · · ■ 0 · · · xn), where x'
denotes the negation of x: both sides of the identity equal f(x: · · ■ 1 · · · xn)
when Xj = 1, and both sides equal f(x2 · · · 0 · · · xn) when x{ = 0. Repeated
application of this identity, each time for a different variable, yields a form,
called a cover, involving only AND, OR, and NOT. For example, the function f
defined by f(l, 0) = 0, f(0, 0) = f(0, 1) = f(l, 1) = 1, decomposes as follows:
f(Xp X2) = Xj f(l, X2) + x; f(0, X2) = Xj [x2 f(l, 1) + x2 f(l, 0)] + x' [x2 f(0 ,1) +
x2 f(0, 0)] = Xj x2 + x' x2 + x'j x'2.

I now formalize this discussion.

Definition 2.3. A literal is a member of D, a variable, or a negated variable.
Equivalently, a literal is a form xA, where x{ is a variable and A a subset of D,
where x* = 0, x® = 1, x1. = x{, x°j = x '. Members of D are trivial literals.

Definition 2.4. A cube is a product of literals, i.e. a form n/Ljxf* · If all A are
singleton, the cube is called a minterm, and we say that all variables are
present in it. A cover is a sum of cubes.

Definition 2.5. The behavior b(F) of cover F is a subset of Dn inductively
defined by

• b (xf) = D x ... x A x ...x D , where A is in the i-th position;

b (n in=1xfi) = n in=in b (x ^)= A 1xA2x ...xA n;

2 i = 1 Q) — Uf=1b(Q), where F = 2 i = 1 Q1 is a sum of cubes.

18 SPYROS VASSILAKIS

Two covers F, G with the same behavior are called equivalent;
equivalence is denoted by F ~ G.

As an example b(XjX2 + XjX2 F x '^) = Mxi x2) Ub(x'x'2) Ub(x'1x'2) = {11,
01, 00}. This behavior, however, can also be realized by the less costly cover
x' + x2. Note also that each behavior B is realized by the maximally redundant

cover FB = 2 p GBmp , where m ^ I l ^ x ?1 ; b(Fg) = UpeBb(mp) = UpeB{|3} =

B.

Any behavior, therefore, can be specified by a cover.

Definition 2.6. A design problem is a cover G. The cost of a cover is the
number of cubes it contains. A solution to a design problem G is a minimum-
cost cover F equivalent to G.

In terms of the discussion in the Introduction, the product is a cover and
its components are the cubes in the cover. The search for minimum-cost
covers can be focused if some of their properties are known in advance.

Definition 2.7. Let F, G be covers; G is covered by F (G < F) if b(G) Cb(F).
For example, G = x2 x2 + x3x3 is covered by F = x ,. When F, G are cubes,

G < F iff every nontrivial literal in F is also in G: xix2x3 ^ xix3 ^ xi· Equival

ently if G = II. = t x^i, F = r i j = 1x1Bi are cubes, then G < F iff A is a subset of

B. for all i.1

Definition 2.8. A cube p is an implicant of cover F if p < F. A cube p is a
prime implicant of F if p < F and, in addition, p < q < F implies p = q; in
other words, if any literal is dropped from p, it ceases to be an implicant of F.

For example, x3x2x3 < x}x2 < F = XjX2x'3 + XjX2x3 + x'x'2x3; x; £ F, i = 1, 2;
XjX2x3 is an implicant of F, but not a prime one; x:x2 is a prime implicant of F;
neither x. is an implicant of F. Note also that equivalent covers have the same
set of primes, because F ~ G implies that p < F iff p < G.

Definition 2.9. A cover F is prime if every cube in F is a prime implicant of F.
The covers F = x\ + x1x2, G = x' + x2 are equivalent, but only G is prime:

XjX2 is not a prime of F since XjX2 < x2 < F, x2x2 * x2.
Primes are interesting because of

Theorem 2.1. Every design problem G has at least one prime solution.

m a n a g in g d e s ig n c o m p l e x it y ... 19

Proof- L e tF = 2 iGIqi solve G. Then

b(G) = b(F) = Uieib(q'). (1)

Let Ij be the set of all i in I such that q1 is not a prime of G, and I2 its
complement.

For each i in Ip drop literals from q1 until it becomes a prime q1 of G. Then

b (q1) £ b (q1) C b (G). (2)

The cover F = 2 iei q‘ + 2 jel q‘ has the same cost as F does; it is prime by

construction; and it is equivalent to G by (1) and (2). Hence F is a prime
solution of G.

Note that if cost was also increasing in the number of literals in a cover,
then aU solutions of design problems would be prime. In any case, the search
for solutions can be restricted to prime covers. Although a prime solution of
G consists of primes, it does not necessarily consist of all primes of G. For
example, G = x3x2 + XjX3 + x2x3 is a prime cover, but only the first two cubes
constitute a solution of G: the third cube, x ^ , is prime but redundant. One
obvious division of design labor, therefore, is to first compute all primes of
the design problem and then search for, and eliminate, redundant primes.

Definition 2.8. The Quine-McCluskey (QM) procedural division of labor
comprises two steps:

1. For each design problem G, compute its set of primes jt(G).
2. Find the smallest subset F of ji(G) that covers G (G < F C jc(G)).

3. Computation of Primes
Primes are the components out of which a product exhibiting the desired

behavior will be built. The set of all primes of a design problem is uniquely
characterized by two properties, maximality and compactness. Every method
of computing primes will have, therefore, to transform the design problem G
into a compact, maximal cover with the same behavior. It will turn out that
maximality is achieved by removing cubes while preserving behavior; while
compactness is achieved by adding cubes while preserving behavior. The

20 SPYROS VASSILAKIS

properties of the cubes to be added or removed will delimit the possible
divisions of the labor of computing primes, and will allow comparisons of
their efficiency properties.

Definition 3.1. A cover F is compact if every cube p covered by F is covered
by some cube q in F. A cover F is maximal if for any two cubes p, q in F, p < q
implies p = q.

The cover ¥ l = x\ + x2 is compact; the equivalent cover F2 = x\x'2 + x2 is
not, because x\ < F2 but x\ £ XjX'2 and x'j £ x2. The cover F3 = x' + x2 + x2x3 is
compact and nonmaximal; F2 is maximal but not compact; while Fj is both
maximal and compact. Definition 3.1 is interesting because of

Theorem 3.1. A cover F consists of its primes (F = jt(F)) iff it is both compact
and maximal.

Behavior-preserving maximality is easy to achieve, because p < q implies
p + q ~ q: If p, q are in F and p < q, then remove p from F. This gives rise to

Definition 3.2. The maximal equivalent M(F) of F is what remains of F after
all non-maximal cubes are removed.

Behavior-preserving compactification of F involves adding cubes to F.
For example F = x 'x '2 + x2x3 is noncompact because x'3x3 < F but x'3x3 ^ XjX'2
and x'x3 ^ x2x3: hence any compactification of F must add to F a cube
covering XjX3, namely either x'1? or x3, or x'x3 itself. Since neither x' nor x3 are
implicants of F, the only behavior-preserving compactification of F is F + x' x
To understand the general case, we need the next two definitions.

Definition 3.3. The distance dip. q) of hvn nonzero cubes p = Tl"=lxp ,

<1= 1̂ = i is the number of their opposed literals, i.e. d(p, q) = #{i: AflBj = 0 }.

For example, d(Xlx2, x ^) = 0, d(xp X;x2) = 1, d(Xlx2, x;x 'x3) = 2,
d(XjX2x3, x'jX2x3) = 3.

Definition 3.4. Let dpq = 1, and let x(be the unique variable such that A D B. = 0 .
Then the consensus c(p, q) of the two cubes is obtained by multiplying p and
q after removing the opposing literals x(Ai and x^, i.e. c(p,q) = T ^ ^ x p ^ i .

For example, c(xp x;x2) = x2, c(Xlx2, x'2x3) = x ^ .

Theorem 3.2. Let p, q be two cubes in F at distance one from each other.
Then F ~ F + c(p, q).

MANAGING DESIGN COMPLEXITY... 21

Proof. Since dpq = 1, p = xu, q = x'u for some variable x not in u or u. Then
F = p + q + G, while F + c(p, q) = p + q + uu + G. Hence, it suffices to show
that xu + x'u + uu ~xu + x'u. In fact, both sides equal u when x = 1, and both
sides equal n when x = 0.

Theorem 3.2 shows that adding to F the consensus of any two cubes in F
isbehavior-preserving. The next theorem suggests that adding consensus
cubes is necessary for compactification.

Theorem 3.3. A cover F is compact iff the consensus of any two cubes in F is
covered by some cube in F.

The last three theorems suggest how to compute primes.

Theorem 3.4. The primes of design problem G can be obtained by repeated
application of the following two rules, until neither applies:

1. If p, q are in G, and p < q, then remove p from G;

2. if p, q are in G, but their consensus c(p, q) is not covered by any cube in G,
then add c(p, q) to G.

Proof. By Theorem 3.2, application of rule 2 preserves behavior. By the fact
that p < q implies b(p + q) = b(q), application of rule 1 preserves behavior.
Hence, all the covers derived from G by application of those rules behave as
G does. If neither rule applies to a cover, then this cover is maximal and, by
Theorem 3.3, compact. Hence, if the process terminates, the resulting cover
is maximal, compact, and equivalent to G, i.e., by Theorem 3.1, it is the set of
primes of G. To prove termination, note that rule 2 can add to G at most all
cubes formed out of Xj... x ; that rule 2 can be applied only once to each pair
of cubes; and that rule 1 can only reduce the number of cubes. Hence, both
rules will cease to apply after a finite number of applications.

The division of prime-generating labor can thus be based exclusively on
efficiency grounds, since by Theorem 3.4 the order of cube additions and
removals will affect neither correctness nor termination. The earliest such
division, due to Quine and McCluskey, is based on the observation that rule 2
can be simplified if the original cover G consists of minterms only. If p, q are
minterms at distance one from each other, then p = xu, q = x'u for some
variable x, i.e. their nonopposed parts have to be equal. Rule 2 replaces xu + x'u
by xu -I- x'u + u; rule 1 then replaces the latter, by u. Hence, the two rules can
be combined into one: replace any instance of xu -1- x'u by u.

22 SPYROS VASSILAKIS

For example, when n = 3, the cover F1 = x '^ x ^ + x^x'-, + x ix2x3 +
XjXjXj + x1x2x3 reduces to F2 = x'2x'3 + x\x!3 + x2x'3 + x2x'3 + x:x2 after applica
tion of xu + x'u = u to all possible pairs in Fr It is remarkable that although
F2 consists no longer of minterms, the same rule applied to F2 suffices to
generate a prime cover. It is not necessary, for instance, to add to F2 the
consensus of x}x2 and x'2x'3, namely x ^ , because this term is already in F2. It
suffices to apply the rule xu + x'u = u to F2 to obtain the prime cover F3 =
x3x2 + x'3. The next definition and theorem establish the correctness of the
procedure just outlined.

Definition 3.4. Let F be a cover; then
A(F) = {t: there exists a literal t such that it, V t GF}.
S(F) = (p: there exists a literal l and a cube t such that p = it E F, 1 1E F}.

The set A(F) represents the new cubes generated from applying the rule
it -I- l 't -* t on F; while S(F) represents the cubes deleted from F as a result of
the application of the same rule. The next theorem shows that the labor of
computing primes can be split into n + 1 phases, where n is the number of
variables in F.

Theorem 3.5. Let G be a cover, and b(G) the set of its minterms. For each t =
n, n -1 ,..., 1, let Fn = b(G), Ft_1 = A(Fl), S* = S(Fl), tcx = F l \ Sl. Then the set
of primes of G is rc(G) = Utn=1Jil.

The search for pairs (xp, x'p) does not have to consider all pairs of cubes
in F: note that xp contains one more positive, nontrivial literal than x'p does.
Hence, cubes in F can be sorted according to the number of such literals they
contain; and application of the rule xp -I- x'p = p restricted to cubes differing
by one in this measure.

Definition T5. The number ^(p) of positive nontrivial literals in cube p =
is X(p) = # { j: A. = {1}}.

For example, ¿.(x') = 0, X(x'y) = 1, A(x'yz) = 2.

Definition 3.6. Iterative prime generation method (Quine - McCluskey).
Given an arbitrary design problem G

1. Change problem representation, i.e. compute the behavior b(G) of G
(Def. 2.5) and replace G by the equivalent cover Fn consisting of all
minterms in b(G).

m a n a g in g d e s ig n c o m p l e x it y ... 23

2. Sort the minterms in Fn into groups Fj,F",...,F", where F" = {pE Fn :
X(p) = i}.

3. Divide the labor of computing F t_1 = A(Fl). For each i = 0, 1, n,

compute F* 1 = A(F| U F |+1); then set F* 1 = U ^ F j -1.

4. Divide the labor of computing Sl = S(Ft). For each i = 0, 1, t,

s : = s (f | u f ;+1), St= u ; , 0s;.

5. Set Jtt = Ft\St, n(G) =

The next example shows that step 1 of the QM method cannot be omitted.

Example 3.1. G = x ̂ + x2x2 is not a cover of minterms, since x' is not a
minterm. Although G is not prime (% < G but x2 £ x'p x2 £ x1x2), neither A
nor S apply on G; hence, the iterative method without step 1 cannot find the
primes of G. Applying step 1 on G yields F2 = XjX2 + x 'x '2 + XjX2, A(F2) =
(x'p x2), S(F2) = F2. Hence, F1 = A(F2) = x ̂+ x2 = the primes of G.

The cost of step 1 of the iterative prime generation method is the cost of
generating and storing the minterms in the behavior of G. For example, when
G = Xj + x ̂ x2x3, then F3 = x1(x2x3 + x2x'3 + x'2x3 + x'2x'3) + x ix2x3· Each p G G
that contains k = k(p) variables has to be replaced by an equivalent cover
consisting of 2n-k minterms. Hence Fn can contain up to 2 pGG2n k(p)

minterms, i.e. is an exponential function of the descriptional economy
coefficients n -k (p). The next example exhibits a family < Gn > of covers with
each Gn containing exactly two cubes, but with |b(Gn)| = 2n_1 + 1.

Example 3.2. G = x, + x 'x ,x„... x , Fn = x,K + x 'x^x,... x_, n > 2, where
Kn ~ 1 is a cover recursively defined by = x2 + x'2, Kn = xnKn 2 + x/nKn_r Kn
contains all minterms built from x ^ ..., xn and is thus a cover of 2n_1 minterms.

The cost of step 2 (sorting) of the QM prime generation method is
proportional to nN logN, following standard sorting algorithms described in
Cormen et al. (1990,chapter 9.1). Step 2 has to be performed only once. Step
3, however, has to be repeated T times; T is bounded from above by the
number of variables n, since each application of A adds cubes with one
variable less. Step 3 requires, for each i = 0 ,..., n checking each pair (p, q) in

F jxF t
i +1 for the pattern p = x'w, q = xw. There are such pairs,

24 SPYROS VASSILAKIS

and each check takes up to n comparisons. Hence step 3 takes in all

n2 ni =0 F F i +1 comparisons. Recalling that F — U^gFj , this number is

bounded by n F* . In many cases s N for all t, so total cost is n T N2 < n2N2.

In these cases, the strategy of the QM method, namely trading off a
maximally explicit problem representation for a better division of search
labor, pays only if the descriptional economy coefficients n-k(p) are small,
i.e. if the original cover G is already nearly maximally redundant.
There are other cases, however, where Fn has more primes than minterms

(hence forsome t Fl > N), as shown in Example 3.3 below. In such cases,

the only upper bound on Fl is 3n, namely the number of cubes formed out

of n variables. The labor of step 1 is then wasted, since it is inevitable to write
down the primes of Fn.

Example 3.3. Let Bn be the set of all 0-1 vectors x in Dn such that the
(arithmetic) sum + ... + xn is not divisible by 3. Let jrn be the number of

i· jtprimes of Bn. Then h m ^ ^ — = <*> along the subsequence n = 6k + 2.
2

This statement (proven in the appendix) shows that there are covers that
have many more primes than minterms, since the number of minterms is
bounded above by 2n.

QM’s iterative prime generation method illustrates a design philosophy:
Represent a problem in a maximally explicit way in order to apply better

divisions of search labor (only cubes in adjacent groups F[, F|+1 need to be

compared). A different design philosophy is to maintain the descriptional
economy of cubes relative to minterms, divide the design problem itself into
subproblems, compute the primes of subproblems, and then combine them to
form the primes of the original problem. This philosophy, divide-and-
conquer, is different from the iterative one of QM: QM never divides the
design problem itself; each iteration produces either primes of the original
problem or cubes to be used by later iterations, not primes of subproblems.
Divide-and-conquer expresses a design problem as a product of two simpler
ones; it then computes primes for each element of the product separetely,
and finally combines them into primes of the original problem.

m a n a g in g d e s ig n c o m p l e x it y ... 25

Definition 3.7. The product of two cubes p = 11,1 , x f '. q = 11", :1 xf* is the

cube p q = ITi = 1xfinBi. The product of two covers F = 2 iGIp1 and

G = 2 jGJq‘ is the cover FG = 2 iGI2 jGJp‘qj .

The product of F = x1 + x2x3, G = x'jX4 + x3x'4x5, for instance, is FG =
x1x3x'4x5 + x2x3XjX4 + x2x3x4x5 (zero cubes and duplicate literals deleted).
Note that pq * 0 only if dpq = 0.

Definition 3.8. Let F be a cover and x a variable. The cofactor Fx of F with
respect to x is F with every instance of x deleted, and every cube containing x
deleted. Similarly, F* is F with every instance of x deleted, and every cube
containing x deleted.

If F = XjX'2 + x'x3 + x2x3, for instance, then F = x'2 + x2x3, Fx' = x2x3 + x3,
FX3 = X2 + Xj + XjX'2, FX3 = Xlx'2.

Recall that M(F) is the maximal equivalent of F (all nonmaximal cubes
deleted); and that jr(F) is the cover consisting of all primes of F. The result
that allows a divide-and-conquer computation of primes is

Theorem 3.6. Let x be any variable occurring in cover F. Then ji(F) = M((x' +
"(Fx)) (x + "(Fx-)))·
Example 3.4. Let G = x' + xy. Then Gx = y, Gx, = 1; Jt(Gx) = y, Jt(Gx,) = 1; x' +
jt(Gx) = x' + y, x + ji(Gx,) = x + 1 ~ 1. Hence jt(G) = M(x' + y) = x' + y. Note
that step 1 of QM was avoided.

Straightforward application of Theorem 3.6 may require computation of
all 2n cofactors of a design problem in n variables. It is thus important to split
the design problem along variables x such that cofactors with special
properties, requiring no further decomposition, are obtained as early as
possible.

Definition 3.9. A cover F is monotone in x if all instances of x in F have the
same sign, i.e. they are either all primed or all unprimed. F is monotone if it is
monotone in each variable.

The cover F = XjX3 + x'2x3 + xjl'2 is monotone (increasing) in xv
monotone (decreasing) in x^ and nonmonotone in x3; it is not monotone. The
cover G = x:x3 + XjX̂ is monotone. The next theorem suggests a good division
of the design problem in order to compute primes.

26 SPYROS VASSILAKIS

Theorem 3.7. If F is a monotone cover, then Jt(F) = M(F).
The cover G = x2x3 + XjX2, for instance, satisfies G = Jt(G) since G is

monotone and contains only maximal cubes. The cover G + XjX^ satisfies
jt(G + XjX^) = G, since it is monotone and XjX'^ is covered by x1x3.

Theorem 3.7 suggests that design problems should be divided along their
non-monotonic variables, so that subproblems become monotone after the
fewest possible decompositions. This helps avoid exponential blowup.

Another problem of divide-and-conquer prime computation is that Fx
and Fx, may share many cubes, resulting in unnecessary duplication of effort.
The cover F = x:x2 + x'jX3x2 + x'2x3 contains two nonmonotonic variables, x1
and x2. The cofactors with respect to xp namely, F = x2 + x'2x3, Fx, = x2x3 +
x'2x3, share the cube x2x3, and would share any cube independent of xr The
cofactors with respect to x^ namely Fx = x + x'x^ F , = x3, do not share any
cubes because all cubes in F depend on It pays, therefore, to divide the
design problem along the nonmonotonic variable that appears in most cubes.
In case of a tie, it pays to choose a variable x that minimizes the difference
between positive and negative instances, so that size differences between Fx
and Fx, are minimized. This is because detection of non-maximal cubes in F
requires checking each pair (p, q) in F x F for the pattern p < q, and there are
|F|2 such pairs, i.e. the cost of constructing M(F) is a convex function of |F|. A
variable that satisfies these requirements (nonmonotonic, most instances in
F, most balanced instances) will be called “appropriate” in the next definition.

Definition 3.10. The divide-and-conquer prime computation method. Let F
be a cover. Then

1. If F = 0, or F contains exactly one cube, then ji(F) = F.
2. If 1 £ F , then jt(F) = 1.
3. If F is monotone, then jt(F) = M(F).
4. If F is not monotone, then pick an appropriate variable x and divide the

problem as follows

Jt(F) = M((x' + jc(Fx))(x + Jt(Fx,)).

The algorithm will terminate, since decomposition will eventually reduce
each co-factor to one of the three first cases. By Theorems 3.6 and 3.7, the
algorithm will compute the primes of F. Its cost is determined by the number
of decompositions required to arrive at cofactors that satisfy one of the three

m a n a g in g d e s ig n c o m p l e x it y ... 27

first cases; and on the number of primes of F. Note that if only one
decomposition is required, say along x, then the algorithm will perform one
multiplication of covers, namely jt(Fx) x ji(Fx,), since (x' + jt(Fx)) (x + jr(Fx,))
= xjt(Fx) + x'jt(Fx,) + jt(Fx) x jt(Fx,). If two decompositions are needed, say
along x and y, then the algorithm will perform three cover multiplications,
namely ^(F^) ji(F^,), ji(Fx,y) Jt(Fxy), and jr(Fx) x Jt(Fx,). In general, if
decomposition along T variables is needed, 2T- 1 cover multiplications need
to be performed.

An upper bound on T is the number of nonmonotonic variables of F:
Another upper bound is maxpeF k(p), where k(p) is the number of variables
in cube p, since at least one of cofactors Fx, F- contains a cube of F with one
variable less. Hence, divide-and-conquer will save labor relative to QM on
covers that contain many monotonic variables, and/or have high descriptional
economy coefficients n-k(p). Labor will be wasted, on the other hand, on
covers that are nearly compact but have few monotonic variables. This is
because divide-and-conquer, unlike QM, does not seek cubes at distance one
from each other in order to form their consensus; it avoids this search by
subdividing the design problem in search of monotonic, or at worst single
cube, subcovers. It will thus fail to recognize a cover that is already (nearly)
compact, as the next example shows.

Example 3.5. Let the family of covers < Fn > be inductively defined by F2 =
x .x ', Fn = Fn_1x' if n is even, Fn = Fn-1x' -1- x.x,,... x if n is odd. Fn is the cover
that contains, for each odd k < n, a minterm with exactly k positive literals.
For example F5 = F4x'5 + xx... x5 = F3x'4x'5 + xl . . . x5 ~ (F2x'3 + XjX2x3) X4X5 +
x3x2 ... x5 = x ^ x ^ x 'g + x ^ x ^ x ^ + x f a x ^ X y Each Fn is already prime,
since any two of its cubes are at distance two or more, and all are maximal.
Each Fn contains Nn = n/2 cubes. QM will sort Fn into groups F", FI], F", ...,
each consisting of one cube, and then stop; it will thus spend only sorting
labor nNlogN = n - lo g - . Divide-and-conquer on the other hand will divide

each Fn along xn if n is odd, or along xn-1 if n is even. Hence, recursively, it will

split the design problem exactly Tn = |̂ times, and will then perform 2 n- l

cover multiplications. It will thus be exponentially more costly than QM on
this cover.

Ruddel and Sangiovanni-Vincentelli (1987, p. 739) briefly describe a

28 SPYROS VASSILAKIS

third prime generation method that, like QM but unlike divide-and-conquer,
derives a more explicit problem representation before starting generating
primes; and, like divide-and-conquer but unlike QM, it seeks to exploit
properties of monotonic covers. The design problem G is first rendered more
explicit by deriving a complementary cover G', i.e. a cover whose behavior
b(G') equals Dn-b(G). Then a new monotonic cover IG is derived, such that
jc(Ig) = M(Ig) = jt(G). As the next example will show, the construction of IG
is based on a different division of labor, inspired from inductive
generalization. The goal of deriving primes of G is (roughly) split into the
subgoals of generalizing each implicant p of G (by dropping literals) until any
further generalization would cause the behavior b(p) of p to intersect b(G'),
namely the (forbidden) behavior of G’s complement.

Example 3.6. Let G = x1x2x3 + x'^Xg + xix2x3· ^ complementary cover of G is
G' = x'3 + x 'x2. It is obvious (and shown in the Appendix) that any implicant p
of G must be at distance one or greater from each cube in G', since b(p) C
b(G), b(G) fl b(G') = 0 . To express this, let zk., k = 0,1, j = 1, 2, 3 be new
binary variables with the following interpretation: z.. = 1 if there is an
implicant of G that contains xk, zkj = 0 if no implicant of G contains xk (recall
that x® = xj, xj = x.). For each j we must have zQj + zV} = 1, since each x. appears
in G, either primed or unprimed, or both. By inspection of G' in this example,
z03 = 0 because no implicant of G can contain x'3; and either zQ1 = 0 or z02 = 0,
because no implicant of G can contain x'x'2. The formula that expresses these

two conditions is Ig = zo3(zoi + zo2) = zo3zoi + z03z02· Ig by construction
monotonic decreasing, and in this example prime (all its cubes are maximal).
To obtain the primes of G, take each prime of IG and replace zkj by Xj1-k. To

see why this makes sense, take z03z01 , the first prime of IG; it is equal to 1 iff
Z03 = zoi = 0, i.e., from the equations z0j + zx] = 1, iff z13 = zn = 1, i.e. from the
interpretation of the zkj, iff there is an implicant of G that contains x3 and x1?
namely x3xr This is also the result of replacing z03: by x3~° = x3 and z01 by
x i-o — y Ai xr

To see why XjX3 is a prime of G, note that d(x3, XjX'2) = 0 and d(x1? x'3) = 0,
i.e. any cube covering x:x3 is at distance zero from some cube in the
complement of G. In this example, then, jt(G) = x1x3 + x2x3; this can be
verified by applying QM on G.

MANAGING DESIGN COMPLEXITY... 29

The next two definitions describe a systematic way of constructing IG out
of G'.

Definition 3.11. Positional notation for subsets of D : {0} is represented by
the vector 10, i.e. the first element of D = (0,1} is present and the second is
absent; {1} is represented by 01; and D by 11 (0 is not represented).

Definition 3.12. For each j = 1, ..., n and each cube q * 0, a (q) is positional
notation for the exponent of x. in q, i.e. a (q) = 10 if q contains x j; 01 if it
contains x .; and 11 if q does not depend on x . The first element of cc(q) is
a 0j(q), and the second a ^ q) .

Definition 3.13. The “inductive generalization” prime generation method.
Let G, G' be implementary covers. First construct the (monotonic) cover IG
in four stages:

1. Hj(q) = (a0j (q) + zoj)(a^(q) + z\.) for each q e G '. j = 1 ,.... n.

2. H(q) = 2 jn=1Hj(q).

3- I = n q e o H(q).

4. IG is obtained from I by performing the multiplications in I’s definition
and deleting any cube that contains a term (this enforces the
constraint zQ. + z}. = 1).

Secondly, extract the primes of IG and G:

5. ji(Ig) is obtained from IG by eliminating nonmaximal cubes.

6. jt(G) is obtained from ji(Ig) by replacing every instance of z'kj by x1_k.

The correctness of this procedure is guaranteed by

Theorem 3.8. For any design problem G, Jt(G) and Jt(IG) = M(IG) are
isomorphic. Each prime of IG gives rise to a prime of G by replacing every
instance of z'kj by x |_k.

The benefit of generating primes by “inductive generalization” is that
fewer cubes are first generated and then discarded during prime generation,
because excessive cube generation is checked by our explicit knowledge of G'.
To see this, recall that in Example 3.6, every cube of IG gives rise to a prime of
G, i.e. waste in the prime generation process has been eliminated. The
following example shows that his is not the case with divide-and-conquer.

30 SPYROS VASSILAKIS

Example 3.6 (... continued). We compute the primes of G = xyz + x'yz + xy'z
by divide-and-conquer: Gx = yz + y'z, Gx, = yz, G^ = z = G ^,. Hence Jt(Gx,) -
yz, ji(Gx) = M(y' + ^(Gxy))(y + ^(G^,)) = M((y' + z)(y + z)) = M(y'z + yz +
zz) = z. Finally, Jt(G) = M((x' + jt(Gx))(x + ji(Gx,)) = M((x' + z)(x + yz)) =
M(x'yz + xz + yzz) = xz + yz. The cubes first generated and then discarded
are y'z, yz (in the computation of jt(Gx)), and x'yz (in the computation of
ji(G)).

An example of a more explicit problem representation developed by
Toyota is described in Ward et al. (1995). Engineers have to pick parts
specifications out of “engineering check sheets” (or lessons-learned books)
that describe explicitly those specifications that are likely to be
manufacturable. At GM, on the other hand, “designers were encouraged to
draw the cars unencumbered by technical specifications that were believed to
inhibit creativity” (Peters, 1993, p. 730). Lessons-learned books render the
design problem more explicit, and thus guide search in the same way that a
complementary cover guides the search for primes, namely by providing an
easy check (no derivations) of what is feasible and what is not. These books
were being developed for the last 15 years (ibid., p. 52). An idea of the design
effort involved is given by Okino (1995, p. 82): “Toyota has as many as
300.000 specifications relating to quality standards for its parts. Specs for
structural components cover materials, processing methods, precision levels,
strengthen factors, and so on. One could say this book represents the bible of
Japanese auto quality.”

The cost of generating primes by “inductive generalization” is the cost of
two backroom operations, namely multiplication and complementation. Note
that multiplying two covers F, G using only the definition of product cover
takes |F| |G| operations. It follows that to multiply N covers, F j . . . FN, each of
size |F‘| = M, takes |F j |F2| ... |F j = MN operations. Exponential cost is
unavoidable when, for instance, the covers multiplied do not share variables.
To reduce the cost of this backroom operation, therefore, good design has to
exploit the special structure of the covers multiplied. First note that each
H.(q) term, after performing the (four) multiplications involved in its
definition and eliminating the z'^z'^ term, contains at most one literal, namely
Hj(q) = Z'0J if cij(q) = 10; H^q) = z'n if «¡(q) = 01; H^q) = 0 if c^q) = 11.
Covers such as H(q) that are sums of literals will be called atomic.

MANAGING DESIGN COMPLEXITY... 31

Definition 3.14. The monotonic-atomic (MA) cover multiplication problem
consists of N covers F1... Fk ... FN such that:

(a) Each cover is a sum of literals, i.e. for each k = 1, ..., N, Fk = 2 "=1 x ^ j;
Ak. * D for all k, j.

(b) Each variable j has the same sign in all covers Fk, i.e. if Akj * 0 , Atj * 0 ,
then A .. = A . .kj tj

The covers H(q), for instance, are such that A . * 0 implies A . = {0} (all
variables are primed).

The examples that follow show some important factors to be taken into
account when dividing cover multiplication labor. The end result of the
discussion will be a tree whose leaves are the covers to be multiplied. This
tree determines exactly which covers are to be multiplied first, second, etc., to
save labor; and is thus a “good” division of such labor.

Example 3.7. Order of multiplications. Let < Fn > be a sequence of MA
covers with |F I = n and such that if n * m then F , F have no variables in
common. An example of such a sequence is Fj = xp F2 = x2 + x3, F3 = x4 + x5 +
x6, When N = 4, for instance, multiplying in the order ((F1F2)F3)F4 takes
1x 2 + 1x 2 x 3 + 1x 2 x 3 x 4 = 2 !+3 !+4 !=32 operations; while multiplying

in the order Fj (F2(F3F4)) takes 3x4 + 2 x 3 x 4 + Ix 2 x 3 x 4 = 2! + p + ot =

60 operations. For general N, the corresponding cost figures are AN = 2 k=2 k!

and BN = 2 k=2 n -~ = 2 k=2 £ j k !, respectively. The ratio BN / AN is always

larger than 2N-2, as shown by a simple inductive argument.

Example 3.8. Shared cubes. Covers F = p + A, G = p + B share cube p. Their
product FG = p + AB is smaller in size than |F| |G |; and requires only 1 + |A| |B|
operations, i.e. fewer than |F| |G |.

Example 3.9. Covered cubes. Let p < q, and let F = p + A, G = q + B. Then
FG = p + qA + AB is smaller in size than |F| |G|; and requires only |A|(1 +
|B|) operations, i.e. fewer than |F| |G |.

Example 3.10. Elimination of nonmaximal cubes. Let Fj = Xj + x2, F2 = x3 +
x F3 = x1 + x3, F4 = x2 + x4, F5 = x5 + x6, and consider the multiplication

32 SPYROS VASSILAKIS

((F1F2)(F F4))F5. Letting i stand for xj5 F jF2 = 13 + 14 + 23 + 24; F3F4 = 12 +
14 + 23 + 34; (F1F2)(F3F4) = 14 + 23 + (13 + 24)(12 + 34) = 14 + 23 + 123 +
134 + 124 + 234. At this point (the last four) nonmaximal cubes can be
eliminated, and multiplication with F5 will take only four operations, as
opposed to 12 if nonmaximal cubes are not eliminated.

Definition 3.15. The cost c(F, G) of multiplying two MA covers, and also the
size of the resulting cover, is given by

c(F, G) = |F flG | + |F \G |- |G \F |.

For example, if F = x + y, G = x + u + u, then F fl G = {x}, F \ G = {y},
G \F = {u,u}, c(F, G) = 1 + 1x2 = 3. The product cover FG = x + uy + uy is
of size 3.

The information contained in c(F, G) can be used to order the covers
F' ... FN of an MA multiplication problem: Covers that cost less to multiply
should be closer together in the ordering.

Definition 3.16. Let M = < F1, ..., FN > be an MA multiplication problem. To
order its elements by the least-cost principle, pick any Gj E M and set T1 =
{Gj}. Then, for each t, 2 < t < N - 2, pick G G M \T ‘ to be the cover least
costly to multiply with any of the covers in Tl, i.e. G is a solution of minHeM̂ xt
mini <i<t c(Gj, H). Finally, Tt+1 = Tl U {G}; and G is ordered immediately
after the cover Gj of T* that, together with G, solves this minimization
problem. Rename the covers in Tt+1 to reflect the new order.

A least-cost ordering of the covers in example 3.10 for instance is Fp F3,
F2, F4, F5. Creating a least-cost order takes N - 2 steps; at each step, the
minimum of at most N2 numbers c(F', F) is chosen. Choosing the minimum
of L numbers takes exactly L - 1 comparisons (Cormen et al., 1990, p. 186).
Hence, the total cost of creating a least-cost order cannot exceed (N -2)(N 2- 1),
i.e. it is cubic in N.

A least-cost order, while excluding most options, does not completely
determine how to multiply N covers. For example, if Fl < F2 < F3, we know
that F1F3 will not be performed; but we don’t know whether to perform
(F1F2)F3 or F j(F2F3). In what follows, L. is an estimate of the least cost of
multiplying F F i+1 ... F , and Sj. an estimate of the size of the resulting cover.
F j ... Fn are assumed to be in least-cost order.

MANAGING DESIGN COMPLEXITY... 33

Set b„ = 0, s„ = |Fj, bu+1 = s. i+1 = c(F, Fi+1). For i < j, we compute
recursively:

b ij = .mtin. {b.k + b k+ l,j + s iks k+ , j } ;
J isk<j J J

kij = arg min {bik + bk+,; + siksk+k j>;
1 isk c j 3 3

S ij = S ikS k+lj» k = k ij

The computation ends when b1N has been obtained. The recursive
equations have to be invoked N - 2 times, in order to decompose b1N into
parts that involve only the known quantities b», s ,̂ b{ j+1, s. i+1. The discussion
of divide-and-conquer showed that, in general, the cost of solving such
equations is exponential in the depth of recursion (N -2). In this particular
problem, however, the exponential cost is avoidable, because it is due to
solving the same subproblems repeatedly. The estimate b46, for instance, will
be computed every time bij is computed, i < 4 < 6 < j, namely 3(n - 6) times.
To avoid this we solve the recursive equations bottom-up (by dynamic
programming). We first compute bj i+2, i+2 for each i = 1 ,..., N - 2 using the
recursion equations and E i+1, Sj i+1; then we compute bj i+3, si j+3 for each i =
1 ,..., N -3 in the same way. In each round we use data from previous rounds,
but we don’t recompute them.

Example 3.11. Let Fj = Xj + x2, F2 = xx + x3, F3 = x3 + x4, F4 = x2 + x4, F5 = x5 +
x6, be an MA multiplication problem in least-cost order. Clearly, s- = 2, bu =
0, b12 = b23 = b34 = 2, b45 = 4. We first compute bi>i+2, i = 1,2,3. For example,
bi3 = m'ni<k<3̂ bik + bk+i,3 + siksk+i,3> = min<2 + 2X2, 2 + 2X2} = 6; k13e {1,2},
say k13 = 1; s13 = sn s23 = 2x2 = 4. Similarly, b24 = 6, k24 = 2, s24 = 4; b35 - 6,
k35 = 4, s35 = 4. In the next round, we compute bj i+3, i = 1, 2. For example,

b25 = min2<k<5<b2k + bk+1,5 + S2kSk+l,5> = m*n<b35 + S22S35’ b23 + fe45 + S23S45>
b24 + s24s55} = min{6 + 2x4, 2 + 4 -I- 2x4, 6 -I- 4x2} = 14; k25£ {2,3,4}, say
k25 = 2; s25 = s22s35 = 8. Similarly, b14 = 8, k14 = 2, s14 = 4. Finally, in the last
round we compute bij+4 for i = 1, i.e. b15. By the recursion equation b15 =
mini<k<5^bik + bk+i 5 + siksk+i 5 ̂ = mini 1 4 + 2x8, 2 + 6 + 2 X4, 6 + 4 + 4x4,
8 + 4x2} = 2 + 6 + 2x4 = 16; k15 = 2; s15 = s12s35 = 8. The information con
tained in k.. is now used to determine the order of multiplications: Fj ... F5 =
(F1F2)(F3F4F5) = (F1F2)((F3F4)F5), because, respectively, k15 = 2, k35 = 4.

34 SPYROS VASSILAKIS

The dynamic programming algorithm goes through N 2 rounds. At each
round t = 2, 3,. . . . N -1 , we compute bij? sij? k̂ for i = 1, . . . , N - t , j = i + t. For
each i, 1 < i < N -t, we compute t numbers bik + bk+lj + siksk+1>j, where j = i + 1,
and we take their minimum; these operations take time proportional to t.
Hence each round requires time (N -t)t, namely one t for each i — 1 ,..., N -t.

Summing over all t, the algorithm takes time proportional to S t=2 (N -t)t*N .

It also needs memory space N2 to store the values of b», s ,̂ L·. Given that a
good division of multiplication labor can generate exponential-size savings
(Example 3.7), these costs are reasonable. The discussion so far motivates

Definition 3.17. Multiplication of N MA covers F1... FN.

1. Create a least-cost total order on {Fp ..., FN).

2. Determine exactly the order of multiplications using the values kij
provided by the dynamic programming algorithm.

3. Perform the multiplications in this order. After each multiplication,
eliminate nonmaximal cubes from the resulting product cover.

The use of dynamic programming might create the impression that
finding a good division of multiplication labor has been reduced to solving an
ordinary optimization problem. This is not the case; there is not, for instance,
an objective function that attaches to each way of multiplying N covers its
true cost. What is more, such an objective function cannot be defined. There
are several reasons for this. First, given a total order on (Fp ..., FN}, there

ways to multiply them while respecting the order (Cormenare CNT =_ l
N + l

2N
N ,

et a1., 1990, p. 504). CN, the N-th Catalan number, is of the same order as
4n

6N3/2’ a number that exceeds the age of the universe even for moderate

values of N. Secondly, it is not always possible to find the true cost of each
way of multiplying N covers; because it is not possible to predict in advance
how many nonmaximal cubes will be created from partial multiplications.
Thirdly, the number of options is even greater if we allow for different total
orders on {Fp ..., FN}. “Optimal” cover multiplication is therefore an ill-
structured problem (Simon, 1973), that has to be “solved” by considerations
other than minimization of a given objective function subject to given
constraints.

MANAGING DESIGN COMPLEXITY... 35

Complementation of covers, the other backroom operation involved in
prime generation by “inductive generalization”, provides an example of the
more obvious division of labor being less efficient. Recall that, given a design
problem G, and a complement of it G', we multiply |G'| covers to obtain the
primes of G (Definition 3.13). We are thus interested in deriving a short
complement of G in reasonable time. The obvious way to complement covers
is to use De Morgan’s laws, namely (x + y)' = x'y', (xy)' = x' + y'. If G = xy +
uwd, for instance, then G' = (xy)'(uwu)' = (x' + y')(u' + w' + o') = x'u' + x V +
x V + y'u' 4- y'w' + y V . The next definition describes this particular division
of complementation labor.

Definition 3.18. Complementation reduced to multiplication. Given a cover
G, the labor of deriving a complement G' is divided as follows:

__ t
1. For each cube p = I I ^ 1 xfi in G, obtain its complement p = 2 . = 1 x f i .

2. Multiply these cube complements to obtain G = r ip eG p ·

Note that the covers multiplied are all atomic, but this is not an MA
multiplication problem, since the same variable can appear unprimed in one
cover and primed in another. The discussion that follows will show that, when
G is nonmonotonic, this division of complementation labor will generate
excessively long complementary covers.

Example 3.12 (a). In this example variable x is represented by i, x' by i'. Let
G = 1'2 + 3'4 + 12'4'5. Then G' = (1 + 2') (3 + 4 ')(1# + 2 + 4 + 5') = 1'2'3 +
1'2'4' + 123 + 124' + 134 + 2'34 + 135' + 14'5' + 2'35' + 2'4'5'; all cubes are
maximal. We call G'a this complement of G, for future reference.

Another, less obvious, division of complementation labor is based on the
identity G' = x(Gx)' + x'(Gx,)', proven in Theorem 3.9 in the Appendix. The
same proof shows that (Gx)' = (G ')x, so both can be denoted by G'x.

Example 3.12 (b). The complement G'b of G obtained by Boolean decom
position: G'b = 1G; + l'G j, = 1[4G'14 + 4'G'14,] + l'[2G 'r2 + 2'G'r r] = 1[4(3')' +
4'(2'5)'] + l'[20+2'(3'4)'] = 143 + 14'2 + 14'5' + 1'2'3 + 1'2'4'. Note that
while G'a ~ G'b, G'b contains only half as many cubes as G'a does. To see why,
we obtain G'b from G'a by applying the rule xp -I- x'q + pq ~ xp + xq (the rule
itself holds because both sides are equivalent to p when x = 1, and to q when
x = 0).

36
SPYROS VASSILAKIS

G' = 1(23 + 24' + 34 + 35' + 4'5') + 2'(1'3 + 1'4' + 34 + 35' + 4'5') ~ 1(24' +
34 + 4'5') + 2'(1'3 + 1'4' + 34 + 4'5') = 3(14 + 2'4 + 1'2') + 4'(12 + 15' + 1'2' +
2'5')~3(14 + 1'2') + 4'(12 + 15' + 1'2') = G'b.

It is no accident that Boolean decomposition obtains a shorter comple
ment of G without the extra labor of applying the rule xp + x'q + pq = xp +
x'q . To see why, let G = xp + x'q + pq. Then G'a = (x' + p') (x + q') (p' + q') =
(x' + p')(q' + xp') = x'q' + xp' + p'q'; while G'b = x(Gx)' + x'(Gx,)' = x(p +
pq)' + x '(q -(- pq)' ~xp~ + x'q'. Hence, the essential difference between the
two methods is that the Boolean decomposition method, in the process of
eliminating nonmaximal cubes, will also apply (without any extra effort) this
rule; while the multiplication method, simply because it divides the problem
differently, will not. For these reasons, for nonmonotonic covers, only
complementation by Boolean decomposition will be further analyzed.

An obvious point is that labor should be divided first along
nonmonotonic variables, so that the rule xp + x'p + pq = xp + x'p gets a
chance of being costlessly applied. Another obvious point is that, among
nonmonotonic variables, labor should be divided first along the variable
appearing in most cubes, so that cofactors share as few cubes as possible, and
unnecessary duplication of labor is avoided. Finally, in case of a tie, the
variable that minimizes the difference between positive and negative
instances in G should be preferred, to produce cofactors with the least size
difference. This is to minimize the labor of eliminating nonmaximal cubes
from each cofactor. A variable that satisfies these three requirements
(nonmonotonic, most instances in G, most balanced instances) will be called
“appropriate” in the next definition.

How should monotonic covers be complemented? The method based on
multipli-cation can take advantage of the MA multiplication techniques
contained in Definition 3.17. The method based on Boolean decomposition
can take advantage of the identities G' = xG'x + G x, if G is monotonic
decreasing in x, and G = x Gx, + G'x if G is monotonic increasing in x (see
Theorem 3.10 in the Appendix). The examples that follow show why the
multiplication method is likely to take less work on monotonic covers.

Example 3.13. Let G = x'y' + uV w ' (cubes share no variables). Using the
multiplication method G' = (x + y)(u + u + w) = xu + X1, + ^ + yu + yl, +
yw. Using the Boolean decomposition method, G' = xG'x + G'x, = x(u'u'w ')' +

MANAGING DESIGN COMPLEXITY... 37

(y' + uV w ')' = x(u + d + w) + H'. H' = yH'y + H'y = y(u V w ')' + (1 + u V w ')' =
y(u + u + w). Boolean decomposition is less efficient than multiplication
because it generates needlessly the term (1 + u V w ') ' that has to be detected
and eliminated. Any other choice of decomposition variables will also
generate superuous terms.

Example 3.14. Let G = x'y'z' + y'w' (cubes share some variables). Then, using
the multiplication method, G' = (x + y + z)(y + w) = y + xw + zw. Boolean
decomposition, instead, works as follows: G' = yG' + G \ = yO' + (x'z' + w') =
y + H ' = y + wH'w + H'w, = y + w(x'z')' + (x'z' + 1)' = y + w(x + z) = y + wx +
wz. The term (x'z' + 1)' is again superuous, and any choice of decomposition
variables will generate superuous terms.

Definition 3.19. Complementation reduced to Boolean decomposition and
multiplication. Let G be an cover, and G' its complement. Then,

1. If 1E G, then G '= 0.
If G = 0, then G' = 1.

2. If G contains exactly one cube p = n . n= {x p , then G = p = 2 "=1 x^j.

3. If G is monotonic, then G = Ilp<EGP , where multiplications are

performed as indicated in Definition 3.17.
4. If G is nonmonotonic, then for some appropriate variable x, G' = xG'x +

x 'G ',.X
The discussion so far illustrates some points relevant to design for cost

reduction. Problem representation is important. The most compact, implicit
representations (covers) require more search to generate the desired result
(primes), because they “hide” information from the algorithm. The less
compact, more explicit representations (cover of minterms, complementary
covers) are costly to produce and store; but admit morespecialized algorithms
that spend less of their time in unproductive search (exploringblind alleys).

Division of labor (iterative, divide-and-conquer, “inductive generaliza
tion”, dynamic programming, Boolean decomposition) is important for
efficiency. A good division of labor will avoid solving the same problems
twice; generating partial results that will be discarded later; using a general
method when a more efficient, specialized method applies due to special
properties of the problem at hand; ordering decisions in such a way that

38 SPYROS VASSILAKIS

partial results are unnecessarily complicated, or not as informative as
possible.

Finding good problem representations and good divisions of labor are
ill-structured problems, in the sense that they cannot be usefully formulated
as optimization problems.

The performance difference between good and not so good problem
representations and divisions of labor is quantitatively important, and can be
exponential in some parameter of the design problem. It seems, though, that
no problem representation and division of labor is uniformly better on all
design problems. For example, when the design problem represents a
symmetric, nonmonotonic function, methods that exploit special properties
of symmetry rather than monotonicity will do better.

4. Elimination of Redundant Primes

In this section, we are given a compact, maximal cover F and we look for
a minimum cardinality subcover H of F such that H ~ F; it is implicitly
understood, but irrelevant for this section, that F = jt(G) for some design
problem G. Large saving in product cost can be realized at this stage, as
evidenced by Example 3.3. These savings, however, can easily be exceeded by
the cost of searching for redundant components; efficient search is thus
important. All methods described will first represent in some way the
covering relationships among cubes in F, i.e. the functions fulfilled by each
component and any redundancies present (functions fulfilled by more than
one component). They will then try to extract the smallest set of components
that fulfills all functions of F. We first discuss the Quine-McCluskey (QM)
problem representation, that is conceptually simple but not as efficient as
possible.

Example 4.1. Let F = xyz + x'uu + yzuo. QM represents the functions of each
component in the most explicit way, namely by listing the minterms covered
by each cube. Using the notation K = x + x', K = xK + x'K , K = xK +
x yZ’ etc·’ ior the sets of minterms of one, two, three, ..., variables,
respectively, we have, in this example: M(xyz) = xyzKui) = xyz(uKy -I- u 'K J =
xyz(uu + u i/ + u'u + u V); M(x'uu) = x'uuKyz; M(yzuo) = yzuuKx. Note that
the first two sets contain four minterms each, while the last contains two. QM
then eliminate redundant components by solving a set-covering problem,
namely they find a minimum cardinality subset H of F such that UpeHM(p) =

MANAGING DESIGN COMPLEXITY... 39

Up£FM(p). This is done by representing the problem in matrix form. Let N be
the number of minterms in b(F) (8 in this example), and let K be the number
of cubes in F (3 in this example). Form the N x K matrix A by setting Amp = 1
if m E M(p), i.e. if minterm m is covered by cube p, Amp = 0 otherwise. Let xp
be a binary variable with the following interpretation: xp = 1 means that
component p E F will be part of the final product, while xp = 0 means that

component p E F will be discarded. Then, any solution x* of m in 2 p=1xp,

subject to, for each m = 1, ..., N, 2 p=1Ampxp^ l , is a solution of the set

covering problem, with H = {p : x * = 1}. This is because each constraint
guarantees that the corresponding minterm is coveredby some cube in H, so
that H ~F; and minimization guarantees that H is of minimum cardinality. In
this example, the (three) columns of A are 1111000000, 0000111100,
10001000; the unique solution is H = (xyz, x'uo}.

It is well known that the set-covering problem (and the equivalent zero-
one linear programming minimization problem) is NP-complete; a proof of
this can be found in Wegener (1987, Theorem 5.1, p. 35). An implication of
this is that all known methods for solving such problems take time
exponential in the size of the set-covering problem, namely in Nk. It is thus
important to find problem representations that reduce the number of rows
and columns of A, i.e. that represent redundancies in a more compact,
implicit way. The main idea is that covering relationships between cubes in F
can be discovered and recorded directly, without listing the minterms covered
by each cube. To do this, we need the following definitions and results.

Definition 4.1. A cover F in n variables is a tautology if b(F) = Dn.

The covers F0 = x', Fl = x, for instance, are not tautologies, since b(x') =
{0}, b(x) = {1}; the cover F = x + x' is a tautology since b(F) = b(x) U b(x') =
(0,1} = D.

Definition 4.2. Let p = I l jn:=1xJAi, q = n jn=slxfj be two cubes. The restriction

of p on q, is the cube pq obtained from p by setting Xj = t if = {t}, t = 0, 1.
Equivalently, if d(p, q) > 1, then pq = 0, while if d(p, q) = 0, then

40
SPYROS VASSILAKIS

If p = xy, q = uuw, s == xu, t = x'uw, for instance, then pq = p, qp - q; ps - y,
'w, Sq = x; qt = U, tq = x'; st = 0 = ts.

Definition 4.3. Let F be a cover and q a cube. Then the restriction of F on q,

If F = xy + uvw + xu, and t = x'vw, for instance, then Ft - u.

Theorem 4.1. Let F be a cover and q a cube. Then q < F iff Fq is a tautology.

In the previous example, Ft is not a tautology; to see that t ^ F, note that
xyuuw = 00011 belongs to b(t) but not to b(F). For q = xu < F, however, Fq =
y + uw + 1 ~ 1.

We can now describe the construction of a reduced-size set-covering
problem. This will be first done in Examples 4.2 and 4.3.

Example 4.2. Let F = xyz + x'uu + yzuu; name the cubes 1, 2, 3 in the order
they appear. The notation F \p will denote F without p; for example F\xyz =
x'uu + yzuu. We test whether each cube p in F is covered by the other cubes
in F, by testing whether (F\p) is a tautology. For example (F \ 1)1 = uv is not
a tautology, i.e. xyz is not covered by the remaining cubes, and has to be part
of any solution of the set-covering problem. Similarly, (F \ 2)2 = yz is not a
tautology, and x'uu has to be part of any solution. Finally, (F \3)3 = x + x' is a
tautology, i.e. yzuu is covered by the other cubes in F. It is the case in this
example that the cubes covering yzuv, namely xyz and x'uv, will be part of any
solution, so yzuu can safely be discarded. Note that we did not have to
generate, store, or process the minterms covered by each cube (ten in all in
this example).

In Example 4.2, a solution was found without representing the problem
in matrix form. In general, the matrix form is unavoidable as a way to record
mutual covering relationships. The next example illustrates the construction
of such a (reduced-size) covering matrix.

Example 4.3. Let F = xu + yu + zu + x'y + y'z + z'x -I- xu -I- uu' + vy; the cubes
of F are named 1, 2 ,..., 9 in the order they appear. We first compute, for each
p in F, (F \p)p. If (F \p) is not a tautology, then p is called relatively essential;
recall that in this case p is not covered by the remaining cubes in F, and will
thus be part of any solution. In this example, cubes 4, 5, 6, 7, 8 are relatively
essential; we call this set E. If, on the other hand, (F \p) is a tautology, then

Fq, is the cover 2 pGFPq-

m a n a g in g d e s ig n c o m p l e x it y ... 41

we record the minimal sets of cubes covering p. For example (F\ 1): = y + z +
yz + τ' + υ + υ ' + yu. After eliminating nonmaximal cubes, we have (F\ l)j =
z + τ' + υ + υ '; we also record the source of each term in this expression. For
example, z = 3p τ' - 6p υ = 7p υ ' = 8p where 3: = zu|xu, etc. Since z + τ' ~ 1,
υ + υ ' ~ 1, cube 1 is covered either by cubes {3, 6}, or by cubes {7, 8}, or both.
We record this information by writing φ0(1) = {36, 78}. We obtain similarly
φ0(2) = {14, 89}, φ0(3) = {25}, φ0(9) = {47}. This is the end of the first stage
in the construction of the reduced-size covering matrix. In the second stage,
we discard from each φ0(ρ) all relatively essential cubes, to obtain qpj(p) =
qp0(p)\E . In this example, φ ^ Ι) = {3}, φ1(2) = {1, 9}, φ1(3) = {2}, φ:(9) = 0 .
All relatively essential cubes will be present in all solutions, so it is not useful
to record cubes covered by them. We then form the set = {p : cp^p) = 0}
of totally redundant cubes, i.e. of cubes that are covered solely by relatively
essential cubes; such cubes can safely be discarded. Finally, we iteratively
eliminate totally redundant cubes using the equations Φι+1(ρ) = Φ{(ρ) \ Tt,
T j = {p : Φι+1(ρ) = 0} , until the first k, such that Tk = 0 . In this example,
k = 2, T l = {9}, φ2(1) = {3}, φ2(2) = {1}, φ2(3) = {2}, and T2 = 0 . The set of
totally redundant cubes is T = U*=1Tt = {9}. The set R = F \(E U T) is called
the set of partially redundant cubes, and forms the columns of the covering
matrix A. In this example, R = {1, 2, 3}. While relatively essential cubes have
to be in the product, and totally redundant cubes can safely be discarded,
partially redundant cubes stand in mutually covering relationships with each
other, given by functions φ(ρ) = φ1ί(ρ), and their removal has to take them
into account. To do this, we take the graph of function φ, where graph (φ) =
{(r, C) : C E φ(γ)}. In this example, graph (φ) = {(1, 3), (2, 1), (3, 2)}. We
create a row of A for each element of this graph. We finally define ArC = 1 if
p = r or p E C, ArC = 0 otherwise, where r, C E graph (φ), p E R. In this
example, the rows of A are 101, 110, Oil. The first row, for instance, means
that either cube 1 or cube 3 have to be in the product, because 1 is a required
product function (1 E F), and if 1 is omitted, cube 3 (and the relatively
essential cubes) will fulfill its function. The covering problem is then minx1 +
x2 + x3 subject to Xj + x3 > 1, x3 + x2 > 1, x2 + x3 > 1, x = 0,1. All solutions have
value two; one solution is x3 = x3 = 1. The corresponding solution of the
overall problem is {1, 3} U E = {1, 3, 4, 5, 6, 7, 8}; cubes 2 and 9 have been
eliminated. Note that the covering matrix is of size 3 x 3 ; while the cor
responding QM covering matrix is of size 28 X 9, where 28 is the number of
minterms in b(F) and 9 the number of cubes in F.

42 SPYROS VASSILAKIS

The correctness of this method is established by

Theorem 4.2. Let F be a compact, maximal cover. Let A be its reduced-size
covering matrix, E the set of its relatively essential cubes, and R the set of its
partially redundant cubes, as defined in Example 4.3. Let x solve the 0-1
linear programming problem m in 2 pGRxp subject to Ax ^ 1, where 1 is a

vector of Is. Then H = E U (p E R : xp = 1} is a minimum-cost cover
equivalent to F.

The 0-1 LP problem can be solved by standard methods that will not be
covered here; see De Micheli (1993, p. 91, algorithm 2.5.4) for a branch and
bound algorithm, and Balas and Ho (1980) for a cutting-plane algorithm.

In all the examples covered here, it was easy to check whether each cover
Fq was a tautology or not, since each Fq was a short expression. In general,
checking whether a cover is a tautology is an NP-complete problem. Recall
that tautology checking is needed to avoid solving impossibly large set
covering problems of dimension |b(F)| x |F|, where F is the given prime cover.
What the reduced-size A problem representation does, then, is to avoid
solving one very large NP-problem (set-covering of dimension (b(F))x |F|);
by solving several smaller-size NP-complete problems (tautology checking for
each Fq; setcovering for the reduced-size covering matrix A). This strategy is
likely to generate large cost savings, precisely because tautology-checking
and set-covering are worst-case exponental: The cost of solving N problems

of size n; each, namely 2 =̂1exp(nj), is much smaller than the cost of solving

one problem of size 2 i = 1n,, namely exp(2^=1nj). Since this strategy

depends on performing |F| tautology checks, it is important that tautology
checking is done efficiently, even if it is a backroom operation for product
design.

Efficient tautology checking will be based on two pieces of knowledge.
First, on our knowledge of special properties of covers that make tautology
checking easy. Secondly, on divisions of labor that first split the original cover
into smaller covers until covers with these special properties are obtained;
and then put the parts back together for the purposes of tautology checking.

In what follows, the notation F G means that for the purposes of

m a n a g in g d e s ig n c o m p l e x it y ... 43

tautology checking F can be replaced by G; F -* 1 means that F is a tautology,
and thus can be replaced by 1; F -» 0 means that F is not a tautology, and thus
can be replaced by 0.

Theorem 4.3. Covers easy to check for tautology.

Bl. F + 1 -* 1.
B2. 0 -» 0, where 0 is the empty cover.
M. F -* m(F), if F has at least one monotonic variable; m(F) is the subcover

of F consisting of all cubes that do not contain monotonic variables.

Proof. The first two are obvious. For the third, assume that F has monotonic
variables. We show that F is a tautology iff m(F) is. Since m(F) is a subcover
of F, one direction is clear. Suppose now, that F is a tautology and that, for
contradiction, m(F) is not. Then there exists a vector u of values of
nonmonotonic variables such that m(F)(u) = 0. Let v be a vector of values for
monotonic variables, defined as follows: v x = 0 if x appears uncomplemented
in F; v x = 1 if x appears complemented in F. Finally, let K(F) be the cubes of
F that contain monotonic variables. Then F(u, u) = K(F)(u, u) + m(F)(u) =
K(F)(u, u) + 0 = K(F)(u, u) = 0, a contradiction. The last step follows from
the fact that, at v, every cube containing monotonic variables evaluates to 0.

The cover G = xy' + xuu + y 'u 'u ', for instance, contains two monotonic
variables, namely x and y; all its cubes contain x and y, hence m(G) = 0 .
Then, by Theorem 4.3, G ^ m(G) = 0 ^ 0 , i.e. G is not a tautology; in fact,
G(xy = 01) = 0.

In this paper I will examine three kinds of division of tautology-checking
labor. The first one, disjunctive division of labor, is based on the following
result.

Theorem 4.4. Let F = G + H, where G and H do not share variables. Then F
is a tautology iff at least one of G, H is a tautology.

Proof. Suppose that F is a tautology but, for contradiction, neither G nor H
are tautologies. Let S(F), S(G), S(H) be the variables in F, G, H, respectively.
By assumption S(F) = S(G) U S(H), S(G) Pi S(H) = 0 . Let u E DS(G\ u E DŜĤ
be such that G(u) = 0, H(u) = 0. Then (u, u) E DŜF̂ and F(u, u) = G(u) +
H(u) = 0, a contradiction.

Definition 4.4. The graph of cover F has the cubes of F as nodes; there is an
edge between two cubes iff they share variables.

44 SPYROS VASSILAKIS

The graph of F = xy + x'z + uv, for instance, has one edge, namely (xy, x'z).

Theorem 4.4 and Definition 4.4 suggest the following division of labor: If
the graph of F has more than one connected components, check each
component for tautology separately. Then declare F a tautology if at least one
component is a tautology; and declare F a nontautology if no component is a
tautology.

Definition 4.5. Disjunctive division of labor.

D. F-* 0 K(Fp ..., FK), if F j, ..., FK, K > 2, are the connected components of
the graph of F.

O. For each K > 2
0 K(sr ..., sK) -> 1 if Sj = 1 for some i = 1 ,..., K
0 K(Sj, , sK) —> 0 if Sj = 0 for all i = 1 , K.

The cover F = x + y, for instance, has two connected components,
namely Fj = x and F2 = y. Each F. is monotonic, so 111(E) = 0 . Hence,

F ^ 0 2(x, y) ^ O2(0 ,0) ^ O 2(0,0) ^ 0, i.e. F is not a tautology.

Conjunctive division of labor is based on the fact that a cover is a
tautology iff both its cofactors are.

Theorem 4.5. A cover F is a tautology iff, for any variable x, both Fx and Fx,
are tautologies.
Proof. Let F be a tautology. Let u be a vector of values for all variables except
x. Then Fx(u) = F(l, u) = 1; Fx,(u) = F(0, u) = 1. Hence, both Fx and Fx, are
tautologies.

For the converse, let both Fx and Fx, be tautologies. Then for each to G Dn,
the identity F = xFx + xF- yields F(a>) = Fx(a)_x) = 1 if w = 1; F(co) = Fx (© j =
1 if (ox = 0. Hence F is a tautology.

Recall, for the next definition, that an appropriate variable of F is a
nonmonotonic variable that appears in most cubes of F; in case of a tie, a
variable that minimizes the difference between positive and negative
instances in F.

Definition 4.6. Conjunctive division of labor.

C. F A(F, Fx, Fx,), where x is an appropriate variable.
A. A(F, 1, G) G, A(F, G, 1) -» G.
A(F, 0, G) -* 0, A(F, G, 0) -» 0.

MANAGING DESIGN COMPLEXITY... 45

The cover F = y + z + y'z', for instance, contains no monotonie variables;
and its graph is connected. Hence, none of the rules B, M, D, O apply. Using

conjunctive division of labor, however, we obtain F -* A(F, 1 + z, z + z') -»

A(F, 1, z + z') ^ z + z' ^ A (z + z', 1,1) 1. Hence, F is a tautology.

The last division of labor to be presented here is motivated by covers like
F = xy + xy' + x'y + x'y' + x'yu'u + xyuu'. Only conjunctive divisions of labor
apply to F. Any conjunctive division of labor is wasteful, because F is a
tautology by virtue of its first four cubes only; while any cofactor of F involves
the irrelevant last two cubes of F. What is needed is a criterion that isolates
subcovers like G = xy + xy' + x'y + x'y'. To visualize it, consider the bipartite
graph BG(F) of F, with nodes F U S(F); and edges (p, x) for any p E F, x E S(p).
Its incidence matrix is given by

X y u V
xy 1 1 0 0
xy' 1 1 0 0

x'y 1 1 0 0
x'y' 1 1 0 0

x yu d 1 1 1 1
xyuu 1 1 1 1

Note that G is associated with the largest block of zeros in the incidence
matrix. Equivalently, if Aj = G U S(G), A2 = (F U S(F)) \ A j, then (Ap A2) is a
minimum cut of BG(F); in the sense that (Ap A2) is a partition of F U S(F)
that minimizes the number of edges connecting nodes in to nodes in A2.
Minimum cuts can be efficiently computed by standard network flow
algorithms (Cormen et al., 1990, ch. 27). Given a cut (Ap A2), let ^(Aj) =
{pE A fl F, s(p) fl A. = 0} . Then the desired subcover p(F) of F is the largest
of [a(Aj), p(A2). In the example, ^(A ^ = G, |x(A2) = 0 , ^(F) = G.

The theorem that follows shows how to use the subcovers p(F), v(F) for
tautology checking.

Definition 4.7. Let F be a cover, and (Ap A2) a minimum cut of BG(F). Then
p(F) is the largest of ^(A^, ¡¿(A^). The cover v(F) consists of all cubes
obtained from cubes in F \ p(F) by dropping all literals involving variables in
p(F).

46 SPYROS VASSILAKIS

The value of F, a measure of F’s decomposability, is given by

H(F)| (|S(F)|-|S(H(F))
x,(F) =

S(F)

In the example, v(F) = u u '+ u'u, u (F) = — .
6x4 3

Theorem 4.7. Let F be a cover. Then

(a) F is a tautology if p(F) is a tautology.
(b) F is not a tautology if neither n(F) nor v(F) are tautologies.
(c) If p(F) is not a tautology and v(F) is a tautology, then F may or may not

be a tautology.

Proof.

(a) Obvious, because p(F) < F.

(b) Since neither p(F) nor v(F) are tautologies, there exist vectors u, u,
u E DS(p(F)), u E DS(v(p)) such that p(F)(u) = 0 = v(F)(/u). Since S(v(F)) =
S(F) \ S(p(F)), (u, o) E DS(F), and F(u, 'u) = ^(F)(u) + (F \ p(F))(u, v) =
(F\p(F))(u,o) < v(F)(v) = 0, i.e. F is not a tautology. The last inequality
follows from the fact that each cube in v(F) is derived from a cube in
F\ p(F) by dropping all literals involving variables in p(F).

(c) Consider the covers F1 = x + x'z + x'z', F2 = xu + yu' + xy. Then [¿(F^ = x,
v(Fj) = z + z'~ 1; p(F2) = xy, v(F2) = u + u '~ 1. Hence, for both i, v(F) is
a tautology but p(F) is not. Note that F2 is a tautology, while F2 is not.

Definition 4.8. Semidisjunctive division of labor.

S. F -» R(F, p(F), v(F), if v(F) > v ,
where v is a parameter between 0 and 1.

R. R(F, 1, G) - 1; R(F, 0, 0) ^ 0;
R(F, 0, 1) -» A(F, Fx, Fx>) for some appropriate variable x.

Note that application of rule S is restricted by raising the value of 13 . The
rule R(F, 0,1) -* A(F, Fx, Fx') changes division of labor from semidisjunctive
to conjunctive when the former is inconclusive.

When F = x + x' + xuv' + xu'u, for instance, then |li(F) = x + x', v(F) =
f su i/ + u'v. Hence we obtain the following derivation: F ->R(F, x + x', ud' +

m a n a g in g d e s ig n c o m p l e x it y ... 47

u'u) ^*R(F, A(x + x', 1, 1), ux/ + u'v) ^ R (F , 1, in / + u'u) 1.

The tautology-checking algorithm will simply order the rules presented
so far, and will put some restrictions on their application. First note that each
division of labor appears as a pair of rules, namely < D, Ok >, < S, R >, and
< C, A >. The first element of each pair is a rule that decomposes covers;
while the second element of each pair is a rule that combines the parts for the
purposes of tautology-checking. We call D, S, C analytic rules, and Ok, R, A
synthetic rules. Synthetic rules may not require evaluation of all their
arguments: for example, A(F, 0, H) -*■ 0, whatever the value of H is. Hence,
to prevent useless decompositions, synthetic rules should be applied before
analytic rules, and analytic rules should be applied when synthetic rules no
longer apply. Secondly, no rule should apply on F when F appears as the first
argument in some Ok, R, or A term, i.e. as Ok(F, G, H), R(F, G, H), or A(F,
G, H). This prevents useless rule applications, and guarantees termination.
The notation A(F, G, H), for instance, means that F has been conjunctively
decomposed into G and H; all further rule applications should be on G and
H. Thirdly, rules B should precede all others, to avoid useless decompositions
(D, C, S) or reductions (M). Fourthly, application of rules B and M should
precede all others, to avoid useless decompositions. Disjunctive decom
position should precede semidisjunctive decomposition, as easier to apply;
and semidisjunctive decomposition should precede conjunctive decom
position, to exploit any block structure before calculating cofactors.

Definition 4.9. Tautology-checking algorithm. Given a cover F, apply the
following rules on F and on any resulting cover, in the order they appear: B,
M, O, R, A, D, S, C. Do not apply any rules on a cover that is the first
argument of an O, R, or A term. Do not apply any rule unless all rules
preceding it have ceased to apply. Stop when either 1 (tautology) or 0
(nontautology) have been derived.

Example 4.4. Let F = x'y' + x'y + xy' + xyu' + xyui/ + xyuu. F does not
contain monotonic variables, and its graph is connected; p(F) = x'y' + x'y +
xy', v(F) = 6/24 = 1/4, v(F) = u' + m / + uu. For v < 1/4, we apply first

s csemidisjunctive decomposition, to obtain F -* R(F, |i(F), p(F)) R(F,

A(n(F), y', y + y')> A(v(F), u + v ’, 1)) ^ R(F, A(n(F), y + y', y'), u + V)
£· R(F, A(n(F), y + y', y'), A(u + v ’, 1, 1)) - R(F, A(n(F), y + f , y'), 1)

48 SPYROS VASSILAKIS

—» R(F, A(n(F), A(y + y', 1, 1), A(y', 0, 1)), 1) ~* R(F, A(^i(F), 1, 0), 1)

^>R(F, 0,1) ^>A(F, Fx, F(,) = A(F, y' + yu' + yun' + yuu, y + y') ^ A (F , Fx,

A(y + y', 1 ,1)) A A(F, Fx> 1) - F x -A (F „ , F^, F^,) = A(Fx, m>' + uv + u \

1) A h = ui>' + uv + u' ^ A (H , Hu, Hu.) = A(H, u + v ', 1) + v ' ^»A(v+

v ' , 1, 1) ^ 1.
For 13 > 1/4, on the other hand, disjunctive decomposition is not

allowed, and the derivation starts from F A(F, Fx, Fx,) i.e. from the
tenth step of the previous derivation. The example shows that even in a
problem with substantial block structure, semidisjunctive decomposition may
be wasteful. The cubes needed to establish tautology may not all belong to
one of the subcovers created by such decomposition. The choice of 13 is
another ill-structured problem: There is no objective function that assigns to
each choice of v its true benefit (net number of steps saved).

The reduction of the derivation of a minimum-cost cover to standard
problems(covering, connected components, minimum cut, tautology) allows
a firm to benefit from continuing improvements in algorithms that solve such
standard problems, simply by buying off-the-shelf. A firm that relies
exclusively on buying, however, has to accept the existing division of labor.
For example, a firm that uses QM’s problem representation will demand only
new and improved covering algorithms; but will have no use for new and
improved tautology algorithms. Only a firm that has consciously examined
the way it represents problems and divides labor will be able to achieve
efficiency gains that are not available to all. Whitney (1995, p. 116)
emphasizes this point in his study of Nippondenso (NDCL in the quotation):

“Many companies see the need to implement product design using
computer-aided design (CAD) or to improve their ability to
assemble their products efficiently using design for assembly (DFA).
Fewer see the need to be able to manufacture their products in
unique ways, much less to be able to build in-house the specialized
equipment necessary to do so. Fewer yet are those who see the need
to write their own CAD software to tie together their own carefully
groomed product-process design methodology. Fewer of all are
those who see the need to do all of these. NDCL is one of the most
advanced in understanding that all these actions must be taken

MANAGING DESIGN COMPLEXITY... 49

together systematically. ... Many of NDCL’s make-buy choices in
technology often seem uneconomical or indicative of a not-
invented-here attitude. An engineer at another Japanese firm put it
bluntly: ‘You learn by trying, not by buying.’”

5. Product Architecture

All products up to this point in the paper were assumed to consist of
components (cubes) linked together by OR gates. The objective of design was
to minimize the number of components taking this architecture as given. This
section will show that choice of product architecture, i.e. of the way
components are linked, is an important determinant of cost. It will also
describe a way to choose a good architecture. The importance of this issue
was stressed by Henderson and Clark (1990, p. 10):

“Xerox was confronted in the 1970s with competitors offering
copiers that were much smaller and more reliable than the
traditional product. The new products required little new scienti'c
or engineering knowledge, but despite the fact that Xerox had
invented the core technologies and had enormous experience in the
industry, it took the company almost eight years of missteps and
false starts to introduce a competitive product into the market. In
that time Xerox lost half of its market share and suffered serious
financial problems. In the mid-1950s engineers at RCA’s corporate
R& D center developed a prototype of a portable, transistorized
radio receiver. The new product used technology in which RCA was
accomplished, but RCA saw little reason to pursue such an
apparently inferior technology. In contrast, Sony, a small, relatively
new company, used the small transistorized radio to gain entry into
the US market. Even after Sony’s success was apparent, RCA
remained a follower in the market as by introduced successive
models with improved sound quality and FM capability.... for many
years Sony’s radios were produced with technology licensed from
RCA, yet RCA had great difficulty matching Sony’s product in the
marketplace. ... we define innovations that change the way in which
the components of a product are linked together, while leaving the
core design concepts (and thus the basic knowledge underlying the
components) untouched, as architectural innovation. This is the

50 SPYROS VASSILAKIS

kind of innovation that confronted Xerox and RCA. It destroys the
usefulness of a firm’s architectural knowledge but preserves the
usefulness of its knowledge about the product’s components.”

Architectural issues would be of less interest if all product architectures
for a given design problem G resulted in roughly the same number of
components, and hence the same cost. The next well-known example shows
that this is not the case.

Example 5.1. The behavior Pn C Dn consists of all 0 -1 vectors that contain an
odd number of ones. For example, P2 = (01,10}, P3 = (001, 010,100, 111}. It
will be shown that (a) the product architecture that links cubes with OR gates
requires 2n_1 cubes to represent Pn; (b) there is a product architecture that
requires only n cubes to represent P . Hence, the right product architecture
can result in exponential-size cost savings. I start with (b): Consider the
exclusive-or (XOR) gate © defined by0© 0 = 0 = l© l , 1©0 = 0©1 = 1, and
the covers Fn = xt © ... ©xn. Let u £ D " contain an odd number of ones. Then
Fn(u) = 1. To see this, suppose without loss of generality (© is commutative-
associative) that the first m = 2k -I- 1 components of u equal 1, and the
remaining n - 2 k - 1 components equal zero. Then

Fn(u) = (u, ©... © u j © (um+1 © ... © un)

(1© . . . © 1) ©(0 ©. . . © 0)
(1 © . . . © 1)©0
(1 © 1) © (1 © 1)... © (1 © 1) © (1 © 0)
v ---------------- ------------------ /

k-times

(0 © . . . © 0)©1
0 © 1 = 1.

Let u £ D n contain an even number of ones. Then a similar argument
establishes Fn(u) = 0. Hence, b (F J = Pn.

To prove (a), note that each Pn contains all minterms with 1, 3, 5, ..., n
ones when n is odd; and all minterms with 1, 3, 5, ..., n -1 ones when n is
even. Hence each Pn is already compact, because any two cubes in P are at
distance two or greater. At the same time, each Pn is maximal, since no
minterm can cover another minterm. It follows that Pn = rc(Pn) for all n. What
is more, no prime is redundant, in the sense of being covered by the (logical)

MANAGING DESIGN COMPLEXITY... 51

sum of the other primes. This is because if p, q are distinct minterms, then
d(p, q) ^ 1 and therefore cofactors pq and qp equal 0. Hence, (Pn\q)q = 0 for
all q in Pn, i.e. by Theorem 4.1, q is not covered by Pn\q. Hence, the minimum-
cost cover with behavior P is P itself. P , however, contains 2n_1 minterms,
since there are 2n minterms in n variables, and half of them contain an odd
number of ones. It follows that the OR-based product architecture results in
a product with 2n_1 components; while the XOR-based product architecture
in an equivalent product with n components.

A design problem G may include parts that can best be realized by a
XOR-architecture, and other parts best realized by an OR-architecture.
Detection of such parts can be done by spectral decomposition methods
(Hurst et al., 1985), illustrated in the next example.

Example 5.2. Consider the design problem G = x3x'2 + XjX'3 -I- x3x2x3; G is a
minimum-cost cover in the OR-architecture, since it is compact, maximal,
and irredundant. A less expensive cover equivalent to G is H = x1 ©x2x3; this
can be verified by direct substitution (for example, G (ll l) = H (l l l) = 0). To
derive H, we first derive the spectrum of G, i.e. a vector of correlation
coefficients of the output values of G with constant, projection, and parity
functions.

Step 1. Compute the value of G at each minterm and record it in a vector Y of
length 2n = 23 = 8. Minterms are written in the form x3x2xp and ordered
lexicographically, i.e. x3x2x3 < y ^ ^ if (a) x3 < y3 or (b) x3 = y3 and x2 < y2 or
(c) x3 = y3, x2 = y2 and x1 < yr In this example, 000 < 001 < 010 < Oil < 100 <
101 < 110 < 111, and y = (0, 1, 0, 1, 0, 1, 1, 0).

Step 2. Rewrite Y by replacing 1 by -1, and 0 by 1, to obtain Y = (1, -1,1, -1,

1 , - 1 , - U) .
Step 3. Form the Hadamard matrix Tn for n = 3; T 1 is a 2 x 2 matrix with rows
(1,1), (1,-1); Tn+1 is computed inductively using the formula

r p J l r j j l

rpH rj-JI
Each Tn is of dimension 2n x 2n.

The rows of T3 are 11111111,1-11-11-11-1,11-1-111-1-1,1-1-111-1-11,
1111-1-1-1-1,-11-1-11-11, 1-1-1-1-111, 1-1-11-111-1. Each row represents
the vector of output values of a function: constant, xp x2, x1 © x2, x3, x1 © x3,

52 SPYROS VASSILAKIS

X © x , x. © x7 © xv This can be verified by direct computation, remembering
2 V 1 2 «3

the change of notation in Step 2.

Step 4. Compute the spectrum S = TnY of Y. In this case, S = 0404040-4 =
(s0, sp s2, s12, S3, s13, s23, s123). The components of S are correlation
coefficients: s0 = 0 means there is no correlation between Y and a constant
function, s123 = -4 means that Y and x3 © x2 0 x3 are negatively correlated,
etc.

Step 5. Maximize the values of the zero and first-order coefficients s0, sp s2, s3
by permuting the values of S. To explain this, we need two facts. First, if every
instance of Xj in a cover G is replaced by Xj © x ., j * i, then the spectrum of G
changes in a precise way: the values of and s», sik and sjjk, sikt and sijkt, ..., are
interchanged. Secondly, the spectrum of G © is obtained from that of G by
interchanging the values of s0 and sp s» and sj5 s^ and sjk, __The objective of
maximizing the values of zero and first-order coefficients by these two kinds
of permutations, then, fulfills our original objective of splitting the design
problem G into a core part best realized with an OR-architecture (the cover
corresponding to the spectrum with s0, Sj maximized); and a part best realized
with an XOR-architecture (the XOR transformations corresponding to these
permutations that, when applied on the core cover, make it equivalent to the
original cover). In this example, performing the second kind of
transformation for i = 1, we obtain a new spectrum = 404040 - 40: the
values of s1 and s0, s12 and s2, s13 and s3, s123 and s23 have been interchanged.
We transform Yj back into the original domain by multiplying it with the
inverse (T")"1 of Hadamard’s matrix, where (Tn)_1 = 2“nTn. We obtain Yj =
2-3T3S1 = 111111- 1- 1. Remembering the notation of Step 2, Y l is the vector
of output values of the cover x^x 'j + x3x2xi ~ X3X2- We finally apply on this
cover the XOR transformations associated with the permutations necessary
to obtain Sp to obtain x2 © x2x3.

The example shows that spectral methods are expensive, involving as
they are the creation and manipulation of 2n x 2n matrices. At this point, no
cheaper methods are known. It follows that existing product architectures are
not likely to be close to optimal, even if they are part of a dominant industry
design and are universally accepted. Dominant firms, as Henderson and
Clark (1990) document, can make the mistake of considering their current
product architecture the best possible. Writing about photolithographic

MANAGING DESIGN COMPLEXITY... 53

alignment technology, they state: the technology has seen four waves of
architectural innovation. In each case the core technologies remained largely
untouched. ... Yet in each case the industry leader was unable to make the
transition ... the established firm invested heavily in the next generation of
equipment, ... with very little success. Our analysis of the industry’s history
suggests that a reliance on architectural knowledge derived from experience
with the previous generation blinded the incumbent firms to critical aspects
of the new technology” (ibid., pp. 23(24). In fact, belief in the optimality of
the current product architecture can reduce a firm’s ability to recognize why a
competitor has a better product: “... GCA first pronounced the Nikon stepper
a ‘copy’ of the GCA design. Even after GCA had fully recognized the threat
posed by the second-generation stepper, its historical experience
handicapped the company in its attempt to develop a competitive machine.
GCA’s engineers were organized by component, and cross-departmental
communication channels were all structured around the architecture of the
first-generation system. While GCA engineers were able to push the limits of
the component technology, they had great difficulty understanding what
Nikon had done to achieve its superior performance” (ibid., p. 27).

Product architecture also affects cost predictability. To understand this,
consider a firm that supplies a product with behavior B. A customer calls and
asks for product B'; the order-handling department has to give this customer
a price quotation and an expected delivery date. It seems natural to quote the
price of B plus the price of a NOT gate; and to promise delivery equal to B’s
delivery time plus the time it takes to assemble the extra NOT gate. This rule
seems natural because it is based on the assumption that product cost is
predictable from product description. To see that this can be misleading,
consider a product with behavior B = x^y'j + x'2y2. Then B' = (xl + y2) (x2 + y2) =

χχχ2 + xxy2 + x2yx + x2y2. In general, if Β = Σ ί = 1χ ^ , then B' requires 2n

components xiyj in the sum of products architecture, but only n components
x. + yi in the product of sums architecture. A firm that wants to provide fast
and reliable customer service must discover off-line where product
architecture matters. An example of this is provided by Stalk and Hout
(1990). They discuss heavy vehicles, where “... it takes 45 days to prepare an
order for assembly, but only 16 hours to assemble each vehicle” (ibid., p. 76).
In the 1980s, new companies (Freightliner and Paccar) took market share
away from GM, Ford, and Mack because “... they delivered faster and

54 SPYROS VASSILAKIS

handled product variety better than traditional producers could. In fact,
many traditional firms gave price incentives to customers who would limit the
custom features they ordered.” (ibid., p. 174). These authors then stress the
importance of predictability in providing fast and reliable price and time-of-
delivery information to customers: “The most important improvement in
support systems has been the pre-engineering of a variety of truck
combinations. Before the streamlining effort, truck assemblers had custom-
engineered most of the orders after they received them. Some orders
demanded more engineering than others, causing a lumpy flow of on-line
work. As a result, the custom engineering was hasty, which led to errors and
rework. Freightliner decided to invest heavily in pre-engineering hundreds of
combinations of components and truck styles so that nearly all orders would
be from a pretested menu. They were able to eliminate lumpy and hasty work.
This dramatically collapsed the processing time on the order before it got to
the assembly plant. In recent years, nearly all heavy-duty, on-highway truck
producers have followed Freightliner’s and Paccar’s changes.”

6. Product Quality

Recall from the Introduction that the main puzzle about quality is that
some firms seem able to offer products with fewer defects and lower cost than
their competitors: elimination of waste both reduces product cost and
renders products easier to test. This section provides some modelling of this
issue.

Definition 6.1. Let G be a cover. A fault in G can be either a variable in some
cube that is stuck at some value; or a cube whose output is stuck at some
value; or G itself, when its output is stuck at some value.

Example 6.1. Let F = xy + xy' + xz + x'y. Suppose first that x is stuck at 1 in
xy'. The faulty F is then Ff = xy + y' + xz + x'y. The behavior of faulty F on xyz =
000, (Ff(000) = 1) is different from desired behavior (F(000) = 0). The vector
xyz = 000 is called a test for this fault. Similarly, if the output of cube xy is
stuck at zero, the corresponding faulty cover is Ff = xy' + xz + x'y; xyz = 110 is
a test vector for this fault. Finally, if the output of F is stuck at 1, any vector in
the complement of its behavior is a test; while if F is stuck at 0, any vector in
b(F) is a test.

Consider now the faulty cover Ff = xy + xy' + x'y resulting from xz being

MANAGING DESIGN COMPLEXITY... 55

stuck at zero; Ff is equivalent to F, because xz is covered by xy + xy'. Hence,
no test vector exists for this fault, because xz is redundant. Similarly, if x' is
stuck at one in cube x'y, then the resulting faulty cover Ff = xy + xy' + xz + y is
equivalent to F, because y is covered by F. Again, no test vector exists for this
fault, because x'y is not a prime of F.

Definition 6.2. Let F be a cover in n variables and Ff the faulty cover
corresponding to some faults in F. A test vector for these faults is a vector u
in Dn such that F(u) * Ff (u). A cover F is single-fault testable if for any single
fault in F there is a test vector. A cover F is multiple-fault testable if, for any
combination of faults in F, there is a test vector.

Recall that a cover in n variables accepts 2n inputs (the number of
vectors in Dn). One could test a cover by comparing its actual behavior to
desired behavior at each u in Dn. This is too costly even for moderate values
of n; for example, when n = 117 and 217 ~ 131,000 tests per second are
performed, it would take 267 millennia to perform these tests. The main task
of design is to generate the smallest possible set of test vectors that can alert
us to the presence of any kind of fault. Hill and Peterson (1993, p. 456) state
this concisely: “Testing is part of manufacturing. Test generation is properly
part of the design process.” We first characterize the covers that are single
fault testable. Recall that a cover is irredundant if none of its cubes is covered
by the rest of its cubes, i.e. if no (F \p)p is a tautology.

Theorem 6.1. A cover F is single-fault testable if, and only if, it is prime and
irredundant. In particular, any minimum-cost cover is single-fault testable.

Proof. The second statement of the theorem follows from the fact that
minimum-cost covers are prime (they are constructed to be so) and
irredundant (this is a necessary condition to achieve minimum cost).

Suppose F is prime and irredundant. Faults in the output of F are easily
testable: u Eb(F) tests a stuck at 0 fault, and v ^ b(F) tests a stuck at 1 fault.
Consider a fault in literal l in cube p, p E F. The fault “i in p is stuck at zero”
is as testable as the fault “p’s output is stuck at zero”, so we will consider it
later.

Suppose, for contradiction, that the fault “t in p is stuck at one” is not
testable: let p = ¿q, F = p + G, Ff = q + G. By the contradiction hypothesis,
Ff ~ F. Hence, q < q + G ~ F, i.e. q < F; this contradicts the primality of p = Iq.

Consider now faults in cube outputs. If p is stuck at one, then F is stuck

56 SPYROS VASSILAKIS

at one, so this fault is testable by any v £ b(F) If p is stuck at zero, then Ff = G.
Suppose, for contradiction, that this fault is not testable; then G = Ff ~ F.
Hence, p < F~ G, i.e. p < G, a contradiction to the irredundancy of F.

For the converse, let F be single-fault testable. Suppose, for
contradiction, that p E F is not prime. Then there exists a literal l such that
p = ¿q, q < F. The fault “i is stuck at one” generates the faulty cover Ff = q +
G. Since F = p + G and q < F, we have Ff = q -I- G < F -I- G = F; on the other
hand, p = /q < q , soF = p + G < q + G = Ff. Hence, Ff~F, i.e. F is not single
fault testable, a contradiction.

Suppose, for contradiction, that F is redundant. Then there exists p E F,
F = p + G, such that p < G (and hence F ~ G). Consider the fault “p’s output
is stuck at zero”. The resulting faulty cover is Ff = G. Hence, Ff~F, i.e. F is
not single-fault testable, a contradiction.

This theorem is valuable because it allows the construction of a complete
set of test vectors much smaller in size than 2n; these vectors test each cube
for primality and irredundancy.

Theorem 6.2. A prime and irredundant cover F in n variables has a complete
set of test vectors for single faults, of cardinality (n -I- 1)|F| + 2.

Proof. The faults “F is stuck at d”, d = 0,1 are detectable by any u E b(F), for
d = 0, and by any u ÿ b(F), for d = 1. Hence, we need two test vectors for
these faults.

The fault ul is stuck at one in p”, where F = p + G, p = ¿q, is detectable
by any vector v E b(q) \ b(F) (the primality of p ensures that q £ F, i.e. b(q) £
b(F). To see this, note that Ff = q + G, and that Ff (u) = 1 because u Eb(q),
while F(u) = 0 because v ÿ b(F). Hence, we need n|F| test vectors for this
type of fault, one for each cube and variable).

The fault “p’s output is stuck at zero” is detectable by any u E b(p) \b(G),
where F = p + G. (Since p is not redundant, p ^ G, i.e. b(p) £ b(G).) To see
this, note that Ff = G, Ff(u) = 0 because v ÿ b(G), while F(u) = 1 because
v Eb(p). There are |F| such tests, one for each cube in F.

It has been established so far that cost reduction in the form of waste
elimination has as a byproduct full testability with respect to single fault. It is
also true that, in covers that are not prime and irredundant, generating test
vectors is more difficult (for those faults that are actually detectable). To see
this we will need the concept of Boolean derivative. The significance of this is

MANAGING DESIGN COMPLEXITY... 57

that quality is harder to obtain the more redundancies a cover contains.
Hence, even partial elimination of redundant components reduces the cost of
quality.

Definition 6.3. Let F = p + G, p = Iq, t a literal. The Boolean derivative of p
dP

with respect to L is = pz © p/(= q © 0 = q. The Boolean derivative of F

dFwith respect to p is — = (1 + G) © (0 + G) = 1 © G = G'. Finally, the

Boolean derivative of F with respect to t in p is dF
». dL

= dfdp
p dp dl

Boolean derivatives of F identically equal to zero imply that F is
independent from the variable of differentiation, and hence that a fault in
this variable is undetectable; this is because x © y = 0 if, and only if, x = y.

dFHence ~ = 0, for instance, means that 1 + G = 0 + G, i.e. that F is in

dependent of the value of p. If, on the other hand, a Boolean derivative is not
identically zero, it can be used to construct test vectors for faults in the
variable of differentiation.

Theorem 6.3. Let F = p + G, p = ¿q, t a literal. Fault “p is stuck at zero” can

be detected by any vector u that satisfies
dp

(u) = 1. Fault “t is stuck at

fdF̂
one in p” can be detected by any vector v that satisfies h (v) = l. If

either equation has no solution, the corresponding fault is not detectable.

Proof. Let [^ p] (^) = 1· Then % (v) = 1 = P ^) ’ i.e. G'(d) = 1 = p(v), i.e.

G(u) = 0, p(u) = 1. The faulty cover corresponding to p being stuck at zero is
Ff = G. Hence, Ff(u) = 0, F(u) = p(u) + G(n) = 1. It follows that “p is stuck at

zero” is detectable by v. If, on the other hand, — p| (u) = 0 for all v, then
dP I

for each u either p(u) = 0, or ^ (u) = 0 or both. If ^ (u) = 0 , then G '(u) =

0, i.e. G(u) = 1, i.e. Ff(u) = 1 = p(u) + 1 = p(u) -I- G(d) = F(o), i.e. “p is stuck

58 SPYROS VASSILAKIS

at zero” is undetectable. If ^ (u) = 1, then p(u) = 0 and G'(u) = 1, i.e. G(u) =
dp

0. Hence ¥{(v) = G(u) = 0 = 0 + 0 = p(v) + G(u) = F(u), i.e. “p is stuck at
zero” is again undetectable.

For the other part, let ' ' d f]
. di)

\

t (U) = 1, i.e. ^ (v) = l>

¿'(u) = 1. It follows that G(v) = 0, q(u) = 1, ux = where x is the variable
involved in literal t. The faulty cover corresponding to “i is stuck at one in p”
is Ff = q + G. Hence Ff(u) = 1, F(u) = (lq)(u) + G(u) = ¿(u)q(u) + G(u) =

01 + 0 = 0, i.e. u detects this fault. If, on the other hand, dF
I dZ , L (u) = 0 for

all v, then for each v either or “7 Cu) = 0> = ^ i-e· ^ther

G(u) = 1, or q(o) = 0, or £(u) = 1. Hence, if G(u) = 0 then either q(u) = 0 or
¿(u) = 1, so Ff(u) = q(u) + G(v) = q(u), F(o) = p(u) + G(u) = ¿(u)q(u).
Then, if F(u) * Ff(u), we must have q(u) = 1, ¿(u) = 0, which is not possible.
Hence F(u) = Ff(u), i.e. any v with G(u) = 0 cannot detect that t in p is stuck
at one. Consider now v such that G(tj) = 1; Ff(u) = q(/u) + G(tj) = 1, while
F(u) = p(u) + G(u) = 1, i.e. again v cannot detect this fault. Hence, this fault
is not detectable.

We can now explain why, in covers that are not prime and irredundant,
the more redundancy there is, the harder it is to compute a test vector for the
subset of faults that are detectable. Quite simply, redundant terms make the
calculation of Boolean derivatives harder.

Example 6.3. Let F = xy + xy' + xz + x'y, p = xy', 1 = x, q = y', G = xy + xz + x'y.
A Th d D f ' ^

The test vectors for “1 is stuck at one in p” are given by =G ql =

(xy + xz + x'y)'y'x' = (x' + y')(x' + z')(x + y')y'x' = (x' + y'z')(x + y')y'x' =
(x'y' + y'z')y'x' = y'x' + y'x'z' ~y'x'. Solving the equation y'x' = 1 we obtain
x = y = 0, i.e. xyz = 000, 001 are the test vectors for this fault. If, on the other
hand, we had eliminated waste from F we would get H = x + y. (xy + xy' ~x,
x + xz~x, x + x'y~x + y.) Checking for “x is stuck at 1” involves computing
d H d x '
dx dxX x · We have obtained the same test vectors with a much shorter

computation.

MANAGING DESIGN COMPLEXITY... 59

The next theorem shows that a prime and irredundant cover is also
multifault-testable, by the same test vectors that form a complete test set for
single faults. This generates a further economy in testing, since the number of
multifaults is much larger than the number of single faults.

Theorem 6.4. A cover F is multifault-testable if, and only if, it is prime and
irredundant.

Proof. If F is multifault-testable, it is also single-fault testable; hence, by
Theorem 6.1, prime and irredundant.

For the converse, let F be prime and irredundant. A collection of faults
(i.e., a multifault) splits F into three disjoint sets, F = L + H + G; L is the set
of cubes that lose some of their literals due to stuck-at-one faults; H is the set
of cubes that disappear due to stuck-at-zero faults; and G is the set of cubes
not afected by the faults in this collection. The faulty cover corresponding to

this multifault is Ff = 2 pGLq(p) + G, where q(p) > p, q(p) * p, is the cube

resulting from p by dropping all stuck-at-one literals in p. If L = 0 , then any
vector u E b (p)\b (F \p), p EH , is a test vector for this multifault, since Ff(/u) =
(F \ p)(u) = 0, F(d) = H(d) + G(u) = 1 + 0 = 1 ; b(p) \ b(F \ p) is nonempty by
irredundancy of F. If, on the other hand, L * 0 , then any u E b(q(p))\b(F),
p E L, is a test vector for this multifault, because Ff(u) = q(p)(u) + ... = 1,
while F(u) = 0 because v £ b(F); b(q(p)) \ b(F) is nonempty for any p E L due
to primality, which implies q(p)^ F.

To conclude, this section has shown that cost reduction by eliminating
waste in the form of redundant components renders a cover fully testable,
both for single faults and multifaults; the number of tests needed is (n+ l)|F | +
2; the precise test vectors can be generated using Boolean derivatives, whose
calculation becomes easier in the absence of redundancies. Products that
contain redundancies, on the contrary, are not fully testable; and the
calculation of test vectors for those faults that are testable is harder, due to
the presence of redundancies. Quality may not be free, but its cost decreases
as a free byproduct of cost reduction through waste elimination.

7. Design for Product Variety
Recall that the literature surveyed in the Introduction claims that

inexpensive variety can be achieved through product design; and that GM’s

60 SPYROS VASSILAKIS

inability to achieve it was due to its misdiagnosis of a design (waste-
elimination) problem for an investment problem (more robots and exible
manufacturing systems). Nippondenso (NDCL) is cited in this literature as a
pioneer in design for variety. Whitney (1995, pp. 117-118) describes
Nippondenso’s approach, and also motivates the treatment of variety in this
section:

“An important feature of NDCL’s approach is avoiding complex
assembly technology such as ‘intelligent dexterous’ robots. Instead,
NDCL put as much as possible of the ‘intelligence’ into the product
itself, by focusing the design process on supporting high-volume
mixed-model JIT automated assembly. Large numbers of robots are
indeed used at NDCL, but they and other complex technology are
not the core of the approach. ... The difficulty of achieving high-
volume model-mix JIT automated production can be put in the
context of a generic, long-standing conflict in manufacturing: the
flexibility efficiency tradeoff. ... Although the flexibility-efficiency
tradeoff appears alive and well in most factories, it can be beaten in
two basic ways: by designing equipment so that ‘wasters’ are small
(see Shingo, 1989) and by designing products so that ‘wasters’ are
not needed. NDCL has used the second method: embedding
exibility in the product during the design process. ... Imagine the
phone ringing each day at NDCL and a voice from Toyota
demanding, ‘we want 4.316 of motor type A, 301 of type B, 1.633 of
type C, and 4 of type D, tomorrow morning’. The next day, totally
different distributions might be ordered. One cannot possibly
respond to this kind of customer by order-picking from a warehouse
or by adjusting fabrication patterns. This customer at one point,
however, accounted for 90% of the business and still commands
more than 50%.”

To understand how product design lowers the cost of variety, imagine
that tomorrow Toyota will ask NDCL to supply a product in the set {fQ, fp f2),
but does not know yet which. For the sake of the argument, let fQ = x + y'z',
fi = xy + xz, f2 = xy -l- z. Each f is a minimum-cost cover; hence, as long as
products are designed separately, no design activity need take place. NDCL
now faces two unpleasant alternatives, namely either to manufacture in
advance components x, y'z', xy, xz, z and supply Toyota quickly with the

MANAGING DESIGN COMPLEXITY... 61

product demanded, say f0, bearing the inventory cost of the unused
components xy, xz, z; or to make components x and y'z' in response to
Toyota’s order, keeping Toyota waiting in the meantime. There is, however, a
third alternative that combines speedy response to Toyota’s demands at
moderate cost. It involves joint design of the possible set of products (fQ, f , f2}
to maximize shared parts. The outcome of such design in this case is fQ = xy +
xz + y'z', f: = xy + xz, f2 = xy + xz + z. (Note the redundancies in f0, f2.) NDCL
can now build in advance xy + xz, and respond quickly to Toyota’s orders
building y'z' or z ex-post. Inventory cost is zero (xy + xz is needed by all three
products). The cost of modular design, or component standardization (the
standardized components are xy, xz), is the redundancy introduced in f0, f2:
“There are some circumstances under which the use of a standard component
may incur higher unit costs than the use of a special component. Sometimes
in an effort to standardize, firms will use a component with excess capability
for a particular application.” (Ulrich, 1995, p. 431). Note that this is not a
necessary cost, as evidenced by the family of products f = x + yi? i = 1, . . . , k.

Product design for variety does not require any more apparatus than that
developed in Section 4 for cost reduction. It is only the cover to be minimized
that changes, to take into account all potential products together.

Example 7.1. Let f0 = x + y'z', ^ = xy + xz, f2 = xy + z. Create a new variable u
that can take three values, namely 0,1, or 2. By analogy with binary variables,
for each subset A of {0, 1, 2}, uA is a literal whose value is one if, and only if,
the value of u belongs to A. The cover to be minimized, then, is F = fQu° +
f y + f2u2 = (x + y'z')u° + (xy + xz)u! + (xy + z)u2 = xu° + y'z'u0 + xyu1 + xzu1 +
xyu2 + zu2. Note that, by definition, u° + u1 + u2 = 1, u‘uj = 0 if i * j.
Minimization of F, exactly as in Section4, starts with finding primes.

We first compute cofactors Fz ~ u3 + xu1 -I- xu2, Fz, = xu1 + y'u1 -I- xyu2 +
xyu3, F^ = u1 + u2 + u3~ 1, Fa , = u3, Fz,y = xu1 + xu2 + xu3~x, Fzy = xu1 + u1 ~
u1.
Then we use the divide-and-conquer formula to compute

ji(Fz) = M[(x' + Ji(Fzx))(x + Jt(Fzx,)] = M[x + u3]= x + u3;
ji(Fz,) = M[(y' + Jt(F,y))(y + J t(F y))] = M[(y' + x)(y + u1)] = y'u1 + xy +

+ xu1;
u(F) = M[(z' + Ji(Fz))(z + ji(Fl,))] = M[(z' + x + u3)(z + y'u1 + xy + xuI)] =

= xy + xu1 + xz + z'y'u1 + zu3.

62 SPYROS VASSILAKIS

We then discover, by applying the tautology-based algorithm in Section
4, that only xu1 is redundant. (In this simple example, this can be done
directly: If xu1 = 1, for instance, then x = u1 = 1, and the sum of the remaining
cubes in ji(F) is y + z -I- y'z' ~ 1. Since y + z + y'z' is identically 1, xu1 is covered
by jt(F) \ xu1.) We finally extract from the minimized cover expressions for
each of f0, fp f2: cubes that do not contain any uj term will appear in all f.,
while a cube that contains uj will appear in f with uj dropped. Hence, fQ = xy +
xz + y'z', = xy + xz, f2 = xy + xz + z.

Toyota was traditionally weak in parts sharing. Womack and Jones
(1996, p. 238) report that in 1992 Toyota introduced a new division of labor in
its product development system in order to “... focus on product families
which share components rather than on standjalone products”. A similar
division of labor had been introduced earlier by Chrysler, under the names of
“platform teams” and “value engineering”. The Economist (1995) reports that
“The RAV4 ... was designed in a novel way. ... Toyota has copied value
engineering techniques from Chrysler and Ford: these minimize the number
of parts in a new model. Nearly half the parts in the RAV4 were already
knocking around in other Toyota models. The aim now is to have each new
Toyota model 70% built from parts common to its predecessor.” This was
achieved, as Taylor (1997 (b), p. 42) reports, by joint design of several models
simultaneously: “Most auto companies develop models sequentially. First
you design a Camry sedan; then you design a Camry coupe. That lightens the
engineering load and ensures that problems on one model get resolved
before the next one is started. But Toyota has begun developing similar
models simultaneously, so that engineering tasks overlap. MIT’s Cusumano
believes that Toyota can save 15% in lead time and 50% in engineering hours
by overlapping projects. Under this new system, Toyota’s product fecundity
has been unrivaled. In the past two years it has introduced 18 new or
redesigned models. Several Japanese models went into production as little as
14.5 months after their designs were approved - probably an industry record.
Overall, Toyota has doubled its engineering output over the past four years,
while increasing its budget by only 20% - an astounding achievement.”

In conclusion, design for variety is design for cost reduction applied to
the set of all potential products. Variety may not be free, but its cost
decreases as a free byproduct of waste elimination.

MANAGING d e s ig n c o m p l e x it y ... 63

8. Summary and Conclusions

This paper has proposed circuit design as a model of waste elimination
and its role in achieving simultaneous improvements in cost, quality, variety,
and speed performance variables.

Waste elimination involves three steps: (a) definition of the product as a
desired behavior rather than as an historically given artifact; (b) mapping of
desired behavior into physical components that realize it; and (c) elimination
of redundant components. The activity that accomplishes these tasks is
design. The key bottleneck in design is complexity. This has two effects. It
makes design expensive; and/or it prevents waste elimination.

One way to manage complexity, outlined in Sections 3, 4, and 5 of this
paper, is to look for better problem representations, divisions of labor, and
product architectures. If such changes fit the product, they can yield
exponential-size savings, revolutionizing an industry.

No currently known method of waste elimination works equally well on
all design problems; all are worst-case exponential, although they differ in the
type and frequency of worst cases. A necessary consequence of this is that all
known methods have to be applied incrementally. After designers eliminate
some, but not all waste, production takes place; at the same time, another
design exercise begins, to eliminate some more waste. Given the complexity
of design problems, each design effort can yield significant savings, even if no
change in the underlying technology has taken place. Womack et al. (1990,
ch. 6) report that Toyota and its suppliers, after joint analysis of costs, agree
on an initial price for a part and on a schedule of continual future price
decreases over the life of the part. Suppliers are expected to keep redesigning
parts, eliminating some waste each time.

Improving design productivity involves discovery of better problem
representations, divisions of labor, and product architectures. Each one of
these constitutes an ill-structured problem, i.e. it cannot be usefully
represented as an optimization problem with explicitly stated objective
functions and constraints. While occasional discoveries are made, there is no
systematic search procedure for improving design productivity. Drucker
(1991) has associated this fact with the slow rate of increase of the
productivity of knowledge work.

Given the complexity of waste elimination, and the lack of systematic
procedures that improve design productivity, it is unlikely that any firm, or

64 SPYROS VASSILAKIS

value stream, is producing near an optimum. Production functions, cost
functions, learning curves and other such representations of past experience
are unlikely to summarize all of the economically relevant aspects of
technology. A substantial amount of research has suggested that firms
“managed by the numbers” generated by such summaries of past experience
forego large improvement opportunities. Hayes and Abernathy (1980, p. 74)
made this point while discussing management by the numbers: “... its first
doctrine is that neither industry experience nor hands-on technological
expertise counts for very much.... it encourages the faithful to make decisions
about technological matters simply as if they were adjuncts to finance or
marketing decisions. Complex modern technology has its own inner logic and
developmental imperatives.” The belief that summaries of past experience
describe a firm’s possibility frontier implies that the only way to improve is to
shift this frontier by investing in equipment, R&D, and training. Baldwin and
Clark (1994, p. 73) summarize the consequences of internal control systems
based on such beliefs: “... these systems obscured the value of investments in
organizational capabilities, because such investments were hard to quantify 1
indeed, even to describe, within the financial models in use. As a result,
companies often invested vigorously [but in the wrong things.” Jensen (1993)
has provided a well-known quantification of the costs of failure of internal
control systems: “It is clear that GM’s R&D and investment program
produced massive losses. The company spent a total of $67.2 billion in excess
of depreciation in the period [1980-1990] and produced a firm with total
ending value of equity of $26.2 billion.... the difference between the value of
GM’s actual strategy and the value of the equivalent-risk bank account
strategy amounts to $-100.7 billion.” (ibid., p. 858). In the light of these
observations, this paper can be seen as an attempt to analyze some aspects of
economic performance not visible through the standard apparatus of
production functions, cost curves and learning curves.

MANAGING DESIGN COMPLEXITY... 65

Appendix A

This Appendix contains proofs of Theorems 3.1 through 3.7, except for
Theorems 3.2 and 3.4 proven in the main text. It also contains a proof of the
statement in Example 3.3.

Theorem 3.1. F consists of its primes (F = Jt(F)) if, and only if, it is compact
and maximal.

The proof is split into several lemmas.

Lemma A .l. F is compact if, and only if, it contains all primes of F (i.e.,
Jt(F)ÇF).

Proof. Let F be compact. To show jt(F) Q F, let p E jt(F). Then, by definition
of primality, p < F; and by compactness of F, there is a q in F such that p < q.
Since q E F, q < F, so p < q < F. By the definition of primality, p = q; hence
p EF.

For the converse, let F contain all its primes, i.e. let jt(F) E F. To show
that F is prime, let p < F; we need to show that there exists q E F such that
p < q. If p E F, there is nothing to show. If p ÿ F, start dropping literals from p
until a prime q of F is obtained. Then p < q, q E p(F) Q F.

Lemma A.2. Prime covers are maximal.

Proof. Let F be prime. To show maximality, we need to show that p, q E F,
p < q imply p = q. If p * q, then p < q < F, a contradiction to the primality of

P-
Lemma A.3. A compact, maximal cover F consists exclusively of the primes of
F, i.e. F = Jt(F).

Proof. By Lemma A .l, Jt(F) Ç F. To show that FÇ Jt(F), let p E F \p(F) (for
contradiction). Since p is not a prime of F, there is a prime q such that p <
q < F. Since Jt(F) Ç F , q E F. The maximality of F then implies p = q, a
contradiction.

Proof of Theorem 3.1. If F is compact and maximal, then F = Jt(F) by Lemma
A.3. If F = jt(F), then F is maximal by Lemma A.2 and compact by Lemma
A.l.

Theorem 3.3. F is compact if, and only if, the consensus of any two cubes in F
is covered by some cube in F.

66 SPYROS VASSILAKIS

The proof is split in several lemmas.

Lemma A.4. Let p,q be two cubes. Then p < q if, and only if, pq' = 0.

Proof. Let p = IT xfi, q = H xfi · Then q' = 2 xfi, and p q' = 2 (pxfi). For

each j, pxfi = (Hj ^ xfO · xfj nBi · If p < q, then A C B. for all j, so A D B' = 0

for all j, i.e. pq' = 0. If pq' = 0, then either p = 0 < q; or p < q = 1; or A f! Bj =
0 for all j, i.e. A f! Bj for all j, i.e. p < q.

Lemma A.5. Let p, q be two nonzero cubes. Then p + q is compact if, and
only if, d(p, q) * 1.

Proof. It is first shown that d(p, q) = 0 implies p + q is compact. Suppose, for
contradiction, that p + q is not so. Then there is a cube s < p + q, s ^ p, s ^ q;
s ^ p means that p contains a literal i not in s; s ^ q means that q contains a
literal m not in s. Hence, p = iu, q = mo, i (£ u, m (fc o, i £ s, m ^ s. By Lemma
A.4, s < p + q implies sp'q' = 0, i.e. s(^' + u')(m ' + o ') = 0, i.e. s^'m' = 0. Since
1 i s, m (£ s, it must be that ¿'m' = 0, i.e. 1 + m = 1, i.e., for some variable x,
L = x, m = x'. Hence, p = xu, q = x'o, i.e. d(p, q) > 1, a contradiction.

It is now shown that d(p, q) > 2 implies p + q is compact. There exists a
literal i and cubes u, o such that p = iu, q = t v , uo = 0. Let s < p + q, s * 0; it
is to be shown that s < p or s < q. By Lemma A.4, sp'q' = 0, i.e. s(/' + u')(^ +
o ') = 0, i.e. s^'o' = 0 = s^u'. By Lemma A.4 again, st < v , s i < u. The last two
inequalities imply that s must contain either i or t , for if it doesn’t, s^u ' = 0
implies so' = 0, and s^u' = 0 implies su' = 0; hence, s < u, s < o, i.e. s < uo = 0,
a contradiction. Suppose that s contains i, so that s = si; then s = si <p,
Q.E.D. Suppose that s contains t , so that s = s^'; then s = s^' < q, Q.E.D.

Finally, it is shown that d(p, q) = 1 implies p + q is not compact. There
exists a literal i such that p = iu, q = t v , uo * 0. It is to be shown that uo <
p + q, but uo p and uo ^ q. First, uo(p + q)' = uop'q' = uo(^' + u')(£ + o ') =
uo(/'o ' + iu' + u 'o ') = 0, hence, by Lemma A.4 uo < p + q. Secondly, uop' =
uo(^' + o ') = ¿'uo * 0, since uo * 0 and i(fc u, i ^ o; hence uo ^ p. Finally,
uoq' = uo(^ + o ') = uo^ * 0, since uo * 0, t (£ u, t o; hence uo ^ q.

Lemma A.6. If p + q is not compact, then p + q + c(p, q) is compact and
equivalent to p + q.

MANAGING DESIGN COMPLEXITY... 67

Proof- Equivalence was shown in Theorem 3.2. Since p + q is not compact,
Lemma A.5 implies d(p, q) = 1, so c(p, q) is well-defined. To show compact
ness of p + q -I- c(p, q), it suffices to show that s < p + q, s ^ p , s ^ q implies
s < c(p, q). Since d(p, q) = 1, there exists a literal l such that p = lu, q = t v ,
uu * 0. By assumption and Lemma A.4, sp'q' = 0, i.e. s^u' = st v ' = su'd ' = 0.
Neither l nor t can belong to s. For if L is in s, for instance, s = si, st = 0 and
therefore sp' = s (t + u') = su' = s£u' = 0, i.e. by Lemma A.4, s < p, a
contradiction. Similarly for t . Hence, stu' = 0 implies su' = 0, because t £ s
and L (£ u; su' = 0, by A.4, implies s < u. Similarly, s /V = 0 implies su' = 0, i.e.
s < v. Hence s < uu = c(p, q).

Proof of Theorem 3.3. Let F be compact, and p, q be cubes in F at distance
one from each other. It is to be shown that c(p, q) is covered by some cube in
F. Note that c(p, q) < p + q < F, hence by F’s compactness, there is a cube s in
F such that c(p, q) < s.

For the converse, let F be a cover such that for any two p, q in F, c(p, q) is
covered by some cube in F. Suppose, for contradiction, F is not compact. Let
n be the number of variables in F. Then any t < F not covered by some cube in
F must contain strictly less than n literals, i.e. it must not be a minterm. For
if t is a minterm, b(t) is a singleton, so b(t) C b(F) = UpeFb(p) implies
b(t) C b(p) for some p E F, i.e. t < p, a contradiction. Let t < F contain the
maximum number of literals among the implicants of F not covered by any
single cube in F. This number is less than n, so there is a variable x appearing
in F but not in t. Hence xt < t < F, x't < t < F. The maximality property of t
implies that xt, x't are each covered by single cubes in F, namely xt < p, x't < q,
p, q in F. Then t = xt + x't < p + q. By assumption, t ^ p and t ^ q, i.e. p + q is
not compact. By Lemma A.5, d(p, q) = 1, so c(p, q) is defined. By our
assumption on F, c(p, q) < s for some s in F. By Lemma A.6, p + q + c(p, q) is
compact and equivalent to p -1- q. Then we have t < p + q ~ p + q + c(p, q),
t ^ p, t ^ q, and p + q + c(p, q) is compact. It follows that t < c(p, q) < s, s E F,
a contradiction.

Theorem 3.5. Let Fn = b(G), and for each t = n, n-1, ..., 1, Ft_1 = A(Fl),
Sl = S(Fl), jt1 = Fl \ Sl. Then the set of primes of G is ji(G) = UJ=1 nl.

The proof is split into several lemmas.

Lemma A.7 (Wegener, 1987, p. 25). Let G be a cover and p a cube. Then p < F
if, and only if, for any variable x not in p, xp < F and x'p < F.

68 SPYROS VASSILAKIS

Proof. Let p < F, x a variable not in p. If xp ^ F, then there exists a vector co =
(tox, to x) with cox = 1 such that p(co_x) = 1, F(w x) = 0; this contradicts p < F.
Hence xp < F; similarly, x'p < F. For the converse, if xp < F, x'p < F, then p =
xp + x'p < F + F = F.

Lemma A.8. For each t = n, ..., 1, Fl consists of all implicants of G that
contain exactly t literals.

Proof. This is true by construction for Fn = b(G). Suppose it holds for t > 1;
then Ft_1 = A(Fl) = {p: there exists a variable x such that both xp and x'p
belong to F1}· By the induction hypothesis, xp and x'p are implicants of G
containing exactly t literals. Hence p contains exactly t-1 literals; and is an
implicant of G by Lemma A.7. For the converse, let p be an implicant of G
that contains exactly t-1 literals. By Lemma A.7, both xp and x'p are
implicants of G, for any x not in p. By the induction hypothesis, both xp and
x'p are in Fl, hence p is in Ft_1.

Lemma A.9. For each t = n, ..., 1, ji1 consists of all primes of G containing
exactly t literals.

Proof. Jtl < Fl, so all members of jc‘ are implicants of G, by Lemma A.8.
Suppose p G jd is not a prime of G. Then there exists a literal i and a cube q
such that p = Iq and q is still an implicant of G.

By Lemma A.7, both iq and V q are implicants of G; and by Lemma A.8,
both belong to F*. Hence p = Iq is not in jd, a contradiction. Hence every
member of id is a prime of G containing exactly t literals.

For the converse, let p be a prime of G containing exactly t literals. By
Lemma A.8, p G Fl. Suppose, for contradiction, that p G Sl, i.e. that for some
literal l and cube q, p = Iq, and I'q G Fl. By Lemma A.8, iq and Vq are
implicants of G, while by A.7 q is an implicant of G, a contradiction to p’s
primality. Hence p G Fl, p £ Sl, i.e. p G F l\S l = it1.

Proof of Theorem 3.5. ji(G) = UJ= x jd by Lemma A.9.

Example 3.3. Let Bn be the cover consisting of all minterms m in n variables
whose number of positive literals ?i(m) is not divisible by 3. Let Jtn be the
number of primes of Bn. Then, along the subsequence n = 6k + 2,
lim 2-njt = oo .n^oo n

Proof. Let a = 12, 45, 78, ... be the sequence of numbers not divisible by 3,

MANAGING DESIGN COMPLEXITY... 69

arranged in pairs. Let B = { m £ B ; X(m) = i}. Then B = U{B . U B :
(i, i + 1)E o , 1 < i < n - 1}. Let Cni = {c(p,q); p E B ni, q E B n>i+1, (i, i + l)E o }
be the set of consensus cubes formed by minterms in B , B Then the set
of primes of Bn is jr(Bn) = U{Cni: (i, i + l)E o , 1 < i < n-1}, because if j* i + 1
and j is not divisible by 3, |i - j | > 3, hence no consensus forms can be built out
of cubes in C C the QM method will stop after one iteration and delivern,i n,j

(\
ji(B). Each C . contains n (n-i) cubes, because B . contains n cubes;

and because each cube m in Bni is at distance one from exactly n - i cubes in
B namely those that contain an nnnrirneH variable if m does. Hence the

n ’ 1 V ininumber of primes in Bn is *„ = 2 ,(.i + 1)eo|" J (n - i) . Setting n = 6k + 2, we

(3k+l). By this inequality andobtain ttn = 2 ; : ' 6k+2:0 3t + l (6k -3 t+ l)>
i \6k + 2
3k+1

Stirling’s formula 2 njrn> 2 6k 2(3 k -h l)i^^^ •2“6k_2(3k+l)26k+V 1/2(3k +

+ 1) 1/2 = (3k+ l)1/zjr_1/2 = n1/2(2ji) i/z^-oo as n. 1/2 - 1 / 2
00

Theorem 3.6. Let x be any variable in cover F. Then ji(F) = M[(x' + jt(Fx)) (x +
jt(Fx'))].

The proof is split into several lemmas.

Lemma A. 10. b(FG) = b(F) fl b(G).

Pmof. Recall that FG = 2 peF 2 qGGpq. Then

b (F) n b (G) = (U p £ F b (p)) n (U q e G b (q)) = U p £ F U p 6 G b (p) O b (q) =

= U p e F U P e o b (p q) = b (S peF S q e o p q) = b (F G) .

Lemma A .l l . F~ (x' + Fx)(x + Fx,).

Proof. Both sides equal Fx when x = 1; both sides equal Fx, when x = 0.

Lemma A. 12. The product of compact covers is also compact.

Proof. Let F, G be compact covers, p < FG. Then p < F, p < G, since by
Lemma A. 10 FG — F, FG — G. By compactness, then, there exist uE F , d E G
such that p < u, p < v. Hence p < uv E FG, Q.E.D.

70 SPYROS VASSILAKIS

Lemma A. 13. Let F , G be compact covers equivalent to F, G, respectively.

Then F G is a compact cover equivalent to FG.

Proof. FG is compact by A.12. By A.10, b(FG) = b(F) f | b(G) =

= b(F) flb(G) = b(FG),i.e. FG ~FG.

Lemma A.14. If G is compact, then so is M(G).

Proof. Let p < M(G). Since G~M (G), p < G. G’s compactness implies p < q,
q E G. If q i M(G), then there exists s £ M(G), q < s; hence p < s. Hence in all
cases p < s, s E M(G), and thus M(G) is compact.

Lemma A. 15. Let ji(F) be the set of primes of F. Then ji(F) = M[jt(x' + Fx)

P(x + Fx.)]·
Proof. By A .ll, F ~ (x' + Fx)(x + Fx,). By Theorem 3.1, Jt(x' + Fx), jt(x + Fx,)
are compact covers equivalent to x' + Fx, x + Fx>, respectively. By A. 13 then,
jt(x' + F) Jt(x + F ,) is a compact cover equivalent to F. By A.14, M[jt(x' + Fx)
ji(x + F ,)] is a compact, maximal cover equivalent to F; by Theorem 3.1, it
equals ji(F).

Lemma A.16. If G does not depend on x, then no prime of G depends on x.

Proof. Let p < G be a prime of G. If p depends on x, then p = xq or p = x'q.
Suppose, for instance, that p = xq, and let p(co) = 1; then cox = 1, q(a)_x) = 1.
Since p < G, we have G(co) = 1, and since G does not depend on x, G(a)_x) = 1.
Hence, we obtain: q(co_x) = 1 => p(l, a)_x) = 1 => G((o_x) = 1, i.e. q < G, a
contradiction to p’s primality. Hence p does not depend on x.

Lemma A. 17. Let i be a literal, and G a cover independent of the variable in
t. Then ji(G) C p{i + G).

Proof- Let p E p(G). By A.16, p is independent of the variable in l, say x.
Suppose, for contradiction, that p n(l + G). Then there exists a literal m,
m * l, m * i', and a cube q independent of x, such that p = mq, q < L + G.
Suppose without loss of generality, that l = x. Since q is independent of x,
q(co) = 1 with (ox = 1 implies q(co x, 0) = 1. Hence q(co) = 1 => q(co , 0) = 1 =>
(i + G)(co x, 0) = 1 =s> G(co x) = 1 => G(co) = 1, i.e. q < G, contradicting the
primality of p. Hence p E ji(̂+ G), Q.E.D.

MANAGING DESIGN COMPLEXITY... 71

Lemma A.18. Let ί be a literal and G be a cover independent of the variable
in L. Then any prime of ί + G is either ί or independent of the variable in l.

Proof- Suppose, without loss of generality, that ί = x \ Let p E n(t + G). If p
contains x', i.e. p = x'q, then p = x'; for if not, p = x'q < x' < x' + G, i.e. p is not
a prime of ί + G, a contradiction. Now suppose, for contradiction, that p * ί
but p depends on x; then p = xq for some q independent of x. Since q is
independent of x, q(co) = 1 => q(co_x, 1) = 1 => ρ(ω χ, 1) = 1 =» (χ' + G)(to χ, 1) =
1 => G(o) x) = 1, i.e. q < G < x' + G, contradicting p’s primality. Hence, any
prime p * ί has to be independent of x.

Lemma A.19. Let ί be a literal and G a cover independent of the variable in t.
Then π(ί + G) C ί + ji(G).

Proof. Let p E π{ί + G). By A.18, either p = i or p is independent of the
variable in ί. If p = ί , there is nothing to prove. If p is independent of the
variable in x, then (for L = χ), ρ(ω) = 1=> ρ(ω_χ, 0) = 1 => (i + G)(to x, 0) = 1
=> G(o)) = 1 => G(co) = 1, i.e. p < G, i.e. p is an implicant of G. Suppose, for
contradiction, that p is not a prime of G; then p = yq, q < G < t + G, a
contradiction to p’s primality. Hence p E ji(G), Q.E.D. The same proof works
when ί = x', by setting ωχ = 1.

Lemma A.20. For any cover G, and any literal t whose variable is not in G,
π(ί + G) = ί + ji(G).

Proof. We show ί + K (G)C n(i + G), since the other half is Lemma A.19. By
A. 17, we need only show ί E π(ί + G). If ί + G is not identically one, then ί <
ί + G and 1 £ ί + G, hence /Ε π (/ + G), Q.E.D.

If ί + G ~ 1, then G ~ 1 (to see this, let ί = x; if G 7-1, then G(o)) = 0 for
some ω; since G is independent of χ, ωχ can be set to zero. But then (ί +
G)((d) = 0. Since jt(G) ~ G, both sides of the equality to be proven equal 1.

Proof of Theorem 3.6. By Lemmas A. 15 and A.20, and the fact that Fx, Fx, are
independent of x.

Theorem 3.7. If F is a monotone cover, then Jt(F) = M(F).

Proof. M(F) is maximal and equivalent to F. To show compactness, note that
for any two cubes p, q in F, d(p, q) = 0, since each variable appears with the
same sign in all cubes. By Theorem 3.3, F is compact; by A. 14, so is M(F); by
Theorem 3.1, M(F) = tc(F).

72 SPYROS VASSILAKIS

Appendix B

This Appendix provides a proof of Theorems 3.8, 3.9, and 3.10.

Theorem 3.8. For any design problem, ji(G) and ji(Ig) = M(IG) are iso
morphic. Each prime of IG gives rise to a prime of G by replacing every
instance of z'.by x,1_k.

KJ J

The proof splits into several lemmas.

Lemma B .l. Let F, G be complementary covers, p a cube. Then p is an
implicant of F if, and only if, for each q in G, d(p, q) > 1.

Proof, p < F b(p) C b(F) b(p) fl b(G) = 0 ^ b(p) D Uq E Gb(q) = 0 **
Vq E G, b(p) fl b(q) = 0 Vq E G, d(p, q) > 1.

Lemma B.2. Let F, G be complementary covers. An implicant p = r i jn=1xJAi

of F is prime if, and only if, it satisfies the following condition C:

(C) If A is singleton, then there is a q = II .n=1 xf» in G such that A. fl B. = 0 ,
A. Pi B. * 0 for all i * j.1 1 J

Proof. Let p < F be a prime of F. Let A be singleton; without loss of generali

ty, set A = {1}. Suppose, for contradiction, that for every q = I ^ n=1 xf? in G,

either A fl B9 = 0 or 3i * j such that A { fl = 0 ; equivalently, either 1E B9
or 3 i* j such that A fl BS = 0 . Let Gj = {q E G : 1EBS }, G2 = (q E G : BS =
{0}} be a partition of G. If q E G p then Aj fl B9 * 0 ; since, by B.l, d(p, q) > 1,
there is i * j such that A D B9 = 0 . If q E G2, then by the contradictions
hypothesis, 3i ^ j, A Pi B*1 = 0 . Hence, for each q in G, 3i * j, A D B9 = 0 . It

follows that the cube s = 11 x. j defined by C = D, C = A, i ̂ j, satisfies d(s, q) >

1 for each q in G. By B.l, s < F; by the definition of s, p < s. Hence p < s < F,
a contradiction to p’s primality.

For the converse, let p = I I j = 1xJA3 be an implicant of F that satisfies

condition C. Suppose, for contradiction, that p is not a prime of F. Then there

exists a cube s = I I j = l xf:i such that p < s < F. Hence A C C for all i; and

there exists a j such that A is singleton and C. = D. By property C of p, there

m a n a g in g d e s ig n c o m p l e x it y ... 73

is a q = xfi in G such that A H B. = 0 , A Pi B; * 0 Vi * j. Hence B Pi C *

0 , Bj fl C 2 Bj fi A * 0 , i.e. d(s, q) = 0. This contradicts, by B.l, the fact that
s < F.

The next two definitions establish some useful notation.

Definition B .l. Let E = {{0}, {1}, D} be the set of nonempty subsets of D,
ordered by set inclusion; E n is ordered componentwise, and is isomorphic to
the set of cubes p = I l . n= 1 x JAj in n variables, since each p can be identified

with (Aj ... An) E En. Let D0 = {10, 01, 11} be ordered as follows: 10 < 11,
01 < 11; DJ is ordered complementwise.

Definition B.2. The function &.■: E -» D0 maps each nonempty subset of D

into its positional notation, namely {0} -* 10, {1} -» 01, D -*■ 11; the function

p j : DQ->E, given by 10 -> {0}, 01 -* {1}, 11 -> D, is its inverse. Given a cube

p = (Ap ..., An) E En, a (p) = a- (A); given a vector d = (d1, ..., dn)E D J ,

b.(d) = Pj (dj). The functions a : E n -* DJ , p: DJ -> En, are defined by a(p) =

(a,(P)>..., a n(p)), |3(d) = (p ,(d),..., pn(d)).

Lemma B.3. The pairs (ctj, P j) , (a, P) are strictly increasing, inverse functions.

Proof. Obvious from Definition B.2.

Lemma B.4. Let p = (Ap ..., An), q = (Bp ..., Bn) be two cubes. Then A fl Bj =

0 if, and only if, a^ p ja^ q) = 2 ^ =0a kj(p)akj(q) equals zero.

Proof. Note that A. D B. = 0 if, and only if, A; = {0} and B; = {1}, or vice-

versa; a (p) = «j (A) = o.· ({0}) = 10; <x(q) = aj (B^ = «j ({1}) = 01; and

a j(p) a j(q) = 1 '0 + 0 '1 = 0. The converse follows from the fact that

a.(p)a.(q) = 0 iff a (p) = 01 and <x(q) = 10, or oc(p) = 10 and a (q) = 01.

Lemma B.5. Let F, G be complementary covers. If p is an implicant of F,
there exists a vector z that satisfies condition S:

(S) V qE G Bj = jq such that ctj(q)zJ = 0 ,z E D J .

Conversely, if z satisfies S, then P(z) is an implicant of F.

74 SPYROS VASSILAKIS

Proof. Let p - .j be an implicant of F. By Lemma B.l, Vq E G d(p, q) >

1; i.e. Vq E G 3i = i such that A. D B? = 0 ; i.e. by Lemma B.4, Vq E G 3j = j
such that a j(q)aj(p) = 0. Hence, set zj = a (p) , z = (z1, zn) = a(p). Con

versely, let z satisfy S. Let p = |3(z) = I ^ n=1xfl. By Lemma B.3, a(p) =

a((3(z)) = z, i.e. zj = cc(p). By this and condition S, Vq E G 3j = jq such that
a j(q)a j(p) = Lemma B.4 then implies that V qEG 3j = jq such that A fl B9 =
0 , hence d(p, q) > 1. Lemma B.l then shows p < F, Q.E.D.

Lemma B.6. Let F, G be complementary covers. If p is a prime of F, then a(p)
is a maximal solution of S (if a(p) < go and if oo satisfies S, then oo = a(p)).
Conversely, if z is a maximal solution of S, then b(z) is a prime of F.

Proof. Let p be a prime of F. By Lemma B.5, z = a(p) satisfies S. Let z < go,
with w also satisfying S. By Lemma B.5, (3(go) < F. Hence, by Lemma B.3, p =
|3(a(p)) = (3(z) < (3(go) < F; by primality of p, p = |3(go) , i.e. |3(a(p)) = |3(go) ; by
B.3 again, a(p) = go . Q.E.D.

For the converse, let z be a maximal solution of S, and p = P(z). By
Lemma B.5, p < F. Suppose p < s < F. Then, by Lemma B.5, both a(p), a(s)

B 3
satisfy S, and by Lemma B.3 a(p) < a(s). We obtain, then, z = a((3(z)) =

B.3
a(p) < a(s); since both z and a(s) satisfy S, and z is maximal, z = a(s). Hence
a(p) = a((3(z)) = z = j3(s), i.e. by B.3, p = s. Hence p is a prime of F.

Note that (a, (3) is an isomorphism pair between primes of F and
maximal solutions of S. The next definition will introduce transformations
that will turn out to be an isomorphism pair between maximal solutions of S
and primes of IG. Note that (E2)n is (isomorphic to) the set of cubes in
variables (zQj; z^), j = 1, ..., n, since each such cube can be identified with a
point (A q .A y ^ e i E 2)".

Definition B.3. The function y : (E2)n —* DJ maps cubes formed out of
variables (z0j, z^), j = 1, —, n, into vectors in D^, hence candidate solutions of
S. If e = e1... en,ej E E 2, then y(e) = (y ^ e 1) ... y n(en)), where y .: E2 -» D0 is

given by y .(eJ) = (£(ej,), ^(ej)); and E -» D is given by ^({0}) = 0, ?({1}) =
1 = 5(D).

Definition B.4. The function d : DJ -» (E2)n maps candidate solutions of S

MANAGING DESIGN COMPLEXITY... 75

into cubes formed out of variables (z0j, z^), j = 1, n. If d = (d1, dn),

then 6(d) = (6 ^ d 1), 6 n(dn)), where 6 D0 -» E2 is given by6 .(d!) =
(0(dJo), ©(d^)); and 0: D -» E is given by 0(0) = {0}, 0(1) = D.

Definition B.5. Let X, Y be partially ordered sets, and f: X -> Y , g: Y X
increasing functions. The pair (f, g) is a projection-embedding pair if

(a) x — g(f(x)), all x in X,

(b) y = f(g(y)), ally in Y.

Lemma B.7. The pairs ft, 0), (Y 6 .), (y, 6) are all projection-embedding
pairs.

Proof. Consider first the pairs E -> D, 0: D -> E. £ is increasing; and 0 is
increasing and one-to-one. To show (a), we need to show e < 0ft(e)) for each
e E E. If e = {0}, then 0ft(e)) = 0(0) = {0} = e; if e = {1}, then 0ft(e)) =
0(1) = D 2 {1} = e; and if e = D, then 0ft(e)) = 0(1) = D = e.

To show (b), we need to show d = ^(0(d)) for all d E D. If d = 0, then
5(0(d)) = «{0}) = 0 = d; if d = 1, then £(0(d)) = ?(D) = 1 = d.

Pairs (Y ., § .), (y, 6) simply inherit properties (a) and (b) from ft, 0).

For example, 6 -(Y ^ d)) = 6 j(z(ej), z(e})) = (0ft(ej)), 0ft(e}))) >

(ej, ej) = el.

Lemma B.8. Let ln be the cover defined in Def. 3.13. Then its behavior is
b(IG) = {d E D q·. there exists a z that solves S and d < z} = all vectors
dominated by some solution of S.

Proof. Recall that I = I I qGG' 2 j=1 Hj(q) , and that

Hj(q) = K j(q) + Zoj)(a 'ij(q) + zij)·
Performing the multiplications involved in I’s definition, we obtain

l = ± . . . ± . . . ± n qeo-H (q), N =
i l - l iq = 1 JN = 1 q q

(1)

By the definition of H (q), R (q) = z'oj if <x(q) = 10; H^q) = z’tj if ctj(q)
01; and Hdq) = z^z'y if a (q) = 11. We express these equalities compactly

76 SPYROS VASSILAKIS

Hj(q) = z0̂ z^ (2)

A kj = e (a 'kj(q))> k = 0 , l (3)

By (1), we observe that to remove all cubes with z'0j z\. terms from I, we
need to delete all cubes I I ^ r H. (q) such that a. (q) = 11 for some q E G',
because such a q gives rise, by (2) and (3), to a z'Q. z' ̂ term.

Let J = {(j1 ? jN): V qE G ', a jq(q) ^ 11}. Then

IG “
0i>

(4)

It is now shown that each d E b(IG) is dominated by a solution z of S. If
d E b(IG), there exists a set of indices (jk ... jN) E J such that, for each q E G'
and j = j , H.(q)(dj) = 1. Hence by (2) and the definition of J,

V qEG ', 3j = j such that dJkE A qkj, k = 0,1 (5)

j = j q>qe G ' imP|y a j(q),! l1 · (G
Given this information, we can define a z that solves S. First, if j is a

variable such that j * j for all q E G', set z] = 11. Secondly, if j is a variable
such that j = jq for some q E G ', there are, by (6), two possible cases: a (q) =
01, or a.(q) = 10. If a.(q) = 01, then set z] = 10; and if a (q) = 10, then set z] =J J J
01. Obviously, then, if j = j then a.(q)zJ = 0, and zE D J. Hence we obtain

V qE G ' 3j = jq, such that a(q)zj = 0, z E D J , (7)

i.e. z solves S. We now show that d < z. In fact, if j = j and a (q) = 10, then by
(5), (3), dJ0 E = 0 (aoj(q)) = 0(1') = 0(0) = {0}, i.e'. dJ0 = 0. Hence d* < z* =
01. If, on the other hand, j = jq and a (q) = 01, then by (5), (3), d jE A ^ =
9(a ij(q)) = G(T) = 0(0) = {0}, i.e. dj: = 0, i.e. dj < z] = 10. Finally, if j * jq for
all q E G', then d̂ < 11 = z] . Hence d < z.

For the converse, let z satisfy S (i.e. (7)) and d < z. We show that
d E b(IG). If j = jq and <x(q) = 10, then (7) implies z] = 01, and dj < z] implies
dJ0 = 0; hence dkjE A qkj, k = 0,1, i.e. H (q)(d1) = 1. If j = jq and ct^q) = 01, then
(7) implies z] = 10, and dj < z] implies d̂ = 0; hence d]kE A qkj, i.e. H (q)(dj) = 1.
Finally, if j * j for all qE G', dj < z] does not imply anything definite about dj.
By (7) and these results, then, V qE G ' 3j = j such that H.(q)(dj) = 1, hence
n q e G Hjp(q)(d) = !. i-e. d e b(IG).

MANAGING DESIGN COMPLEXITY... 77

Lemma B.9. For each E D0, b(6 (zJ)) = {d̂ : dJ < ¿}; for each z E Dn0,
b(S(z)) = {d: d < z}.

Proof. If zi = 10, then 6 i(zi) = (D, 0), b(6 ^zi)) = D x {0} = {dJ: dJ < zi}.

Similarly for z! = 01,11. Finally, b(6(z)) = b(5 ^ z 1)) x ... xb(6 n(zn)) = {d:
d < z}.

Lemma B.10. If z satisfies S, then 6(z) < IG.

Proof. Let z satisfy S. Then b(6(z)) = {d: d < z} C b(IG), by Lemma B.8.

Lemma B .l l . If p is a prime of a cover F that is decreasing in x, then p does
not contain x.

Proof. Suppose, for contradiction, that p = xq. Then p(o)) = 1 implies F(co) =
1; and cox = 1, q(co) = 1. Since F is decreasing in x, F(0, co x) > F(l, co x) =
F(co) = 1. Hence q(o) x) = 1 => p(l, co x) = 1 => F(0, co_x) = 1 = F(l, co x), i.e.
q < F, a contradiction to the primality of p.

Lemma B.12. If e is a prime of IG, then e = 6(y(e)); and y(e) is a maximal
solution of S.

Proof. By Lemma B .ll and the fact that IG is decreasing in all variables,

eJk*{l} , k = 0,1, j = 1 ,..., n. (1)

By the definition of Y we obtain Y ^({0}) = 0, Y j(D) = 1; hence

Y .(e[) = max eJk. (2)
. (1) . (2)

By the definition of behavior, b(e) = {d: dJk E eJk} = (d : dJk < max e]k} =

{d: d]k < Y j(eJk)} = {d: d < Y(e)}=9 b(6(Y(e))), i.e.

b(e) = b(6(Y(e))) = { d :d < Y(e)}. (3)

Since e < IG and by (3) y(e) E b(e), y(e) E b(IG).

By Lemma B.8, then, there is a solution z of S such that y(e) < z. Hence
B 7 B 7 B 10

e < 6(y(e)) < 6(z) < IG. The primality of e then implies

e = 6(Y(e)) = 6(z), (4)

while (4) and the fact that 6 is one-to-one imply z = y(e), i.e. that y(e) solves
S. To show that y(e) is a maximal solution of S, let co > y(e) be a solution of S.

78 SPYROS VASSILAKIS

We show that co = y(e). We have e = 6(y(e)) < 6(to) < IG; the primality of
e then implies e = 6(y(e)) = d(w); and the fact that 6 is one-to-one implies
co = y(e).

Lemma B.13. If z is a maximal solution of S, then S(z) is a prime of IG.

Proof. Bv B.10, 6(z) < Ir . If S(z) is not a prime of IG, there exists a prime e
 ̂ B 7 B 7

such that 6(z) < e < Ir . Hence z = y(6(z)) < y(e); and y(e) is a maximal
B.7

solution of S, by B.12. By maximality of z, z = y(e), hence 6(z) = 5(y(e)) > e >
6(z), a contradiction.

Lemma B.14. ji(G) and rc(IG) are isomorphic.

Proof. Let X be defined by X = 6 o a. By Lemma B.6, if p E jt(G), then a(p) is
a maximal solution of S; and by Lemma B.13, X(p) = 6(a(p)) is a prime of IG.
Hence X maps jt(G) into ji(Ig). Let p = p o y. By Lemma B.12, if eE jr(IG),
then y(e) is a maximal solution of S; and by Lemma B.6, p(e) = P(y(e)) is a
prime of G. Hence p maps ji(Ig) into jt(G). We now show that (X, p) are an
isomorphism pair.

Let eEjr(I); then (X o p)(e) = (6 o a) o (p o y)(e) = 6 o (a o P)(y(e))^=6
B 12

5(y(e)) = e. Let pE jt(G); then (p o X)(p) = ((p o y) o (6 o a))(p) = (P o
B 7 B 6

(y o 6))(a(p)) = b(a(p)) = p. Hence ji(G) and jt(Ig) are isomorphic.

Proof of Theorem 3.8. Lemma B.14 has established that ji(G) and jt(IG) are
isomorphic; if e is a prime of IG, then p = P(y(e)) is a prime of G.

Let p = I l ^ x f i . Then A. = p .(y j(ej)), where e = e1 ... en, and ej =

(eo ’ ek)> 4 Ihe exponent of zkj. Suppose that z'Q. appears in e; then eJ0 =
{0}, ej: = D, because (a) eJk * {1}, and (b) eJk = {0} would mean that z'Q. z'V]
appears in e, a contradiction to the definition of IG and the primality of e.
Then A = p.(y j({0}), D)) = Pj(01) = {1} = (1 -0 } , i.e. each z'oj in e is

replaced by x. = xj-0 in p, Q.E.D. Similarly, if z\. appears in e, ej = (D, {0}),

and A. = p .(y j(D, {0})) = p j(10) = {0} = {1-1}, i.e. z\. in e is replaced by

xj = Xj1-1 in p. Finally, if neither z'oj nor z'. appear in e, then ej = (D, D), and

Aj = P j(Y j(D, D)) = p .(11) = D, i.e. xi does not appear in p either. Hence, in

MANAGING DESIGN COMPLEXITY... 79

all cases, z'R. appears in e if, and only if, x.1-k appears in p, Q.E.D.
Theorem 3.9 (Brayton et al., 1984, section 3.1). Let G be a cover, x a variable
in G. Then (a) G' - x(G')„ + x '(G % ; (b) (G 'x) - (Gx)'.

Proof. For (a) we complement the identity G = xGx + x'Gx,, to obtain G' =
[X' + (G„)'][x + Gx,)'] = x(G,)' + x'(Gx,)' + (G„)'(Gx,)' - x(G„)' + x'(G
where the last step follows from the identity xp + x'q + pq ~xp + x'q. Hence

G '-x (G x)' + x '(G x,)'. (1)

At the same time, we have the identity

G '~ x (G ')x + x'(G ')x, . (2)

To show (b), let u E Dn_1 be a vector with the x component missing. Then
by (1), G '(l, u) = (Gx)'(u), while by (2) G '(l, u) = (G ')x(u). Hence for all
u E D - 1, (G)'(u) = (G ')x(u), i.e. (GX) '~ (G ')X. Similarly, (G ,) '~ (G ')X, .

Theorem 3.10 (ibid.).

(a) If G is monotone increasing in x, then G' ~x 'G x, + G'x.

(b) If G is monotone decreasing in x, then G' ~xG x + Gx, .

Proof, (a) If G is increasing in x, then no cube of G contains x'. We can thus
write G = H + R, where H consists of all cubes that contain x, and R of those
that don’t. Note that H can be written as H = xS, since each cube in H
contains x. Then Gx = S + R, Gx, = R. Hence G = xGx + x'G , = xS + xR + x'R =
xS + R = xS + xR + RS + R = (x + R)(S + R) = (x +G x,)Gx. Complementing
this identity, we obtain G' = x'G x + G'x. Similarly for (b).

80 SPYROS VASSILAKIS

Appendix C

This Appendix provides proofs of Theorems 4.1 and 4.2.

Theorem 4.1. Let F be a cover and q a cube. Then q < F if, and only if, Fq is a
tautology.

The proof splits into several lemmas.

Lemma C.l. Let p = II , q = II xfi , d(p, q) = 0, pq = II x fi . Then E = D

if B. * D, and E. = A if B. = D.
j ’ j j j

Proof. Since d(p, q) = 0, E. = A U B '. If B. * D, then A Pi Bj * 0 ; implies
either A. = B. or A. = D; in both cases, A U B' = D. If B. = D, then C. =

j j j ’ ’ j j j ’ j
A. U B' = A. U D' = A .j] j j

Lemma C.2. Let p, q, r be cubes. Then (pq)r = prqr .

Proof.

1. Case 1: d(p, r) > 1. Then prqr = 0 qr = 0. Since pq < p, d(pq, r) > d(p, r) >
1, hence (pq)r = 0.

2. Case 2: d(q, r) > 1. Similar to Case 1.

3. Case 3: d(p, r) = d(q, r) = 0; d(p, q) > 1. Then pq = 0, so (pq)r = 0. Let A ,
Bj, C C D be the exponents of x. in p, q, r, respectively. Let j be such that
Aj n Bj = 0 ; (its existence follows from d(p, q) > 1); without loss of
generality, let A = {0}, Bj = {1}. By Lemma C.l, qj = pj = D if C. * D;
and if C = D, then pj = A = {0}, qj = = {1}. Since d(p, r) = 0, A Pi C *
0 , i.e. 0 £ C ; since d(q,r) = 0, Bj Pi Cj* 0 , i.e. 1 £ C . Hence C = D, and
it follows that pjPl qj = 0 , i.e. prqr = 0 = (pq)r .

4. Case 4: d(p, r) = d(q, r) = d(p, q) = 0; d(pq, r) > 1. This is an impossible
case. To see this, let A , Bj, C stand for the exponent of Xj in p, q, r,
respectively. If d(pq, r) > 1, then there exists a j such that A. Pi B. Pi C. =
0 ;, i.e. (Aj Pi C) Pi (Bj Pi C) = 0 ; without loss of generality, let A. Pi C =
{1}, Bj PI C = {0}; hence C. = D, A = {1}, Bj = {0}, i.e. A Pi R = 0 ,
contradicting d(p, q) = 0.

5. Case 5: d(p, r) = d(q, r) = d(p, q) = d(pq, r) = 0. We show that for each j,
(pq)Jr =p|H qJr. If Cj ^ D, then by Lemma C.l, pj = qj = (pq)j = D. If C =
D, then by Lemma C.l, pj = A , qj = Bj, (pq)j = A Pi Bj.

MANAGING DESIGN COMPLEXITY... 81

Lemma C.3. Let F be a cover and p, r be cubes. Then (pF)r = prFr .

Proof· (pF)r = (2 GFpq) . By the definition of the cofactor of a cover,

(^q£FPO),* = 2 qGF(pq)r; and by Lemma C.2, (pq)r = prqr. Hence prFr =

P . 2 qe F llr = 2 qeFprqt = 2 qeF(pq)r = (2 qeFpq)r =(pF)r.

Lemma C.4. Let F be a cover and p a cube. Then pF = pFp.

Proof. Note that if d(p, q) > 1, q E F, then pq = 0 and qp = 0. Hence, if R =

{q E F : d(p, q) = 0}, and G = 2 qGRq , it suffices to show pG = pGp. Let A ,

B*? be the exponents of x. in p, q, respectively. By Lemma C.l, qJp = D if A. * D,
and qj = Bq if A. = D. Hence (pq V = A. Pi qj = A. if A. * D; and (pq V = Bq if
A = D. In both cases, (pqp)j = A Cl Bq. Since (pq)j = A. fl B ̂by definition, we
obtain pq = pqp Vq E R. Hence pG = pGp.

Lemma C.5. p < F if, and only if, pF~p.

Proof. Clearly pF < p, so we need only show p < F <=> p < pF, or equivalently
pF' = 0 <=> p(pF)' = 0. Since (pF)' = p' + F' and pp' = 0, the equivalence is
obvious.

C.5 C.3
Proof of Theorem 3.8. p < F = > p F ~ p = > (pF)p ~ pp => ppFp ~ pp => Fp ~ 1.

C.4 C.5
For the converse, Fp ~ 1 => pFp ~ p = > p F ~ p = > p < F .

Theorem 4,2. Let F be a cover; E = {p E F : p ^ (F \ p)} the set of its relatively
essential cubes; R = (p E F \ E : p ^ E} the set of its partially redundant cubes;
and A its (reduced-size) covering matrix. Let x* solve the 0 - 1 linear

programming problem m in 2 pGRxp subject to Ax > 1; let suppx = { p ER:

x* = 1}. Then E + suppx* is a minimum-cost cover equivalent to F.

Before proceeding with the proof, A is formally defined.

Definition C .l. For each cube r in R, let cp(r) consist of all subsets S of R that
satisfy

(a) F ^ E + (R \S);

82 SPYROS VASSILAKIS

(b) i f TÇS and F * E + (R \T), then T = S.
Definition C.2. The (reduced-size) covering matrix A of F has rows in 1 - 1
correspondence with the elements of graph (cp), and columns in 1 - 1
correspondence with cubes in R. Its entries are defined as follows: For each
p E R and C E cp(r), r E R, ArC>p = 1 if p = r or p E C; and ArC p = 0 otherwise.

Definition C.3. The feasible set of the linear programming problem of
Theorem 4.2 is H = {xE DR: Ax > 1}. The set B is defined by B = {xED R:
F < E + suppx}.

Lemma C.6. H = B.

Proof. Let x E H; suppose, for contradiction, that x ̂ B. By the contradiction
hypothesis, R + E ~ F ^ E + suppx; hence there exists r in R such that r ̂ E +
suppx. Recall that suppx = {p E R : xp = 1} Q R; it follows that suppx =
(suppx)" = R \ (suppx)', and that r ^ E + R \ (suppx)'. Let C Q (suppx)' be a
minimal set with this property; then CEqp(r) by definition C.l. Since Ax > 1,

we must have 2 pGRATCpxp^ l , i.e. there must exist p E R with xp = 1 and

either p = r or p E C. If p = r, then we obtain a contradiction, because xp = 1,
p = r imply r E suppx, thus contradicting the fact that r ^ E + suppx. If p E C,
then again we obtain a contradiction, because xp = 1 implies p E supp(x),
while p E C Ç (suppx)' imply p ÿ supp (x). Hence H E B.

For the converse, let xEB; suppose, for contradiction, that x ^ H. By the
contradiction hypothesis, there is some r E R, C E (p(r) such that ArC pxp = 0
for all p E R. By Definition C.2 this implies that p = r or p E C imply xp = 0,
i.e. C U {r} E (suppx)'. The fact that x E B implies r < F < E + suppx, i.e.
r < E + R \ (suppx)' < E + (R \ C), a contradiction to C E cp(r). Hence B Ç H.

Proof of Theorem 4.2. If x* solves m in 2 pGRxp subject to Ax < 1, then by

Lemma C.6 and Ax* > 1 we obtain F < E + suppx* since suppx*Ç R Ç F, F~E +
suppx . If T Ç R satisfies F ~ E + T and contains fewer cubes than suppx*,
then xT defined by xp = 1 iff p E T, satisfies AxT > 1 by Lemma C.6; and

^ pgrxp < ^ peRXp , thus contradicting the optimality of x*. Hence E +

suppx* is a minimum-cost cover equivalent to F.

MANAGING DESIGN COMPLEXITY... 83

References

A u to m o tiv e Indu stries, (October) 1995, European Efficiency Lags Japan, U.S., 48.
Balas, E. and A. Ho, 1980, Set Covering Algorithms Using Cutting Planes,

Heuristics, and Subgradient Optimization, M a th em a tica l Program m ing S tudy 12,
37-60.

Baldwin, C. and K. Clark, 1994, Capital Budgeting systems and Capabilities
Investments in U.S. Companies After the Second World War, B usiness H istory

R eview 68, 73-109.
Brayton, R., G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli, 1984, Logic

M in im iza tion A lgorith m s fo r V L S I Synthesis (Kluwer, Boston MA).
Clark, K. and T. Fujimoto, 1991, P rodu ct D eve lo p m en t Perform ance (Harvard

Business School Press, Boston MA).
Cormen, T., C. Leiserson and R. Rivest, 1990, In trodu ction to A lgorith m s (MIT Press,

Boston MA).
De Micheli, G., 1993, Synthesis a n d O p tim iza tion o f D ig ita l C ircuits (McGraw Hill,

New York).
Drucker, P., 1991, The New Productivity Challenge, H arvard B usiness R eview

(November- December), 69-79.
Dyer, J. 1994, Dedicated Assets: Japan’s Manufacturing Edge, H arvard Business

R eview (November-December), 174-178.
The E co n o m is t, (March 4) 1995, The Kindergarten that will Change the World, 67-68.
The E co n o m is t, (October 18) 1997, A Fun Drive While it Lasted, 84.
Feitzinger, E. and H. Lee, 1997, Mass Customization at Hewlett-Packard, H arvard

B usiness R ev iew (January(February), 116-121.
Hammer, M. and J. Champy, 1993, R eengineering the C orporation (N. Brealey,

London).
Hauser, J. and D. Clausing, 1988, The House of Quality, H arvard Business R eview

(May-June), 63-73.
Hayek, F., 1948, Socialist Calculation III: The Competitive ‘Solution’, in: F. Hayek,

In d iv idu a lism a n d E co n o m ic O rder (University of Chicago Press, Chicago).
Hayes, R. and W. Abernathy, 1980, Managing our Way to Economic Decline,

H arvard B usiness R ev iew (July-August), 67-77.
Henderson, R. and K. Clark, 1990, Architectural Innovation, A d m in istra tive Science

Q uarterly 35, 9-30.
Hill, G. and F. Peterson , 1993, In trodu ction to V L SI D esign (Prentice Hall, New

York).
Hurst, S., D. Miller and J. Muzio, 1985, Spectra l Techniques in D ig ita l Logic

(Academic Press, London).
Ingrassia, P. and J. White, 1994, C om eback . The Fall a n d R ise o f the A m erican

84 SPYROS VASSILAKIS

A u to m o b ile Industry (Simon and Schuster, New York).
Jensen, M., 1993, the Modern Industrial Revolution, Exit, and the Failure of Internal

Control Systems, The Journal o f F inance (July), 831-874.
Keller, M., 1990, R u de A w akening. The Rise, Fall, a n d Struggle fo r R ecovery o f G eneral

M otors (Harper Perennial, New York).
Lengauer, T., 1990, VLSI Theory, in: J. van Leeuwen, H a n d b o o k o f Theoretical

C om pu ter Science (Elsevier).
Milgrom, P. and J. Roberts, 1992, E con om ics, O rgan iza tion a n d M anagem ent

(Prentice Hall, New Jersey).
Morton, O., 1994, Manufacturing Technology, The E co n o m is t (March 5), 1-20.
Naughton, K., 1995, Ford’s Global Gladiator, B usiness W eek (December 11).
Okino, S., 1995, Less is Mort , A u to m o tive Industries (March), 81-82.
Peters, T., 1993, L ibera tion M anagem en t (MacMillan, London).
Ruddel, R. and A. Sangiovanni-Vincentelli, 1987, Multiple-Valued Minimization for

PLA Optimization, IE E E Transactions on C o m p u ter-A id ed D esign , Vol. CAD-6,
No. 5 (September).

Shingo, S., 1989, A Study o f the Toyota P rodu ction System (Productivity Press,
Portland, Oregon).

Simon, H., 1973, The Structure of Ill-structured Problems, A rtific ia l Intelligence 4,
181-201.

Simon, H. 1981, The Sciences o f the A rtific ia l, 2nd Edition (MIT Press, Cambridge
MA).

Solow, R., 1994, Perspectives on Growth Theory, Journal o f E co n o m ic Perspectives 8,
45-54.

Taylor III, A., 1992, U.S. Cars Come Back, Fortune (November 16), 52-85.
Taylor III, A., 1995, GM: Some Gain Much Pain, Fortune (May 29), 46-50.
Taylor III, A., 1996, GM: Why They Might Break Up America’s Biggest Company,
Fortune (April 29), 38-43.
Taylor III, A., 1997 (a), GM: Time to Get in Gear, Fortune (April 8), 60-65.
Taylor III, A., 1997 (b), How Toyota Defies Gravity, Fortune (December 8).
Ulrich, K., 1995, The Role of Product Architecture in the Manufacturing Firm,

R esearch P olicy 24, 419-440.
Ward, A., J. Liker, J. Cristiano and D. Sobek, 1995, The Second Toyota Paradox,

Sloan M anagem en t R eview (Spring), 43-61.
Wegener, L, 1987, The C om plexity o f B oolean F unctions (Teubner, Stuttgart).
Whitney, D., 1988, M anu factu n n g by D esign , Harvard Business Review (July-August),

83-91.
Whitney, D., 1995, Nippondenso Co. Ltd: A Case Study of Strategic Product Design,

in: J. Liker, J. Ettlie and J. Campbell, eds., E ngineered in Japan (Oxford

MANAGING DESIGN COMPLEXITY... 85

University Press, New York), Chapter 6.
Williams, K., D. Haslam, S. Johal and J. Williams, 1994, Cars. A nalysis, History, Cases

(Berghahn Books, Providence).
Womack, J., D. Jones and D. Roos, 1990, The M ach in e th a t C hanged theW orld

(Rawson Associates, New York).
Womack, J. and D. Jones, 1996, L ean Thinking (Simon and Schuster, New York).

ABSTRACT

This paper contains a model of waste elimination through design. It argues
for the importance of managing design complexity in improving cost, quality,
variety, and time -to- market performance variables. Management of design
complexity is identified with creation, choice, and application of design
problem representations, divisions of design labor, and product architectures
that provably eliminate waste. The paper’s thesis is illustrated with a
comparison of Toyota’s technology strategy (based on waste elimination) to
that of General Motors (based on frontier - shifting investment).

JEL classification numbers: C69, D20, L23, 032, M19.
Keywords: Cost, quality, variety, time - to - market, design complexity.

Acknowledgements

I would like to thank Benjamin Coriat, Giovanni Dosi, and Ed Green for
useful conversations; and Barbara Bonke for valuable technical assistance. I
am solely responsible for the contents of this paper.

