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Abstract

Mean-Variance and Pessimistic Portfolio Allocation:
A Comparative Study

by Stavroula Athanasakopoulou
07115M057

The main objective of this thesis is to comparatively study two risk measures in
Finance, Mean-Variance (MV) and Conditional Value-at-Risk (CVaR), taking
into account their connection to the econometric process of regression. Trigger
of this thesis topic was the extensive interest to elaborate and further study
the issues discussed in a paper that my thesis advisor, Gregory Kordas, has co-
authored, namely Bassett, Koenker, and Kordas (2004). Recent developments
in the general theory of choice under uncertainty, of which financial portfolio
selection is a special case, replace the classical Expected Utility maximization
with a Choquet expectation that allows for pessimism in that it overweights
the probabilities of unfavorable outcomes and underweights the probabilities of
favorable ones.

In this master thesis, a substantial Monte Carlo examination of the pro-
perties of simple single-quantile portfolios has been undertaken for the cases
when asset returns follow skewed and fat-tailed distributions. This is computa-
tionally possible, since there exists very good software that do single-quantile
regressions in many statistical packages (R, Stata, etc.). Computer code in R
has been structured and the results arising are very encouraging, considering
that the computed portfolios do well both in the lower, as well as, in the upper
tail of the distribution.

Bassett et al. (2004) also consider more general distortions that cannot be
expressed as Quantile/CVaR-risk problems but are still Pessimistic, Choquet-
expectation optimal choices. One very interesting distortion function is given in
an Example of their paper, where the investor picks portfolios according to the
minimum of several (say 2 or 3) realizations of the underling asset distribution.
This leads to potentially very pessimistic behavior, that can be examined in
future research.

Keywords : Choquet capacity, Expected Utility, Mean-Variance Analysis,
Conditional Value-at-Risk Analysis, OLS Regression, Quantile Regression
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Introduction

This master thesis presents a comparative study between two risk measures
in Finance, Mean-Variance (MV) and Conditional Value-at-Risk (CVaR). It is
divided into three parts; the first part (Chapters (2) to (5)) presents the identi-
fication, both theoretical and mathematical, of the Theory of Expected Utility
and the Theory of Mean-Variance Analysis. The second part (Chapters (6) and
(7)) discusses Choquet Expected Utility, as a generalized case of Expected Util-
ity, and CVaR Analysis. The third part (Chapter (8)) discusses the comparison
of MV and CVaR, using a Monte Carlo simulation in R. But, before entering in
these specific topics, which are the main parts of this thesis, it is appropriate
to explain certain characteristics of the world of Finance that will smoothly
transfer the reader to the risk measure idea.

In Chapter (1), Financial Markets are categorized and examined, and the
Stock Market is defined. After these first declarations, the Efficient Market
Hypothesis of Fama (1969) is explained. In Chapter (2), the origins of the idea
of the Expected Utility Theory are given based on Bernoulli (1738), Savage
(1954) and von-Neumann & Morgenstern (1947). In Chapter (3), Expected
Utility is analyzed and the definitions concerning attitudes towards risk are
presented (von-Neumann & Morgenstern, 1947). In Chapters (4) and (5) the
Mean-Variance Analysis topic is followed and its connection to the OLS re-
gression is explained. Chapters (6) and (7) consist of the connection between
the Choquet Expected Utility, the CVaR Analysis and the Quantile regression.
Choquet Expected Utility, which is based on a distortion, introduces the idea
of pessimism and leads to CVaR Analysis and Pessimistic risk measures. The
idea of pessimism is based on the fact that anyone would like to get rich but no
one would like to go bankrupt, so the probability of the least favorable events
should be overweighted in order to avoid great losses. Finally, in Chapter (8),
MV and CVaR Portfolios are counterbalanced in the context of a Monte Carlo
experiment in R.

It can be said that this thesis follows two paths, that both lead to a regression
analysis. The first path (Figure (1)) begins with the Classic Axioms of Choice
of Savage (1954), goes to the Expected Utility Theory, the Mean-Variance Anal-
ysis and ends up with the OLS regression, which is proved to be an alternative

Figure 1: From Expected Utility to OlS regression
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Figure 2: From Choquet Expected Utility to Quantile regres-
sion

approach to the Mean-Variance Analysis. The second path (Figure (2)) be-
gins with the Comonotonic Preferences of Schmeidler (1989), proceeds with the
Choquet Expected Utility and the CVaR Analysis, where the idea of pessimism
is introduced. At this point, VaR seems a satisfactory method to use but, as
it will be analyzed, VaR fails to establish a position in this path. The second
path concludes with the Quantile regression as an identical process of the CVaR
Analysis.

At first, the connections between Expected Utility- Mean-Variance Analysis
and OLS regression and Choquet Expected Utility- CVaR Analysis and Quantile
regression, as mentioned introductory, may seem quite confusing. The reader,
though, will be able to understand the connections as he/she moves through the
Chapters, given the extensive theoretical, as well as mathematical explanations
provided. I hope that the reader will share the same feelings of enthusiasm
with me, while the specific issues get unrolled and pessimism, even though it
sounds sad, seems a happy choice to make when risk, money and preferences
get involved.
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Chapter 1

The world of Finance

1.1 Understanding the "Financial Market"
The term "Financial Market" is widely used to describe a marketplace of
any kind where buyers and sellers "trade". Objects of this trade are the so-
called assets, which are negotiated in different Financial Markets, based on
their special features. The size of a Financial Market may vary depending on
the number of its participants. Based on these parameters, the types of assets
negotiated, as well as the size of the participants, the Financial Market consists
of 3 different markets, the Money Market, the Capital Market and the Foreign
exchange Market, as seen in Figure (1.1) and discussed below.

• Money Market
Money Market is the type of Financial Market where assets with high liq-
uidity and very short maturities are negotiated. The time horizon given by
the term "very short maturities" indicates that assets in this market are
negotiated for a short period of time that can be up to one year. Some of
the most common Money Market assets are Bankers Acceptances, Com-
mercial Papers, Eurodollar Deposits, Federal Funds, Municipal Notes,
Negotiable Certificates of Deposit (CDs), Repurchase Agreements (Re-
pos), state Treasury Bills. The transactions that take place in the Money
Market concern participants of high credit, like banks, large companies
as well as governments. In some cases, individuals might also be offered
the chance to invest small amount of money in these assets by the Money
Market Funds.

• Capital Market
Capital Market is the type of Financial Market where Long-Term Debt
and Equity-Backed Securities are negotiated. A Capital Market under-
takes the issuing of assets for medium-term and long-term periods, that
overcome the duration of one year. A Capital Market includes two main
financial assets; Equity Securities or, in other words, Stocks, and Debt
Securities or, in other words, Bonds. The participants of this market are
numerous and may be individual investors, institutional investors, govern-
ments, companies, banks and financial institutions. In a Capital Market,
contradictory preferences occur as suppliers of capital aim at the com-
bination of the maximum possible return with the lowest possible risk,
whereas capital takers aim at the maximum capital at the lowest cost.
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Figure 1.1: Financial Market

It can be said that the size of a country’s Capital Market is proportional
to the size of its economy. Capital Markets create a "circle of welfare" as,
in their structures, money moves from economically stronger individuals
to organizations that need to be productive. The ease or difficulty of this
cyclic transaction depicts the "health" of markets around the world. As
Capital Market products get widespread, ripples in a country can cause
major waves in another place of the world. The most resent result of this
interaction is the global financial crisis of 2007-09, which was triggered by
the collapse of U.S. Mortgage-Backed Securities (MBS). This financial col-
lapse expanded through Capital Markets all over the world, as banks and
institutions in Europe and Asia held trillions of dollars of U.S. securities.

Both Money and Capital Markets are composed of two market sub-categories,
the Primary Market and the Secondary Market. Primary Markets
concern the issuing of primary titles such as shares, bonds, state Treasury
Bills and government bonds. Secondary Markets concern the negotiation
and the exchange of existing securities which were acquired in the Primary
Market.

• Foreign exchange Market
The Foreign exchange Market is the type of Financial Market where
currencies are traded. The Foreign exchange Market, also known as
"Forex", is considered to be the largest Financial Market. Its partici-
pants are banks, commercial companies, investment management firms,
hedge funds, and retail forex brokers and investors. Participants can buy,
sell, exchange and speculate on different currencies. The Forex Market
presents some unique features which classify it as one of the most attrac-
tive market for investors who want to optimize their profit.
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- Working 24 Hours a Day, 5 Days a Week

The transactions occurring in the Forex Market are continuous. Due to
time differences, when a Forex Market closes, another Forex Market opens.
Unlike stocks, the Forex Market operates 24 hours daily apart from week-
ends.

- High Liquidity

The Forex Market involves one of the largest asset categories, currencies.
Currency trading provides participants of Forex with high liquidity, which
is the ability of an asset to be diverted to cash quickly, with no price
discount.

- Leverage

The leverage given in the Forex Market is one of the highest forms of
leverage that traders and investors can use. Simply put, leverage is a loan
given to an investor by his broker. For instance, if someone was to trade
at 20:1 leverage, they could trade 20e on the market for every 1e on
their account. This simply means that they could trade 20,000e while
owning just 1,000e.

1.2 Stock Market
The term Stock Market is linked with the types of markets where equities,
bonds and other kinds of securities are traded, either through Formal Exchanges
or at Over-the-Counter Markets. The importance of the Stock Market is con-
nected to the fact that it provides companies with capital when in lack, in
exchange of a percentage of ownership, a fact that defines the Stock Market as
one of the most significant players in the modern economy.

The Stock Market is composed of two basic sub-markets, the Primary Mar-
ket and the Secondary Market. The Primary Market is where new assets are
sold through Initial Public Offerings (IPOs). IPO prices are determined by the
amount of shares that a company issues. These shares are mostly sold by banks
and bought by institutions. Shares acquired in the Primary Market are then
negotiated in the Secondary Market- as mentioned in Section (1.1)-, where in-
dividuals may participate as well. Two types of securities are mostly traded on
Stock Markets, Over-the-Counter (OTC) and Listed Securities. Stock Market
exchanges take place in central cities around the world, such as London and
Tokyo.

In the United States, the greatest Stock Market exchanges take place in the
New York Stock Exchange (NYSE, 1792) located on Wall Street, and in
the Nasdaq (1971). Wall Street is the most powerful stock exchange worldwide
with a capitalization that is larger than London’s and Tokyo’s combined. In the
Stock Market, different types of specialists are employed, such as traders, stock
analysts, stockbrokers, portfolio managers. Regulatory bodies are charged with
the control of the Stock Markets. Securities and Exchange Commission (SEC)
is such a body in the U.S..
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The Index of stocks is a measure used to explain Stock Market movements.
Indexes are composed of different kinds of stocks and represent the state of a
certain market or the state of a certain market’s part on a daily basis. A well-
known stock index is the Dow Jones Industrial Average, which includes the
30 largest companies in the U.S.. Dow Jones is a price–weighted average based
on the price of the stocks and it imprints these stock performances. Another
significant index is Standard and Poor’s 500. The SnP 500 includes the 500
largest stocks traded in the U.S.. Both Dow Jones and Standard and Poor’s 500
are the most accepted measures of the U.S. Stock Market and are considered to
be trustful for the presentation of this country’s Economy on a certain period
of time.

But why is the Stock Market so significant? The Stock Market gives a
company the opportunity to raise capital through stock shares and corporate
bonds. Individuals can take part in this financial gain of the company. Of
course, investors face a certain risk in this transaction, as they can lose money
during price share declines by having to sell the assets at a current lower price.
From the aspect of a country’s economy, rising stock prices of companies from
a particular country imply a healthy and growing market, while an avoidance
trend in certain stocks of a particular country indicates lack of confidence in
the country’s economic prospects. Historically, two periods of economic decline
are connected to a crash in Stock Markets, the Great Depression of 1929 and
the Great Recession of 2008.

1.3 Predicting the Unpredictable
In his classic book A Random Walk Down Wall Street, Burton G. Malkiel demol-
ishes stock market chartists and their intriguing job. Malkiel, an academician
who has also held several positions on the boards of some of the most prestigious
U.S. mutual funds, sites a number of studies that prove beyond any doubt that
charting has no predictive ability. To explain the "paradox" that chartists
still hold their job places in many brokerage firms, Malkiel justifies it based on
the fact that they achieve a remarkable amount of commission money for their
employers by recommending many trades to the people that take their advise.
Malkiel also gives many examples of "investment gurus" that have for a short
time enjoyed fame in Wall Street. These "gurus" claim to have the ability to
predict market trends but the most of them end up loosing the money they
were trusted to invest. The idea that the Stock Market future performance can
not be determined was first supported in 1965 by Eugene Fama who claimed
that asset prices follow the Random Walk Model. One of the basic assump-
tions of the Random Walk Model is that we do not know and cannot predict
tomorrow’s asset prices. The past history of asset prices can be examined, but
it cannot be used for forecasting the next movements of a price. Fama later
used this specification to describe the content of the Efficient Market.
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1.4 The Efficient Market Hypothesis
The term Efficient Market can be traced to Fama (1969) who first defined
the market to be efficient if it "adjusts rapidly to new information"(Fama et all,
1969). The information element was afterwards adjusted to this definition, with
Fama noting that asset prices in an Efficient Market "fully reflect all available
information" (Fama, 1991).

A Financial Market is called efficient if it reflects all the information in the
prevailing security prices correctly. The Efficient Market Hypothesis has 3
different forms, depending on the strength of the conditional information set :

• Weak Form : In this form, the asset prices include all the information
available publicly, taken by the history of prices or returns themselves.
According to the Efficient Market Hypothesis, there is no investor who
could use past prices information to predict future moves. This means
that asset prices do not follow a pattern, which could lead to excess profits.
This also implies that asset prices follow a Random Walk, meaning that
on average there is no correlation between price changes’ sequence.
Random Walk
Pt = Pt−1 + ut ⇒
Pt − Pt−1 = ut ⇒
∆ Pt = ut, where Pt : the level of asset prices and ut : the error term

• Semi-strong Form: In this form, the asset prices include any kind of
information available to market participants. According to the Efficient
Market Hypothesis, no publicly available information, which is reflected
in the actual asset price, can be used to predict future moves. Investors
are unable to earn excess profits using any information, whether publicly
available or private information.

• Strong Form : In this form, asset prices include all information known
to any market participant, whether is publicly available or not (internal
information). In this form, the Efficient Market Hypothesis says that
no information, neither public nor private, can be used to predict future
moves, which means that future price moves are completely unpredictable.

In its Strong Form, insider trading has in many cases enabled market partic-
ipants to find themselves with great amount of money, rising doubts to others
regarding their forecast weakness. In its Weak Form, though, there is no un-
derlying information that could help certain participants against others. Price
history is publicly available but asset prices follow a Random Walk, making it
impossible for someone to compute future price levels. If past price information
had economically exploitable predictive power then everyone could get rich.
This cannot be an equilibrium situation, so even if such profit opportunities
arise from time to time, they are quickly wiped out by the market.

Figure (1.2) depicts the reactions of an Efficient Market to a set of new
information. The Efficient Market should react immediately to the good news.
This reaction leads to a rise in the asset prices, up to a certain level, where
the effect of the new information stabilizes. A delayed Market reaction would
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Figure 1.2: Efficient Market response to new information

mean a delayed asset price increase. Overreaction to the new set can also be
observed, that corresponds to cases when asset prices increase more than it
would be expected, and then follow a downward path for a while, until they
stabilize.

Below, the concepts of a stochastic process and a martingale are introduced
to support the tree different forms of the Efficient Market. A stochastic process
is simply a collection of random variables indexed by a parameter t, denoting
time. A stochastic process is a martingale with respect to an information set if

E(St+1|It) = St. (1.1)

Letting St denote the stock price at time t, the various forms of the Efficient
Market Hypothesis may be represented by equation (1.1) with the following
information sets,

• Weak Form : It = St, St−1.

• Semistrong Form : It = all publicly available information.

• Strong Form : It = all information, public or private.

The expectation E in (1.1) is not taken with respect to the actual probability
measure of St, PSt , but with respect to an appropriately standardized measure
that accounts for expected return and risk, PSt . This probability measure is
called the risk neutral measure and it plays a fundamental role in the theory
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Figure 1.3: Forms of Market according to the Efficient Market
Hypothesis

of modern Finance. It can be said that the Market in its Semistrong Form
includes the Weak Form, while in its Strong Form it includes all the other two
forms, as illustrated in Figure (1.3).
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Chapter 2

Dealing with Uncertainty

2.1 Decision making under Certainty
Decision making in cases that lack of uncertainty is somekind obvious and ex-
pected. For example, the problem set of (A, B) actions is assumed and

If we decide on A we get 10 euros/ hour.
If we decide on B we get 20 euros/ hour.

In this situation option B is preferred. This choice seems quite negligible as
people tend to assume that everyone would prefer more money to less. But the
same choice problem given in a different way may have a different answer. For
example, actions (A∗, B∗) are now assumed:

If we decide on A∗ we spend 10 euros/ hour.
If we decide on B∗ we spend 20 euros/ hour.

In this case, A∗ and B∗ are two production schedules and less money is
preferred to more, as the problem is one of production cost minimization. In
more general situations, there would be a continuum of production schedules
described by a production function f(x), where x is a vector of production
inputs. Given a vector of matching input prices w and a target production level
y0 , the problem of cost minimization could be written as

min
x
w′x (2.1)

such that

f(x) = y0.

The problem of cost minimization enables us to overcome the difficulty of de-
scribing a production procedure just by a production function. The produc-
tion procedure can now be explained accurately using conceptually simple pro-
gramming problem, that can, in principle, be solved using known mathematical
methods.
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2.2 Decision making under Uncertainty
Under uncertainty, decision making is even more difficult. The theory of choice
under uncertainty was formally introduced in Theory of Games and Economic
Behaviour by John von Neumann and Oskar Morgenstern (1944).

A lottery (or gamble) with n possible outcomes can be described by the
pair (x, p) , where x = (x1, x2, ..., xn) is a vector of payoffs, one for each of
the n possible outcomes, and p = (p1, p2, ..., pn) is a vector of probabilities
associated with the payoffs x. For example, a simple lottery that pays x1 with
probability p1, and x2 with probability 1 − p1, may be denoted by the pair
(x1, x2), (p1, 1− p1). In the case that the random experiment described by the
lottery produces outcomes over a segment of the real line, the payoff x is a
continuous random variable and p is a probability density function, usually
denoted by f , so in the continuous case we denote the lottery by the pair (x, f).

A major step towards the development of modern probability theory oc-
curred in the 17th century when mathematicians assumed that the value ξ of a
gamble (x, p) is given by its mathematical expectation

ξ = µ ≡
∞∑
i=1

pixi. (2.2)

The meaning of the mathematical expression above is that the expectation
of a random variable represents the long-run payoff to a person that takes the
gamble many times. The type of the gamble, though, defines the long-run
payoff. In a fair gamble the person should have a zero long-run gain from
playing the gamble many times, while in a biased gamble the person could
make or loose money in the long-run depending on whether the bias was to his
advantage or not. Thus, in a biased in-his-favor gamble, a person should be
willing to pay for the chance of taking this gamble exactly as much money as he
would be able to win by playing the lottery many times. If the lottery is biased
against the player, on the other hand, then he should be paid in order to play.

fair gamble =
∞∑
i=1

pixi = 0

Assuming that the value ξ of a gamble equals its mathematical expectation
seems quite logical at first sight. But a re-examination of the problem reveals
that the mathematical expectation neglects a really important aspect of a per-
son’s reaction; it does not take into account the natural aversion that people
show towards risk. Thus, it would be reasonable to say that anyone would be
willing to forego the gamble by being offered a certain amount less than the
gamble’s mathematical expectation, the difference between the two being the
price we pay to avoid taking a risk. In the same way, one could easily imagine a
situation in which a very poor person could be persuaded to forego the gamble
by being offered an amount that is much less than its mathematical expecta-
tion, while a richer person could only be persuaded to forego the lottery with
an amount closer, although, less than its mathematical expectation.
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These reactions to gambles were examined in the St. Petersburg paradox.
The St. Petersburg paradox, which arose by a coin flipping game named The St.
Petersburg Lottery, was first proposed by the mathematician Nicolas Bernoulli
but published by his brother Daniel Bernoulli in the St. Petersburg Academy
Proceedings (1738). This application is actually the first to import the concept
of the Expected Utility function.

2.2.1 The St. Petersburg Lottery

The St. Petersburg lottery game is a fair coin flipping game. A coin is flipped
until heads occur. The winning prize is determined by the number of flips i,
where (i = 1, 2, 3...), and it is equal to 2i - ducats according to Bernoulli, let
us use euros now. Thus, if heads occur first, the prize is 21 = 2 euros and the
game stops. If tails occur first, the coin is flipped again until heads appear. The
probability of the heads’ appearance after i tosses equals to:

P(first Heads on trial i) = P(Tails on trial 1) × P(Tails on trial 2) × ... ×
P(Tails on trial i− 1) × P(Heads of trial i)

=
1

2i
.

The table below (Table (2.1)) represents the sequence of the first 5 tosses. The
sum of the expected gains of the outcomes is the expected value of the lottery.

Table 2.1: The St. Petersburg Lottery- First 5 tosses

i Outcome P(i)= 1/2i Prize= 2i Expected gain= prize ∗ P (i)

1 H 1/2 2e 1e
2 TH 1/4 4e 1e
3 TTH 1/8 8e 1e
4 TTTH 1/16 16e 1e
5 TTTTH 1/32 32e 1e

This lottery has a unique property: its mathematical expectation is infinite.
Since it is theoretically possible that the game could go on for ever, the expected
gain in this lottery is

µ =
1

2
× 2 +

1

4
× 4 +

1

8
× 8 + ... = 1 + 1 + 1 + ... =

∞∑
i=1

(
1

2

)i
2i =∞. (2.3)

For a rational player, the game would be meaningful only if the entrance
prize is smaller than the expected value of the outcomes. In the St. Petersburg
lottery, the finite price of entry is always less than the expected value of the
possible infinite outcomes. Thus, we would expect that everyone would enter
the game, no matter the entrance prize. Experiments, though, have shown
that, a rational player is willing to forego the St. Petersburg lottery for a
certain amount of money, trading, in that way, a possible high pay-off with a
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secure money prize. Experiments have also shown that this amount of money is
below 10e. So there is a "paradox" here, i.e., a divergence between the then
accepted theory of valuation of gambles and the common sense. Bernoulli set
out to resolve this paradox.

Bernoulli supported that a lottery should be worth as much as a person
should be willing to accept to forego the lottery. This number is denoted by
ξ and is known as the certainty equivalent of the lottery. Bernoulli also
argued that an amount of cash should be worth more to a poorer person than
to a richer one, so the relevant quantity is not wealth per se but the utility for
it. In particular, letting U(.) be the individual’s utility for wealth and W be
his current level of wealth, he argued that if ξ is a fixed amount of money and
W1 < W2 then U(W1 + ξ)−U(W1) should be greater than U(W2 + ξ)−U(W2).

According to Bernoulli, an individual with utility for wealth function U(.)
and current level of wealth W is connected to a lottery’s value equal to the
number ξ for which

U(W + ξ) =
∞∑
i=1

piU(W + xi). (2.4)

For U(.) linear, it holds ξ =
∑∞

i=1 pixi, so that the value of the lottery is equal
to its mathematical expectation only under special circumstances. But for U(.)
concave, which is the most reasonable specification, the answer differs. For
example, taking U(x) = ln(x) and an initial wealth of W = 20,000e:

∞∑
i=1

piU(W + xi) =
∞∑
n=1

(
1

2

)i
ln(20, 000 + 2i)

=

(
1

2

)
ln(20, 001) +

(
1

4

)
ln(20, 002) +

(
1

8

)
ln(20, 004) + ...

≈ 9.903893,

so the certainty equivalent of the St. Petersburg lottery solves

ln(20000 + ξ) = 9.903893,

from which we get

ξ = exp(9.903893)− 20000 ≈ 8.1 e. (2.5)

For an initial wealth of W = 50,000e , we obtain an increased certainty equiv-
alent of ξ ≈ 8.8e. If, instead, U(x) =

√
x is used, for W = 20,000e we get

ξ ≈ 9.1e while for W = 50,000e we get ξ ≈ 9.8e. The result of this mini ex-
periment is that the value of this lottery, for people with various current wealth
and different utility for wealth functions, should always be around 10e.

In 1944, John von Neumann and Oskar Morgenstern in Theory of Games
and Economic Behavior, using the utility function for wealth of Bernoulli, came
up with the Expected Utility function over lotteries (or gambles). The
definition given for lotteries by von Neumann and Morgenstern is that lotteries
are a probability distribution over a specific and finite set of outcomes.
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2.3 The Preference Axioms
A utility function over lotteries (or gambles) is constructed according to some
hypothesis about an individual’s preferences. The binary preference relations
are:

• > : is strictly preferred to,

• < : is strictly dis-preferred to,

• ≥ : is weakly preferred to,

• ≤ : is weakly dis-preferred to,

• ∼ : is indifferent to.

von Neumann and Morgenstern (1947) proposed a set of primitive axioms
that are reasonable and intuitive and proceeded to prove that any person obey-
ing them should be an expected utility maximizer. Savage (1954) demonstrated
the same axioms, providing the fundamentals for Subjective Expected Utility
model (SEU). Savage, for technical reasons, introduced three more axioms, Non-
degeneracy, Small Event Continuity and Uniform Monotonicity, which do not
have the substantive weight of the first four axioms.

Theorem 1 (von Neumann-Morgenstern Axioms). Assume Ω is the set
of alternatives over which a player has preferences and x, y, z the alternatives.

1. Completeness: For any preference alternatives x and y ∈ Ω, either x ≥
y or x ≤ y. If both are true then x ∼ y. We suppose that an individ-
ual always adopts a certain attitude towards 2 alternatives, or is equally
attracted to them, therefore indifferent.

2. Transitivity: For any tree preference alternatives x, y, z ∈ Ω, if x≥ y and
y ≥ z, then x ≥ z. An individual’s preferences are internally consistent.
We suppose that the choice maker is rational so he would not break the
"chain" of his own preferences unreasonably.

3. Continuity: For any x, y, z ∈ Ω given x > y > z, there is an α,β ∈ (0, 1)
such that αx+ (1− α)y > z and y > βx+ (1− β)z.

4. Independence: For any x, y, z ∈ Ω and α ∈ (0, 1), if x > y then
αx+ (1− α)z > ay + (1− α)z.

An individual’s behavior satisfying these four axioms indicates that he/she has
a certain utility function. Preferences of this individual can be represented on
an interval scale and he/she is considered to be a utility maximizer.

Based on the ideas of de Finetti (1937) and von Neumann and Morgen-
stern (1947), Savage (1954) proposed the first complete axiomatic Subjective
Expected Utility Theory. He introduced necessary and sufficient conditions
for the utility and probability, as well as the examination of choice under un-
certainty as an Expected Utility maximizing behavior. In Savage’s approach
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probability does not appear as a primitive concept, is not an objective prop-
erty, but the decision maker’s subjective assessment of the likelihood of
various events.

Theorem 2 (Savage). A preference ≥ satisfies axioms 1-4 if and only if there
is a finitely additive probability measure P and a function u : C → R such that
for every pair of acts F and G

F =

∫
Ω

u(F (ω))dP ≥
∫

Ω

u(G(ω))dP = G,

where P is unique and u is unique up to positive affine transformation.

According to Savage, an individual who satisfies the Axioms reduces the
uncertainty to a subjective probability measure P which reflects his beliefs.
Outcomes are perceived based on the individual’s utility function u and acts
based on the Expected Utility, where the Expected Utility of an act F/G
is the probability-weighted average of the utilities of F ’s/G’s consequences.
Through his work, Savage established the fundamentals for Bayesian statistics
and its application to Game Theory.
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Chapter 3

Expected Utility Maximization
and Risk

A milestone in choice under uncertainty is the Expected Utility maximiza-
tion, as proposed by Bernoulli (1738) and expanded by von Neumann & Mor-
genstern (1947), as well as other significant scientists like Ramsey (1931), de
Finetti (1937) and Savage (1954). When decision making includes large money
amounts, as it happens in the Financial Markets, then the efficiency of the
Expected Utility Theory in risk assessment and portfolio allocation is quite
challenging. At first, Expected Utility maximization seems adequate; devia-
tions from Expected Utility towards better risk assessment will be discussed
later (Chapter (6)).

3.1 Expected Utility
The Expected Utility is calculated by taking the weighted average of all possible
outcomes, with the weights being assigned by the probability that any particular
event could occur.

Theorem 3 (Expected Utility Theorem). Consider a gamble with a1, a2, ..., ai
possible outcomes and p1, p2, ..., pi the possibilities of these outcomes to occur.
The Expected Utility of this gamble is:

EU(x) = p1U(a1) + p2U(a2) + ...+ piU(ai), (3.1)

where U(.) the individual’s utility of an outcome ai.

If the gamble has continuous outcomes then the initial definition of the
Expected Utility is transformed as follows:

EfU(x) =

∫ ∞
−∞

U(x)f(x)dx, (3.2)

where U(x) is the utility function of an individual. F (x) is the c.d.f. of the
probability distribution x and it holds∫ ∞

−∞
f(x)dx = 1. (3.3)
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An individual with utility function prefers a gamble (x, f) to another gamble
(y, g) if and only if

EfU(x) ≡
∫ ∞
−∞

U(x)f(x)dx >

∫ ∞
−∞

U(y)g(y)dy ≡ EgU(y). (3.4)

The individual would still prefer (x, f) to (y, g) if U(.) was to change by an
affine transformation, i.e., be replaced by α + βU(.) , so U(.) is determined up
to location α and scale β . In this case U(.) is a cardinal utility function.

von Neumann and Morgenstern (1947) provided an axiomatization of the
Expected Utility Theory in an appendix of their landmark book Theory of
Games and Economic Behavior (Section (2.3)). To honor their contribution to
the mathematical foundations of the theory, the utility for wealth function is
usually referred to as the von Neumann-Morgenstern utility function. Expected
Utility Theory is widely used in theoretical and practical analysis. Even though,
in many cases it has been proven that people break the behavioral axioms- see
the Appendix (C) for the Allais Paradox and the Ellsberg Paradox.

Bernoulli, in his logarithm function, which is concave, argued that people
with various current wealth and utility for wealth functions have a certain prize
for entering the lottery. Bernoulli supported that the former is logical as people
tend to be risk-averters, preferring certain outcomes over uncertain or less
certain ones.

3.1.1 Expected Utility Maximaziation

An individual aims to maximize his Expected Utility

EfU(x) = Maximized.

This results from the hypothesis that the utility increases when an increase of
wealth takes place. Mathematically, this means that the first partial derivative
of the wealth utility function is positive:

∂U(W )

∂W
> 0. (3.5)

3.2 Risk
The part of the return variance of a portfolio that is non-market-related
is the Non-Systematic Risk. Non-Systematic Risk can be reduced through
portfolio diversification by the individual, but the total risk does not end up
there. There is a risk that cannot be avoided, known as Systematic Risk.
Systematic Risk is irrelevant to the portfolio diversification as it is the return
variance of a portfolio caused by internal or external market fluctuations.

As seen in Figure (3.1), Non-Systematic Risk is reduced when an increase
of asset number occurs. This means that an increased diversification, which
is managed through adding more assets in the portfolio, leads to lower levels
of Non-Systematic Risk. But, there is an asymptotic limit of Non-Systematic
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Figure 3.1: Systematic, Non-Systematic and Total Risk

Risk (Figure (3.1), line A), beyond which the individual can not further affect
it. This is the exact point where Systematic Risk appears. Systematic Risk
is the market risk, thus it cannot be reduced through diversification by the
individual. It depends on the development level of the financial system. So, it
is the financial system which manages an auto-diversification by attempting to
reduce every kind of impact, either internal or external.
There are numerous risks to be considered when a portfolio is constructed. Some
of these risks are:

• Investment market risk: The possibility all investments in a market
sector, (such as shares), will be affected by an event.

• Investment specific risk: The possibility a particular investment may
underperform the market or its competitors.

• Market timing risk: The possibility your investment may be sold at
a time when the sale price is at a low-point or purchased when the sale
price is at a high-point.

• Inflation risk: The possibility your investment return is below the infla-
tion rate which reduces the spending power of your money.

• Credit risk: The potential failure of a debtor to make payments on
amounts they have borrowed.

• Interest rate risk: The possibility your investment will be adversely
impacted by a fall or rise in interest rates.
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• Legislative risk: The possibility a change in legislation will impact the
appropriateness of certain investments for you.

• Liquidity risk: The ease with which you can sell or liquidate your in-
vestments. Some investments impose exit fees or have limitations on with-
drawals. Other investments may be difficult to sell due to a lack of buyers.

• Hedging risk: A technique designed to reduce the risk from part of an
investment portfolio often by using derivatives. While hedging can reduce
losses, it also has a cost and therefore can reduce profits.

• Currency risk: Relates to global investments. It is a form of risk that
arises from the change in price of one currency against another. Whenever
investors or companies have assets or business operations across national
borders, they face currency risk if their positions are not hedged.

• Derivatives risk: Where financial derivatives are used as an alternative
to directly owning or selling underlying assets in order to manage risk
and/or enhance returns. Risks associated with derivatives can include;
the value of the derivative declining to zero; the value of the derivative
not moving in line with the underlying asset and, the derivative may be
difficult or costly to reverse, and

• Opportunity cost: The investment return you may forego from an asset
as a result of investing in your preferred asset. That is, there is a risk the
preferred asset you invest in may not return more than the second-choice
(next best alternative) asset you did not invest in. (GWMAdviser Services
Limited , 2009)

A portfolio contains a large number of assets, so that the variance remains
reduced. Both portfolio return and variance are strongly connected to economic
events. Historically, it has been observed that in periods of economic recession,
return levels are low while variance levels are high. Vice versa, during periods
of economic blossom, variance levels are low whereas return levels are high.
Figure (3.2) illustrates a market portfolio and its relation to market risk. It
can be observed that, as we move to higher risk levels, expected return levels
increase. The risk an investor undertakes is compensated with better pay-
offs. An individual aims to reduce risk over a certain amount of return or
to increase return over a certain amount of risk. Nevertheless, individuals’
attitudes toward risk may present severe differences.
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Figure 3.2: Portfolio and Risk: Capital Allocation Line

3.3 Attitudes toward Risk
The von Neumann-Morgenstern utility function, unlike the Bernoulli’s concave
one, indicates that people may have different attitudes toward risk, no matter
their former overall behavior. The shape of a person’s utility function reveals
his attitude toward risk (Figure (3.3)):

• A risk averter individual has a concave utility function and it holds that
the second derivative equals to U ′′a (W ) < 0. Expected utility increases
with a decreasing rhythm when the expected return increases.

• A risk neutral individual has a linear utility function and it holds that
the second derivative equals to U ′′n(W ) = 0. The individual is indifferent
to the extra utility that an increase in expected return offers.

• A risk seeker individual has a convex utility and it holds that the second
derivative equals to U ′′b (W ) > 0. Expected utility increases with a rising
rhythm when the expected return increases.

The different types of investors can also be illustrated as a relation between
expected returns and risk (Figure (3.4)). In terms of Figure (3.4), for the risk

averter it holds that
∂U

∂σ
< 0 and

∂U

∂µ
> 0, while for the risk seeker it holds that

∂U

∂σ
> 0 and

∂U

∂µ
< 0.

The most commonly used function for Expected Utility is the quadratic
utility function

U(W ) = aW − bW 2, (3.6)
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Figure 3.3: (a) The Concave Utility of a Risk Averter
(b) The Convex Utility of a Risk Seeker

where a, b > 0 and W < a/2b. The first and the second derivatives of the func-
tion are:

U ′(W ) = a− 2b and U ′′(W ) = −2b.

The individual’s function, in order for him to be a risk averter, should have a
positive second derivative U ′′(W ) < 0. Thus, for a risk averter individual with
a quadric utility function, it holds that b>0.

Moreover, it is important to know how much averse to risk an individual
is. To this effect, there is a set of tools to measure risk. A risk measure is
a function that is used to quantify risk. A risk measure is meant to determine
the quantity of an asset (or set of assets) to be kept in reserve. The aim of a
reserve is to guarantee the presence of capital that can be used as a (partial)
cover if the risky event manifests itself, generating a loss. From a mathematical
point of view, a measure of risk is a scalar function ρ : X → R mapping the
space of random variables X to the set of real numbers R.

The most frequently used measures of risk aversion are the Arrow-Pratt
measures of absolute and relative risk-aversion. These risk measures are named
after John W. Pratt’s paper (1964) and Kenneth J. Arrow’s one (1965). Arrow
and Pratt showed that the degree of concavity of a utility function reveals the
grade of a certain individual’s risk aversion. The coefficient of absolute risk
aversion is

A(W ) = −U
′′(W )

U ′(W )
(3.7)

and it has 3 possible outcomes:

A′(W ) < 0, decreasing aversion to the risk

A′(W ) = 0, steadfast aversion to the risk
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Figure 3.4: Attitudes towards Risk: Indifference curves in the
mean-s.d. space

A′(W ) > 0, increasing aversion to the risk.

The coefficient of relative risk aversion is

R(W ) = −xU
′′(W )

U ′(W )
, (3.8)

where x is the payoff of a given lottery and U(W ) the utility derived from that
payoff. In Finance, there are more statistical methods used to measure and
quantify the level of risk within a portfolio that will be analyzed in the next
Chapters.
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Chapter 4

Mean-Variance Portfolios

Harry Markowitz was the first to develop the Modern Portfolio Theory in
1950. Markowitz was a PhD student at the University of Chicago when he
published a paper on portfolio allocation (1952). In this paper, Markowitz was
analyzing the ways investors should use in order to choose portfolios optimally.
More specifically, the theory he proposed concerns how investors should allocate
their money on different assets, based on the asset returns and risk levels. In
this framework, the risk is defined as the variance of the portfolio. For his
contribution in Portfolio Theory, Markowitz later earned the Nobel Prize in
Economics, jointly with W. Sharpe and M. Miller.

Since Markowitz proposed his pioneering theory, the variance has been the
main risk measure in Economics and Finance. Mean-Variance analysis, though,
presents some certain characteristics which automatically make it a weak risk
measure. In order for Mean-Variance analysis to be consistent with Expected
Utility, returns must be normally distributed and/or the utility function used
must be of a quadratic form. It also penalizes upside and downside results and
is unable to examine return skewness and kurtosis, failing to describe the risk
of low probability events.

4.1 Mean-Variance Portfolios from Risky Assets
The most important contribution of Markowitz (1952) is that it is favorable to
diversify a portfolio because this will reduce the portfolio’s standard deviation
(risk), as long as the correlation between assets is less than 1. This result can be
shown by a portfolio of M assets. Assume M risky assets i = (1, 2, 3, ...M) and
let R = [R1, R2, ...RM ] be the vector of the risk returns. Assets are normally
distributed with Mean and Variance-Covariance of returns given by:

E[R] = a =


a1

.

.

.
aM

 and Cov[R] = Σ =


σ11 σ12 ... σ1M

σ21 σ22 ... σ2M

. . ... .

. . ... .
σM1 σM2 ... σ2

M

 .
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The M-vector of weights is

w = (w1, w2, ...wM) =
M∑
i=1

wi = 1

and equals to the sum vector 1 = (1, 1, ...1). The M-vector of weights indicates
the wealth of each asset.
The portfolio return is given by

RP = w′R =
M∑
i=1

wiRi

where

µP ≡ w′µ =
M∑
i=1

wiµi,

σ2
P = var[RP ]w′Σw.

The minimum variance portfolio with expected return µP is the solution to
the problem:

min
w

1

2
σ2
P =

1

2
w′Σw (4.1)

s.t. w′1 = 1, w′µ = µP .

Lemma 4 (Mean-Variance Efficient Portfolio). A portfolio w* is Mean-
Variance Efficient if it does not exist any other portfolio w that has an equal or
higher return and a lower variance:

w′µ ≥ w∗′µ and w′Σw < w∗′Σw∗

Lagrangian:

min
w,λ1,λ2

L =
1

2
w′Σw + λ1(1− w′1) + λ2(µP − w′µ). (4.2)

The first order conditions:

•
∂L

∂w
=
∑

w − λ11− λ2µ = 0

•
∂L

∂λ1

= 1− w′1 = 0

•
∂L

∂λ2

= µP − w′µ = 0.

Solving for w∗:

w∗(µP ) = λ1

−1∑
1 + λ2

−1∑
µ = 1. (4.3)
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Solving for λ1, λ2 we get the system:

λ11′
−1∑

1 + λ2µ
′
−1∑

1 = 1

λ11′
−1∑

µ+ λ2µ
′
−1∑

µ = µP ,

where

λ1 =
(µ′
∑−1 µ)− (1′

∑−1 µ)µP

(1′
∑−1 1)(µ

∑−1 µ)− (1′
∑−1 µ)2

=
Γ−BµP

∆

and

λ2 =
(1′
∑−1 1)µP − (1′

∑−1 µ)

(1′
∑−1 1)(µ

∑−1 µ)− (1′
∑−1 µ)2

=
AµP −B

∆
.

Given the λ1 and λ2 values, the (4.3) has the variance:

σ2(µP )′ = w(µP )Σw(µP ) (4.4)

= w(µP )′Σ(λ1Σ−11 + λ2Σ−1µ)

= λ1w(µP )′1 + λ2w(µP )′µ

= λ1 + λ2µP

=
Aµ2

P − 2BµP + Γ

∆
.

Equation (4.4) is a parabola.
After examining the first and the second derivatives of σ2

P (µP )

dσ2
P (µP )

dµP
=

2(AµP −B)

∆
= 0 and

d2σ2
P (µP )

dµP
=

2A

∆
> 0 (4.5)

it is revealed that σ2
P (µP ) is a strictly convex function of µP with minimum

dσ2
P (µP )

dµP
=

2(AµP −B)

∆
= 0⇔ µP =

B

A
. (4.6)

Examining the first and the second derivatives of

σP (µP ) =

√
Aµ2

P − 2BµP + C

∆
(4.7)
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Figure 4.1: Portfolio Frontier with Risky assets

we see that σP is also a strictly convex function of µP :

dσP (µP )

dµP
=
AµP −B

∆σP
and

d2σP (µP )

dµP
=

1

∆σ3
P

> 0. (4.8)

Equation (4.7) is a hyperbola. Figure (4.1) is the graphic representation
of equation (4.7). Every σP corresponds to two different feasible portfolios,
each of them connected to a different return level. A rational individual would
prefer the portfolio with the higher return than the one with the lower return,
provided the same risk level. This leads to the fact that the Efficient Portfolio
Frontier is the upper part of the hyperbola. The asympotes of the Efficient
Frontier are given by: µP = B

A
± σP

√
∆
A
. The returns and standard deviation

of individual assets (µRi, σRi), i = (1, ...,M) belong to the Space of Feasible
Portfolios.
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4.2 Mean-Variance Portfolios that include a Risk-
less Asset

In this section a riskless asset, that is, an asset with guaranteed return Rf and
zero variance is included. As seen in Section (4.1), M risky assets are assumed
with returns R ∼ NormalM(µ,Σ) , and the riskless asset as the 0th asset is
added. The minimum variance portfolios in this case solves the optimization
problem

min
w

1

2
w′Σw (4.9)

s.t. w′(µ−Rf1) = µP −Rf .

A comparison between this new problem and the problem of the portfolio
constructed from Risky Assets only, reveals that the summing-up constraint
w′1 = 1 does not apply in this case. Also, the required return constraint
w′µ = µP has been changed. The reason why there is no summing-up can
be explained based on the idea of the optimization problem. The optimization
problem is written only in terms of the N risky assets so once these weights
w = (w1, w2, ..., wM)′ are chosen we can always choose the weight of the riskless
asset to be w0 = 1 − w′1. For similar reasons, the required return constraint
has been modified to a required excess-return constraint, that is return in
excess of the risk-free rate Rf .
Lagrangian of the riskless asset problem:

min
w,λ

L =
1

2
w′Σw + λ[µP −Rf − w′(µ−Rf1)]. (4.10)

The first order conditions:

•
∂L

∂w
= Σw − λ(µ−Rf1) = 0

•
∂L

∂λ
= µP −Rf − w′(µ−Rf1) = 0.

Solving for w:
w∗ = λΣ−1(µ−Rf1). (4.11)

Substituting (4.11) into ∂L
∂λ

the following is obtained:

µP −Rf = w∗(µ−Rf1)

= λ(µ−Rf1)′Σ−1(µ−Rf1)

= λ[µ′Σ1µ−Rfµ
′Σ−11−Rf1

′Σ−1µ+R2
f1
′Σ−11]

= λ[Γ− 2RfB +R2
fA]
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or

λ =
µP −Rf

Γ− 2RfB = R2
fA

. (4.12)

Plugging this into (4.11) we get the optimal portfolio weights for the risky assets

w∗(µP ) =
µP −Rf

Γ− 2RfB +R2
fA

Σ−1(µ−Rf1) (4.13)

while, the weight received by the riskless asset is

w∗0 = 1− 1′w.

The equation of the minimum-variance set is

σ2∗ = w∗′Σw∗ (4.14)

= w∗′λΣΣ−1(µ−Rf1)

= λw∗′(µ−Rf1)

= λ(µP −Rf )

=
(µP −Rf )

2

Γ− 2RfB +R2A
f

where, in the fourth line of the above display we have used the required excess
return constraint. Solving (4.14) for µP we obtain

µP = Rf ± σP
√

Γ− 2RfB +R2
fA. (4.15)

Figure (4.2) presents the Minimum-Variance Frontier.
Define excess returns by R̃ = R−Rf1 with mean µ̃ ≡ µ−Rf1 and variance

Σ, i.e.,
R̃ ∼ NormalM(µ̃,Σ).

In terms of these excess returns, the portfolio optimization problem may be
written as

min
w

1

2
w′Σw

s.t. w′µ̃ = µ̃P
where, µ̃ is the required excess return of the portfolio. The solution of this
problem in (4.11) may be rewritten in the new notation as

w∗ = λΣ−1µ̃, (4.16)

where λ is given in (4.12).
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Figure 4.2: Minimum Variance Frontier
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Figure 4.3: Excess Mean-Variance Frontier

For λ = 1/(1′Σ−1µ̃), a value that λ is bound to take for some required
portfolio return µ, we obtain the tangency portfolio

wtan =
Σ−1µ̃

1′Σ−1µ̃
. (4.17)

As shown in Figure (4.3), the point in (µ̃, σ) space that corresponds to the tan-
gency portfolio is the only point at which the Excess Mean – Variance Frontier
from the risky assets only touches the Excess Mean – Variance Frontier that
includes a risk-free asset.

By this, we conclude that any optimal portfolio is a linear combination of
the risk-free asset and the tangency portfolio. Any investor faced with the
problem of choosing an optimal portfolio, first computes the tangency portfolio
for the risky-assets-only problem, and then decides how to split his total capital
between this portfolio and the risk-free asset. The point (µ̃tan, σtan) in Figure
(4.3) is obtained if the investor decides to invest all his capital on the tangency
portfolio, i.e., if w0 = 0 and w∗ = wtan. The rest of the points on the Excess
Mean – Variance Frontier can be obtained either by lending at the risk-free
rate (depositing the money at a bank account that gives return equal to the
risk-free rate), in which case w0 > 0 and w∗ = (1− w0)wtan, or by borrowing
at the risk free rate, in which case w0 < 0 and w∗ = (1 − w0)wtan , and
investing the borrowed capital at the tangency portfolio. Investors who hold a
positive amount of the risk-free asset, w0 > 0, choose points on the Excess Mean
– Variance Frontier that lie below (µ̃tan, σtan). On the other hand, investors
who hold a negative amount of the risk-free asset, w0, 0 , choose points above
(µ̃tan, σtan).

The investor’s utility function provides all the information needed to specify
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Figure 4.4: Excess Mean-Variance Frontier explained

the choice of an optimal portfolio among the set of efficient portfolios. Figure
(4.4) depicts the choices of two investors X and Y and their utilities with risk
aversion parameters θX and θY , respectively, and θX > θY , where investor X
is more risk averse than investor Y . Investor X picks a positive position on
the risk-free asset, i.e.,wX0 > 0 , while investor Y picks a riskier portfolio with
a negative position in the risk-free asset, i.e., wY0 < 0.

Figures (4.3) and (4.4) present the tangency portfolio as touching the Excess
Mean – Variance Frontier on its upper limb. If the return of the global minimum
variance portfolio exceeds the risk-free return, i.e., if B/A > R0, it is observed
that the tangency is on the upper limb. If the reverse is true the tangency is
on the lower part of the Frontier. The assumption that B/A > R0 is therefore
realistic.

4.3 Mean- Variance Analysis consistency with Ex-
pected Utility

But, is MV always functional? The answer is rather negative, since MV is
consistent with the Expected Utility Theorem only under certain circumstances.

Theorem 5 (MV Consistency with EU). Mean-variance analysis is con-
sistent with Expected Utility maximization, i.e., there exists V (.) such that
V (µR, σ

2
R) = E[U(R)], if and only if either of the following conditions are sat-

isfied:

1. R is normally distributed (or, more generally, elliptically distributed).
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2. U(.) takes the quadratic form, i.e.,

U(R) = aR− bR2, a > 0, b > 0, R < a/2b .

Proof. (a) Expand U(R) around R = µR to obtain

U(R) = U(µR) + 1
1!
U (1)(µR)(R− µR) + 1

2!
U (2)µR(R− µR)2

+ 1
3!
U (3)µR(R− µR)3 + 1

4!
U (4)µR(R− µR)4 + ....

Taking expectations we obtain

E[U(R)] = U(µR)+ 1
1!
U (1)(µR)E[(R−µR)]+ 1

2!
U (2)(µR)E[(R−µR)2]

+ 1
3!
U (3)(µR)E[(R− µR)3] + 1

4!
U (4)(µR)E[(R− µR)4] + ....

All odd central moments greater or equal to three of a normal random
variable are zero, as are all even central moments that are greater than the
fourth central moment. This means that for a normal random variable the
only non-zero moments are the second E[(R − µR)2)] = σ2

R and the fourth
E[(R−µR)4] = 3σ4

R. Substituting these quantities into the equation above and
dropping the zero terms we obtain

E[U(R)] = U(µR) + 1
2
U (2)(µR)σ2

R + 1
8
U (4)(µR)σ4

R

≡ V (µR, σ
2
R), as desired.

(b) We have
E[U(R)] = E(aR− bR2)

= aE(R)− bE(R2)

= aE(R)− bV ar(R) + E(R)2

= aµR − bµ2
R − bσ2

r

≡ V (µR, σ
2
R), as desired.

The assumptions are restrictive as in real markets return distributions may
be skewed and fat-tailed. Assume two assets with different return distributions,
as seen in Figure (4.5). The Figure reveals that, although the two distributions
share the same mean and variance, conceal different risk levels. If an individual
could observe the two different distributions would prefer the right-skewed one
(A) - which indicates gains - over the left-skewed one (B) - which indicates
losses. But from the MV aspect, the two assets are the same, misleading us to
believe that the two returns are identical.
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Figure 4.5: Return Distributions with identical Mean and
Variance
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Chapter 5

The Regression Approach to
Mean-Variance Analysis

Almost 50 years after Markowitz’s fundamentals in Mean-Variance Portfolios,
Mark Britten-Jones, in his paper The Sampling Error in Estimates of Mean-
Variance Efficient Portfolio Weights (1999), managed to express the connection
between the finance issue of the Mean-Variance Analysis and the econometric
process of the OLS regression. In this paper, Britten-Jones tests the hypotheses
of Mean-Variance efficient portfolio weights using 20 years of data on 11 coun-
try stock indexes. By applying this approach, Britten-Jones resulted to large
sampling errors in estimates of the weights of a global efficient portfolio.

5.1 OLS Regression to Mean-Variance Analysis
Britten-Jones (1999), assumes that a riskless asset is available for both borrow-
ing and lending in each period, and calculates excess returns by subtracting
the returns of this riskless asset from the return of each of the K assets in con-
sideration. Let x′t = [x1t, x2t, ..., xKt] be the vector of excess returns in period
t = (1, 2, ..., T ) , and form the T ×K matrix as follows:

X =


x′1
x′2
.
.
.
x′T

 =


x11 x21 .... xK1

x21 x22 ... xK2

. . . .

. . . .

. . . .
x1T x2T ... xKT

 .

Now, let 1 =
[
1 1 ... 1

]′ be a T vector of ones. Viewed as a portfolio excess
return, the T vector of ones 1 is highly desirable as it has positive excess return
with zero standard deviation (risk). The regression approach to portfolio selec-
tion is based on minimizing the squared deviations between the excess returns
on the constructed portfolio and the excess returns in 1. This minimization can
be performed using an artificial ordinary least squares (OLS) regression.
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Theorem 6 (OLS Regression to tangency portfolio). Consider the arti-
ficial OLS regression

1 = Xb+ U. (5.1)

results to the OLS coefficient vector given by

b̂ = (X ′X)−1X ′1. (5.2)

that is a set of risky-asset-only portfolio weights for a sample efficient portfo-
lio. The scaled (so that weights sum to one) coefficient vector b̂/1′b̂ is thus the
familiar tangency portfolio

Σ̄−1x̄

1′Σ̄−1x̄
(5.3)

derived from quadratic programming, where the sample mean x̄ = X ′1/T , and
the (maximum likelihood) sample covariance (X − 1x̄′)′(X − 1x̄′)/T , are used
as parameters.

To make the theorem clear, let x̄ = X ′1/T be the K vector of sample means,
and Σ̄(X − 1x̄′)′(X − 1x̄′)/T be the K × K sample covariance matrix. This
later matrix may be written as

Σ̄ = (X − 1x̄′)′(X − 1x̄′)/T (5.4)

= (X ′ − x̄1′)(X − 1x̄′)/T

= (X ′X −X ′1x̄′ − x̄1′X + x̄1′1x̄′)/T

= X ′X/T −X ′1x̄′/T − x̄1′X/T + x̄1′1x̄′/T

= X ′X/T + x̄x′ − x̄x′ + x̄x′ = X ′X/T − x̄x′.

In this way,
X ′X = T (Σ̄ + x̄x′).

Therefore,
b̂ = (Σ̄ + x̄x′)−1X ′1/T = (Σ̄ + x̄x′−1x̄) (5.5)

=

(
Σ̄−1 − Σ̄−1x̄x′Σ̄−1

1 + x̄′Σ̄−1x̄
x̄

)
=

Σ̄−1x̄

1 + x̄′Σ̄−1x̄
.

Scaling b̂ so that the coefficients sum to one, we obtain:

ŵ ≡ b̂

1′b̂
=

Σ̄−1x̄

1′Σ̄−1x̄
. (5.6)

This portfolio is the tangency portfolio.
The regression in equation (5.1) is unusual for tree reasons:

1. there is no intercept

2. the dependent variable is non-stochastic, and
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Figure 5.1: Tangency Portfolio

3. the residual vector u is correlated with the regressors, which are stochastic.

But it has a simple interpretation:

1. The dependent variable 1 is a sample counterpart to arbitrage profits (i.e.,
positive excess return with zero risk)

2. The coefficients b represent the weights on risky assets in the portfolio

3. Xb represents excess returns on this portfolio

4. The residual vector u shows deviations in this portfolio’s returns from 1.

The least squares distance can be depicted using the mean-std.dev. diagram.
OLS finds a portfolio whose returns are located in mean-std.deviation space as
closely as possible to the point (0,1). In other words, the least squares problem
in (5.1) finds the weight vector b̂ that produces returns that mimic as closely
as possible an arbitrage return. The arbitrage return 1 is located at the point
(0,1). The feasible set, constructed from the sample mean and sample covariance
matrix, has an efficient boundary shown by the line 0R2, from the origin passing
through the tangency portfolio (Figure (5.1)).
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5.1.1 Recovering the Entire Mean- Std.Deviation Frontier

The regression in (5.1) only computes the tangency portfolio. While this is
certainly a very interesting point on the mean-std.deviation frontier, there is a
way to modify the above methods to produce the entire frontier. To achieve
this, a constraint on the portfolio return is imposed of the form

x̄′w ≡ x̄′
b

1′b
= µP , (5.7)

which can be written as
x̄′b = µP1′b (5.8)

or

(x̄− µP1)′b = 0. (5.9)

The restricted regression is

1 = Xb+ u (5.10)
s.t. Rb = 0.

where, the restriction matrix (a vector in this case) is R = (x̄− µP1)′. The
regression in (5.10) computes a vector b that produces portfolio returns both as
close as possible to arbitrage returns, and satisfying a given return requirement.
By varying the required portfolio return µP , entire frontier can be recovered.

5.1.2 Testing the Efficiency of a Given Portfolio

Consider testing the null hypothesis:

H0 : w = w0 (5.11)

against the alternative
H1 : w 6= w0 (5.12)

In terms of the OLS coefficients b, the null may be written as:

H0 :
b

1′b
= w0 or H0 : b = aw0, (5.13)

where α is an arbitrary constant, that can ex post be set equal to the sum of
the OLS coefficients. Another way of writing the null hypothesis is to say that
b is proportional to a given portfolio weights vector w0 , i.e. that:

H0 : b ∝ w0 (5.14)

against the alternative
H1 : b ∝ w0. (5.15)

Under the null hypothesis, the model in (5.1) becomes

1 = α(Xw0) + u∗. (5.16)
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The null can now be tested by comparing the sum of squared residuals of the
unrestricted model in (5.1) and the restricted model in (5.16). The test statistic
is

F =
(u∗′u∗ − u′u)/(K − 1)

u′u/(T −K)
∼ FK−1,T−K . (5.17)

This statistic has a nice geometric interpretation. Noting that, in terms of
Figure ( 5.1 )

1̄a =
√
u∗′u∗ and 1̄b =

√
u′u (5.18)

so the test statistic can be rewritten as,

F = (
1̄a

1̄b
− 1)(

T −K
K − 1

). (5.19)

We see, therefore, that the statistic is a function of the ratio of the length of
the lines 1a and 1b, that measure the distance between the portfolios m and d,
respectively, from the arbitrage point (0, 1). This ratio is, by definition, greater
or equal to 1, and the larger it is, the less likely it becomes for a given portfolio
m to be efficient.

5.2 Active Portfolio Management
How can we use this methodology to do active portfolio management? The
following simple example demonstrates the process. Consider an investor who
wants to form portfolios out of two assets, namely, a stock denoted by s and a
bond denoted by b. To this end, he obtains T observations of the assets’ excess
returns given by,

X =


xs1 xb1
xs2 xb2
. .
. .
xsT xbT

 . (5.20)

The optimal (tangency) portfolio may be computed by the artificial regression

1 = Xb+ u

which produces the passive portfolio weights,

ŵ ≡ b̂

1′b̂
=

[
ŵs

ŵb

]
. (5.21)

Suppose now that there is one conditioning (or state) variable (such as the
dividend yield or the spread between long and short Treasury yields) which
affects the conditional distribution of returns. We observe a time series of this
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state variable

z =


z0

z1

.

.
zT−1

 (5.22)

where the dating reflects the fact that z is known at the beginning of each return
period and can be used to predict the excess returns of the assets. The investor
wishes to take the information in the conditioning variable into account, and
compute optimal portfolio weights that depend on it. To do this, we construct
the augment returns matrix

X̃ =


xs1 xb1 z0x

s
1 z0x

b
1

xs2 xb2 z1x
s
2 z1x

b
2

. . . .

. . . .
xsT xbT zT−1x

s
T zT−1x

b
T

 . (5.23)

The expanded set of assets can be interpreted as managed portfolios, each of
which invests in a single basis asset (i.e., s or b) an amount that is proportional
to the value of the state variable z. Running the artificial regression

1 = X̃c+ u (5.24)

we compute portfolio weights

ω̂ ≡ ĉ

1′ĉ
=


ω̂1

ω̂2

ω̂3

ω̂4

 (5.25)

for each of the two basis assets and the two managed portfolios. The active
portfolio weights may now be computed by

ŵt ≡
[
ŵst
ŵbt

]
=

[
ω̂1 + ω̂3zt−1

ω̂2 + ω̂4zt−1

]
. (5.26)

Comparing the active portfolio weights in (5.26) with the passive ones in
(5.21) we see that while the passive weights are fixed for all t, the active weights
change at every time period to track the changes in the conditioning variable
zt−1. If the conditioning variable z has no predictive ability, ω̂3 and ω̂4 will be
close to zero (statistically insignificant), and the active weights reduce to the
passive ones.
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Chapter 6

Choquet Expected Utility and
Conditional Value-at-Risk
Portfolios

In 2008, the bankruptcy of Lehman Brothers, an event that provoked the be-
ginning of a global financial crisis, made it clear that risk measurement is an
issue of great importance. Nowadays, "Financial institutions have to allocate
so-called economic capital in order to guarantee solvency to their clients and
counterparties" (Tasche, 2002). A well known risk measure is Value-at-Risk
(VaR).

A significant fact in VaR’s history can be traced back in 1994, when J.P.Morgan
decided to make public its unique VaR System called RiskMetrics. RiskMetrics
faced significant attention at that time and monopolized as a risk measure. It
wasn’t until Artzner et al. (1999) outlined certain shortcomings of VaR, when
other risk measures started been examined. Artzner et al. were the first to in-
troduce a more reliable risk measure, Tail Conditional Expectation (TCE),
later known as Conditional Value-at-Risk (CVaR).

6.1 Value-at-Risk (VaR)
Value-at-Risk (VaR) is a widely used risk measure because its concept is easily
understandable. VaR focuses on the down-side risk and is a function based on
two features, time and confidence level.

Theorem 7 (VaR). VaR can be described as the α% certainty that the value
of a portfolio will not decline by more than V aRN,α euros in the next N days,
where N the time horizon and α the confidence level.

VaR can be used as a risk measure in different kinds of portfolio structures.

Definition 1 (VaR of a Single Stock Asset). Let S be the value (price)
of a financial asset and let ∆S1 be the daily change of this value. The 1-day
Value-at-Risk of the asset at the 100α% is

P (∆S1 ≥ −V aR1,α) = α. (6.1)

V aRN,α the negative of the (1− a)th quantile of the distribution of ∆SN . ∆SN
is a monetary amount measured in euros/dollars and it is expressed as a "loss"



62 Chapter 6. Choquet Expected Utility and Conditional Value-at-Risk
Portfolios

Figure 6.1: The distribution of N -day price change of a share
and the N-day VaR at the 100α% confidence level

indicator so for the negative sign to be avoided. To compute V aRN,α in appli-
cations the distribution of ∆SN needs to be estimated. The most frequently
assumption made is that ∆SN is approximately normal with N − day mean
value change µN and N-day variance of value change σ2

N

∆SN ∼ N(µN , σ
2
N). (6.2)

Considering that ∆SN is approximately normal, the N-day VaR at the 100α%
confidence level is given by

V aRN,α = zασN − µN , (6.3)

where zα is the number for which the probability that a standard normal will
be less than zα is α.

For an M − day estimation:

µM =
M

N
µN and σM =

√
M

N
σN . (6.4)

So the M-day VaR equals

V aRM,α = zα

√
M

N
σN −

M

N
µN . (6.5)

Even though Var is widely used, it is not a coherent risk measure. The
background of coherent risk measures was firstly introduced by Artzner et al.
in 1999.
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6.1.1 Why not VaR?

When the portfolio return distribution is approximately normal, VaR is a suit-
able measure of risk. However, if returns are non-normal, problems can arise.
The following story gives a first glimpse of these problems.

Barings Bank was one of the oldest investment banks in Britain. Despite its
prestige, Barings, in order to survive in the late 20th century, employed young
brokers who could work with financial assets of all classes. One of Barings
employees was Nick Leeson. Leeson used to work at the Barings’ back office
and he soon discovered he was talented in the derivatives market. He was later
transferred in Singapore, betting on market shifts around the world and became
Barings’ top employee, as his speculations accounted for 10% of the Bank’s
profits. That was the time when Leeson decided to create a secret Barings
account. In this account, Leeson was adding profits created by small differences
in the prices of Nikkei 225 futures occurring in two different markets, the Osaka
Securities Exchange and the Singapore International Monetary Exchange. He
started gambling on the future direction of the Japanese Market, risking huge
amounts of money on the Nikkei, believing that the Japanese Stock Market
would rise. Unfortunately for him, Nikkei’s stock went the other way round,
facing a huge decrease when an earthquake occurred in Kobe in 1995. Leeson’s
losses ascended that quick that soon shook down not only him but the hole
bank. Losses came to more than $1 billion, an amount the bank could not
cover. It collapsed in March of 1995 and was bought by the Dutch financial
company ING for just one British pound.

But what did go wrong with Barings’ internal system to miss out Leeson’s
malpractices? By that time, Barings Bank used to work with VaR. If the broker
mechanically sets the investor’s margin equal to the VaR n, σ of his position,
the investor can trick him by moving some of the mass of his portfolio value-
change distribution to the left and to the right, as seen in Figure (6.2). This
new disconnected distribution has exactly the same VaR as the original one,
but the investor’s potential losses (as well as his potential gains) are obviously
much larger. If the investor is a risk taker he might very well prefer distribution
(B), especially since he will not have to finance his risk taking. Obviously, such
behavior can wreak havoc on the entire financial system by allowing investors
to take risky positions that they might not be able to finance if their bet does
not materialize. This leads to the fact that it was quite easy for Leeson to
mislead the internal system in his favor. This is the reason why Conditional
Value-at-Risk is preferred to VaR, as it will be discussed in Section (6.4).

6.2 Choquet Expected Utility and the idea of
Pessimism

The Choquet Expected Utility (Schmeidler 1982, 1989) model is a model of de-
cision making under uncertainty generalizing the Expected Utility (EU) model.
Under the comonotone independence axiom, an appealing and intuitive axiom
requiring that the usual independence axiom holds only when hedging effects
are absent, preferences turn out to be represented through a Choquet integral.
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Figure 6.2: Tricking the broker
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This model allows for taking into account a fuller array of behaviors under
risk and under uncertainty. As a result, the model offers a simple theoretical
foundation for explaining

• actual economic phenomena in finance, in insurance, phenomena that can-
not be accounted for in the framework of EU theory,

• new indexes for inequality measurement(Chateauneuf & Cohen, 2015).

Consider the problem of choosing between two real-valued random variables,
X and Y , with distribution functions, F and G, respectively. According to the
Expected Utility Theory (Section (3.1)), X is preferred to Y if

EFu(X) =

∫ ∞
−∞

u(x)dF (x) >

∫ ∞
−∞

u(x)dG(x) = EGu(Y ).

The classic Expected Utility expression can be formulated with the use of the
Lebesque measure, which leads to:

EFu(X) =

∫ 1

0

u(F−1(t))dt >

∫ 1

0

u(G−1(t))dt = EGu(Y ), (6.6)

where F−1 and G−1 are the quantile functions corresponding to F and G.

Definition 2 (Comonotonicity of two functions). The two function X, Y ∈
Ω are comonotonic if there exists a third function Z ∈ Ω and increasing func-
tions f and g such that X = f(Z) and Y = g(Z).

Bassett et al. (2004) suggested the behavior of the sums of the quantile functions
as the property of comonotonic random variables with the greatest importance.
For comonotonic random variables X, Y , it holds

F−1
X+Y (u) = F−1

X (u) + F−1
Y (u).

By comonotonicity, U ∼ U [0, 1] such that Z = F−1
X (u) + F−1

Y (u) where g is
left continuous and increasing, so by monotone invariance, F−1

g (U) = gF−1
U =

F−1
X + F−1

Y .
Bassett et al. (2004) proposed one of the most interesting assumptions to extend
the classical Expected Utility Theory described in Section (2.3). The variables
have undergone some changes so an equivalent formulation occurs, where X is
preferred to Y if

Ev,Fu(X) =

∫ 1

0

u(F−1(t))dv(t) >

∫ 1

0

u(G−1(t))dv(t) = Ev,Gu(Y ). (6.7)

Now the preference functions are (u, v), where u is the utility and v the trans-
formed probability assessment. The independence axiom (Section (2.3)) has
been transformed to be wider in order to emerge a larger class of preferences rep-
resentable as Choquet capacities which introduce the idea of pessimism. This
kind of independence axiom was proposed by Schmeidler (1989) who named it
comonotonic independence.
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Figure 6.3: Choquet Expected Utility: A generalization of
Expected Utility

Definition 3 (Comonotonicity of two acts). Two acts x and y ∈ Ω are
comonotonic, or similarly ordered if for no s and t in S

x[t] > x[s] and y[s] > y[t]

which is translated as the assumption that if x is better in state t than state s,
then y is also better in t than s.

Definition 4 (Comonotonic Independence). For all pairwise comonotonic
x, y, z ∈ Ω and α ∈ (0, 1) x > y ⇒ αx+ (1− α)z > αy + (1− α)z.

The main characteristic of Choquet Expected Utility is the fact that, un-
like the classical Expected Utility Theory, it can overweight a certain category
of events, either the optimistic or the pessimistic ones. When the probability
distortion function va(t) is concave, Choquet Expected Utility allows for pes-
simism, whereas when va(t) is convex it reflects optimism. The simplest form
of Choquet Expected Utility introducing pessimism is based on distortion v

vα(t) = min(t/α, 1) (6.8)

which leads to

Evα,Fu(X) = α−1

∫ α

0

u(F−1(t))dt. (6.9)

A Probability distortion is a divergence in the way an individual values a
probability uniformly between 0 and 1. The distortion equation (6.8) "acts to
inflate or deflate the probabilities according to the rank ordering of the outcomes.
The distortion may systematically increase the implicit likelihood of the least fa-
vorable events"(Bassett et al., 2004). Equation (6.9) exaggerates the probability
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of the proportion α of least favorable events, and ignores the probability of the
1− α most favorable events.

6.2.1 Is Choquet distortion irrational?

Daniel Kahneman and Amos Tversky introduced the Prospect Theory (1979)
and the Cumulative Prospect Theory (1992), to explain violations of the
Expected Utility. Choquet distortion, as described in Section (6.2), cannot be
identified through Prospect Theory of Kahneman and Tversky (1979). Prospect
theory indicates that losses and gains are perceived differently. This leads to
biased choices, as an individual tends to prefer perceived gains to perceived
losses. Also known as Loss-Aversion Theory, the general idea is that in cases
of two equal options an individual would choose the option presented in terms
of possible gains more likely to the option expressed in terms of possible losses.
Given that choices are independent, the probability of gain or loss is assumed
as being 0.5 respectively, even though the real probabilities are not necessarily
equal. Essentially, the probability of gain is generally perceived as greater and,
consequently, it is preferred by the individual. Prospect Theory calculates the
Expected Utility of an uncertain prospect, which is equal to the sum of the
utilities of the outcomes, each weighted by its probability:

V =
n∑
i=1

π(pi)v(xi), (6.10)

where V is the Expected Utility of the outcomes, x1, x2, . . . , xn are the poten-
tial outcomes and p1, p2, . . . , pn the probabilities of these outcomes. "v" is a
function that assigns a value to an outcome.

Graphically, the value function presents deviations from a certain reference
point and is normally concave for gains ( risk aversion), convex for losses (risk
seeking) and steeper for losses than for gains (loss aversion), as seen in Figure
(6.4).

In 1992, Kahneman and Tversky developed an updated version of Prospect
Theory, the Cumulative Prospect Theory (1992). Cumulative Prospect
Theory incorporates rank-dependent functionals which transform cumulative
instead of individual probabilities, satisfying the stochastic dominance prop-
erty that the Prospect Theory ignored, as well as being able to extend to
prospects with a large number of outcomes. This leads to the aforementioned
overweighting of extreme events which occur with small probability, rather than
to an overweighting of all small probability events. According to Cumulative
Prospect Theory:

1. Gains and losses, i.e. income, are the carriers of value, not final assets or
wealth.

2. The value of each outcome is multiplied by a decision weight, not an
additive probability.
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Figure 6.4: Prospect Theory: The value function is s-shaped,
asymmetrical and steeper for losses than gains indicating that
losses outweigh gains. The same Figure is used in Cumulative

Prospect Theory.

The rank-dependent or cumulative functional that Kahneman and Tversky
(1992) used, was first proposed by Quiggin (1982) for decision under risk and
by Schmeidler (1989) for decision under uncertainty. This renewed version of
Prospect Theory can clearly support the idea of the Choquet distortion, since
it considers similar distortions of probabilities in the context of decision under
ambiguity.

6.3 Coherent Measures of Risk
Only when the article of Artzner et al. was published in 1999, providing def-
initions and stating axioms on measures of risk, the inability of Value-at-Risk
(VaR) as a risk measure became clear. VaR’s failure consists in not satisfy-
ing one risk measures axiom, the subadditivity. According to Artzner et al.
(1999):

Theorem 8 (Coherent Risk Measures). For real-valued random variables
X ∈ X on (Ω, A), a mapping ρ : XR is called a coherent risk measure if it is

1. Monotone: X, Y ∈ X, with X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

2. Subadditive: X, Y,X + Y ∈ X,⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

3. Linearly homogeneous: For all λ ≥ 0 and X ∈ X, ρ(λX) = λρ(X).

4. Translation invariant: For all λ ∈ R and X ∈ X, ρ(λ+X) = ρ(X)−λ.
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6.3.1 Understanding Coherency

Bassett et al (2016) explain coherent risk measures through an interesting story
of Samuelson (1963). Samuelson describes asking a colleague at lunch whether
he would be willing to make a 50 - 50 bet, with the prices of 200 dollars in the
case of winning and 100 dollars in case of losing. His colleague (later revealed
to be E. Cary Brown) responded "No, but I would be willing to make 100 such
bets". Brown’s response was considered irrelevant to the problem given, as
it seemed that, in his response, there was a confusion about expected utility
maximization combined with a fundamental misunderstanding of the law of
large numbers. Of course Brown was way clever than that. So we see that,

dφ(t) =
1

2
δ1/2(t) +

1

2
δ1(t).

For one coin flip it holds:

Ev,F (X) =
1

2
(−100) +

1

2
(50) = −25.

But, if the coin gets flipped a hundred times:

B =
100∑
i=1

Xi ∼ Bin(0.5, 100)

then the outcome changes over Brown

Ev,F (B) =
1

2
2

∫ 1/2

0

F−1
B (t)dt+

1

2
(5000)

= 1704.11 + 2500

= 4204.11.

A solution that indicates that the chance of loosing on the 100 coin tosses is
about 1/2300.

6.4 Conditional Value-at-Risk (CVaR)
It can be proved that VaR and σ are not coherent risk measures. VaR does not
satisfy the axiom of subadditivity and σ themonotonicity axiom. Although,
there is a risk measure that includes all the above violated axioms by VaR and
σ. This measure of risk is the Conditional Value at Risk (CVaR), also
known as Tail Conditional Expectation (TCE) and Expected Shortfall
(ES). The advantage of CVaR over VaR is that it can not be fooled by moving
some of the mass of the ∆ΣN distribution to minus infinity. Conditional Value-
at-risk is the risk measure used to reduce the probability that a portfolio will
face large losses. The CVaR’s operating procedure is to assess the possibility
at a specific confidence level that a specific loss will exceed the Value-at-Risk.
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CVaR derives by taking the weighted average between the Value-at-Risk and
losses exceeding the Value-at-Risk.

Rockafellar and Uryasev, introduced the term Conditional Value-at-Risk
in their paper Optimization of Conditional Value-at-Risk, in 2000. This risk
measure can also be found in other papers with a different name. Acerbi and
Tasche (2001) refer to Expected Shortfall and , before them, Artzner et al (1999)
refers to Tail Conditional Expectation.

Theorem 9 (Conditional Value-at-Risk (CVaR)). Let X be a continuous
random variable representing loss. Given a parameter 0 < α < 1, the α-CVaR
of Xis

CV aRα(X) = E[X|X ≥ V aRα(X)]. (6.11)

Definition 5 (Expected Shortfall). Let X be the profit-loss of a portfolio on
a specified time horizon T and let A = A% ∈ (0, 1) some specified probability
level. The expected A% shortfall of the portfolio is then defined as

ESα(X) = −1

2
(E[X1X,x(α) ]− xα(P [X, xα]− α)). (6.12)

Definition (5) was first introduced by Acerbi et al. (2001) and it was proved to
be coherent by Pflug (2000).

According to Bassett et al., the leading example of a coherent risk measure
is

ρvα(X) = −α−1

∫ α

0

F−1(t)dt (6.13)

where

ρvα(X) = −Evα,F (X) = −
∫ 1

0

F−1(t)dv(t)

which means that CVaR is the negative Choquet expected Utility with a dis-
tortion va.

Figure (6.6) reveals the difference between VaR and CVaR performance.
We can observe that VaR weights follow a non-regular form, not being globally
convex, while CVaR weights are convex which, consequently, leads to safer
results.

The R code for Figure (6.6) is given by:

#set.seed(1)
n <- 10000

x1 <- rnorm(n)
x1 <- 0.05+0.03*((x1-mean(x1))/sqrt(var(x1)))
x2 <- rchisq(n,4)
x2 <- 0.10+0.07*((x2-mean(x2))/sqrt(var(x2)))

w <- seq(0.2,0.6,0.001)
VaR <- w
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Figure 6.5: The distribution of N -price change of share and
the N -day VaR and CVaR at the 100α% confidence level

CVaR <-w

for(i in 1:length(w)){
r <- w[i]*x1+(1-w[i])*x2
VaR[i] <- -quantile(r,0.1)

CVaR[i] <- -mean(r[r<quantile(r,0.1)])
}

plot(w,VaR,type="l",col=2,ylab=c("VaR, CVaR"))
lines(w,(min(VaR)/min(CVaR))*CVaR,lty=5,col=3)
legend(0.35,-0.032,c("VaR","CVaR"),lty=c(1,5),col=c(2,3))

6.5 Pessimistic Risk Measures
Definition 6. A risk measure ρ will be called pessimistic if, for some probability
measure φ on [0, 1]

ρ(X) =

∫ 1

0

ρvα(X)dφ(α) (6.14)

By Fubini,

ρ(X) = −
∫ 1

0

α−1

∫ α

0

F−1(t)dtdφ(α)

= −
∫ 1

0

F−1(t)

∫ 1

t

α−1dφ(α)dt
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Figure 6.6: VaR vs CVaR performance
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= −
∫ 1

0

F−1(t)dv(t).

The Fubini theorem is used in order to make it clear why a risk measure like
CVaR should be considered pessimistic.

Any pessimistic risk measure can be approximated by taking

dφ(t) =
∑

φiδτi(t) (6.15)

where δτ denotes (Dirac) point mass 1 at τ .
Then,

ρ(X) = −φ0F
−1(0)−

∫ 1

0

F−1(t)γ(t)dt (6.16)

where γ(t) =
∑
φiT

−1
i I(t < τi) and φi > 0 with

∑
φi = 1. The positivity of

the point masses φi inform us that density weights are decreasing, which leads
to accentuation of the likelihood of the least-favorable outcomes and reveals the
pessimistic character of these risk measures.

According to Kusuoka (2001):

Theorem 10 (Kusuoka’s Theorem of Coherent Risk Measures). A reg-
ular risk measure is coherent in the sense of Artzner et al. if and only if it is
pessimistic.

1. Pessimistic Choquet risk measures correspond to concave v , i.e., mono-
tone decreasing dv.

2. Probability assessments are distorted to accentuate the probability of
the least favorable events.

3. The crucial coherence requirement is subadditivity, or submodularity, or
2-alternatingness in the terminology of Choquet capacities.

Kusuoka gave the context of coherent risk measures through a Theorem
containing the tree basic features that describe Pessimistic risk measures. It
can be said, that Kusuoka’s Theorem can conclude this Chapter smoothly, as
it briefly contains all the mathematical concepts explained. Pessimistic risk
measures have a concave v, a fact that indicates risk aversion. A distortion
in their probability assessment has been undertaken resulting to an increase
in the implicit likelihood of the least favorable events. Finally, coherent risk
measures, in the sense of Artzner et al. (1999), can be considered only when
the 4 Axioms take place (Section (6.3)). VaR’s characteristics do not include
this last prerequisite, which is, though, satisfied by CVaR. So, CVaR is not
only a coherent risk measure, but it can also be considered as a pessimistic
one. CVaR, besides being potentially pessimistic, presents another distinctive
feature; its minimization leads to Quantile regression.
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Chapter 7

The Regression Approach to CVaR
Analysis

Quantile Regression was a breakthrough in regression analysis, proposed by
Koenker and Bassett (1978). This approach permits estimating various quantile
functions of a conditional distribution, like the median, the 0.25 quantile, or
the 0.90 quantile. Quantile regression is really useful when the distribution is
asymmetric or fat-tailed. Due to its usefulness, Quantile regression maintains
its position in the latest literature as well, as seen in works of Koenker (2000),
Koenker & Hallock (2001), Koenker (2005).

7.1 Quantile Regression to CVaR Analysis
In 1978, Koenker et al. introduced a new econometric method, the Quantile
Regression. In the risk case, the minimization of CVaR leads to Quantile
regression.

Theorem 11. Let X be a real-valued random variable with EX = µ <∞ and
ρα(U) = U(α− I(U < 0)). Then,

min
ξ∈R

Eρα(X − ξ) = αµ+ ρvα(X).

So a risk can be estimated by the equivalent form of:

ρ̂vα(X) = (na)−1 min
ξ∈R

n∑
i=1

ρα(xi − ξ)− µ̂n (7.1)

where µ̂n denotes an estimator of EX = µ.

Proof.

Eρα(X − ξ) = α(µ− ξ)−
∫ ξ

−∞
(x− ξ)dFX(x), ξα = F−1

x (α)

= αµ−
∫ α

0

F−1(t)dt

= αµ+ ρvα(X).
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Imposing the extra condition of regularity for risk measure (Kusuoka (2001),
Theorem (10)), Bassett et. al. (2004) show that a regular risk measure is
coherent if and only if it is pessimistic, i.e., if the distortion function να is concave
in t. The concavity of να corresponds to overweighting the probabilities of large
losses and underweighting the probability of large gains, which is pessimistic.
This is also related to the cumulative prospect theory of Kahneman and Tversky
(1992) that consider similar distortions of probabilities in the context of decision
under ambiguity (Subsection (6.2.1)).

In econometrics, empirical strategies for minimizing α-risk are related to
Quantile regression as introduced by Koenker and Bassett (1978). Bassett et.
al. (2004), Theorem 2, show that minimizing α-risk (CVaR risk) is equivalent
to estimating an α-quantile regression of the type described below.

Let xj, j = 1, ..., p be the returns of m financial assets and consider the
artificial regression

1 =

p∑
j=1

xjβj + u s.t.

p∑
j=1

βj = 1. (7.2)

This regression was proposed by Britten-Jones (1999), who showed that the OLS
estimates, normalized to sum to 1, correspond to Markowitz Mean-Variance
(MV) optimal portfolio weights (Chapter (5)). The intuition behind this regres-
sion is that since 1 is a positive constant it can be thought off as an arbitrage

profit, while since
p∑
j=1

xjβj is the return of a portfolio with weights β1, ..., βm,

minimizing

E

(
1−

p∑
j=1

xjβj

)2

s.t.

p∑
j=1

βj = 1. (7.3)

produces a portfolio that resembles an arbitrage profit as nearly as possible. As
it turns out, this is the classical MV optimal portfolio.

Bassett et. al. (2004) replace the square loss function of least-squares
estimation with the check loss function ρα(u) = u(α − I(u < 0)) of quantile
regression estimation, and estimate α-risk optimal portfolios that correspon-
dent to the Choquet/pessimistic framework discussed above. They consider
portfolios that minimize

Eρα

(
1−

p∑
j=1

xjβj

)
s.t.

p∑
j=1

βj = 1 (7.4)

for α < 0.5, i.e., overweighting bad outcomes and underweighting good ones.
The advantage of the optimization formulation becomes clear when used

in portfolios. Let Y = XTπ denote a portfolio of assets comprised of X =
(X1, ..., Xp)

T with portfolio weights π. Suppose now that we observe a random
sample xi = (xi1, ..., xip) : i = 1, ..., n from the joint distribution of asset returns,
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and we wish to consider portfolios minimizing the Lagrangian:

min
π
ρvα(Y )− λµ(Y ). (7.5)

The additional constraint that the portfolio weights π sum to one is introduced:

min
π
ρvα(XT

π ) (7.6)

s.t. µ(XT
π ) = µ0 where 1Tπ = 1.

Taking the first asset as numeraire we can write the sample analogue of this
problem:

min
β,ξ∈RP

n∑
i=1

ρα(xi1 −
p∑
j=2

(xi1 − xij)βj − ξ) (7.7)

s.t. x̄Tπ(β) = µ0 where π(β) = (1−
∑p

j=2 βj, β
T )T .

This is a linear quantile regression as introduced by Koenker and Bassett (1978).
Instead of solving for a scalar quantity representing the α sample quantile, we
are solving for p coefficients of a linear function estimating the α conditional
quantile function of the numeraire return given the other returns.

The problem in (7.7) can be formulated as a conventional quantile regres-
sion problem if a single pseudo observation to the sample consisting of response
κ(x̄1−µ0) and a row κ(0, x̄1−x̄2, ..., x̄1−x̄p)T is added, in order to implement the
mean return constraint. The zero element corresponds to the intercept column
of the design matrix, and now, the problem structured is a completely standard
linear quantile regression. When a sufficiently large κ is used, the results aris-
ing satisfy the constraint given. Changing µ0 values, an empirical CVaR-risk
frontier analogous to the Mean-Variance frontier occurs. The Experiment of
Chapter (8) is based on these results, as seen in the paper of Bassett et al.
(2004).
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Chapter 8

MV Portfolio versus CVaR
Portfolio

Monte Carlo simulation is a computational- mathematical approach based
on the assumption that a randomly chosen sample tends to perform identically
to the population from which it was picked, presenting the same characteris-
tics and properties. Monte Carlo is also used to check theoretical or analytical
results which are based on "asymptotics". This means that they hold when
the sample size goes to infinity. In Finance, Monte Carlo simulation has a
leading role in risk assessment. It provides the opportunity to evaluate differ-
ent risk scenarios, even the most extreme ones. By its means, all possible risk
scenarios are generated and different kind of risk measures are tested. This mas-
ter thesis experiment consists of a Monte Carlo examination of the properties
of simple single-quantile portfolios when returns follow skewed and fat-tailed
distributions. This Monte Carlo approach is elaborated with the use of the
programming language R. Computer code in R has been assessed in order to im-
plement more elaborate portfolios that minimize a weighted average of CVaR
risk. The experiment’s procedure is described below.

8.1 An Experiment
The design of the experiment is as follows:

There are 4 assets with independent returns. Assets 1 and 2 have identical
means (0.05) and standard deviation (0.02) and, similarly, assets 3 and 4 also
have the same mean (0.09) and standard deviation (0.07). Although the pair of
asset 1 and asset 2 are the same from the aspect of mean and variance, asset 1
is normally distributed, while asset 2 has a reversed χ2

3 density, thus skewed to
the left. As for the second pair of assets, asset 3 is normally distributed while
asset 4 is χ2

3 ans, thus skewed distributed to the right.
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The R code generating returns from these assets is given by:

library(KernSmooth)
library(quantreg)
n <- 200000
x1 <- rnorm(n)
x1 <- 0.05+0.02*((x1-mean(x1))/sqrt(var(x1)))
x2 <- -rchisq(n,3)
x2 <- 0.05+0.02*((x2-mean(x2))/sqrt(var(x2)))
x3 <- rnorm(n)
x3 <- 0.09+0.07*((x3-mean(x3))/sqrt(var(x3)))
x4 <- rchisq(n,3)
x4 <- 0.09+0.07*((x4-mean(x4))/sqrt(var(x4)))
x <- cbind(x1,x2,x3,x4)
mu = apply(x, 2, mean)
V = var(x)}

According to a Folk Theorem in Finance, odd moments are desirable by
investors while even moments are undesirable. This means that investors prefer
assets with more mean and skewness and avoid assets with more variance and
kurtosis. MV portfolio -as its name indicates- takes into account only the two
first moments of the returns distributions, the mean and the variance, while
CVaR portfolio accounts for moments, including skewness and kurtosis. For
the first set of assets, we expect that CVaR will tend to prefer the normally
distributed asset (asset 1) to its twin that is skewed to the left (asset 2) but, for
the second pair of assets will prefer the asset skewed to the right (asset 4) rather
than the normally distributed one (asset 3). MV tends to be symmetrical in
its preferences between the assets of the two pairs, being unable to distinguish
upside from downside risk, and thus its desire to avoid both. We could say that
MV is like a person with color blindness, being able to distinguish only two
colors from the whole color set, while CVaR can see the entire spectrum.
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Figure 8.1: Four asset densities. The pair of assets 1 and 2,
as well as the pair of assets 3 and 4, have the same mean and
variance, even though their return distribution differs. Assets
1 and 4 are those with the better performance in both tails,

compared to their identical assets, 2 and 3 respectively.
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The return distributions are characterized as follows:

est1 <- bkde(x1)
est2 <- bkde(x2)
est3 <- bkde(x3)
est4 <- bkde(x4)

plot(est2,type="l",xlim=c(-0.1,0.4),lty=2,xlab="return",ylab="density",col=2)
lines(est1,col=1)
lines(est3,lty=3,col=3)
lines(est4,lty=4,col=4)
legend(0.25,25,c("Asset 1","Asset 2","Asset 3","Asset 4"),lty=c(1,2,3,4),
col=c(1,2,3,4))

ones <- rep(1,n)
coef <- lm(ones~x1+x2+x3+x4-1)$coef
wtan <- coef/sum(coef)
wtan
wtan%*%c(mean(x1),mean(x2),mean(x3),mean(x4))

x2e <- x1-x2
x3e <- x1-x3
x4e <- x1-x4

coef <- lm(x1~x2e+x3e+x4e)$coef
coef
wmin <- c(1-sum(coef[2:4]),coef[2:4])
round(wmin,5)
wmin%*%c(mean(x1),mean(x2),mean(x3),mean(x4))

Xe <- cbind(1,x2e,x3e,x4e)
#coef <- rq(x1~Xe-1, tau=0.1)$coef
#coef <- rq(x1~x2e+x3e+x4e, tau=0.1)$coef
coef

In order to perceive the differences between the MV and the CVaR portfolio’s
preferences, we generate a sample of n = 100, 000 observations.
With a required portfolio return µ = 0.07, we obtain

π(MV ) = (0.279, 0.221, 0.252, 0.248). (8.1)

For the CVaR, with µ = 0.07 again and α = 0.1, we obtain

π(CV aR) = (0.299, 0.201, 0.151, 0.349). (8.2)
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We now generate a sample of n = 1, 000, 000 observations from the returns
distribution of these four assets, in order to compare portfolio choices. Let
X = (X1, ..., Xp) a vector of potential asset returns and Y = XTπ the returns
on the portfolio with π as the weights. To minimize CVaR-risk subject to
a constraint on mean return, consider minπρva(Y ) − λµ(Y ). This leads to a
linear quantile regression problem

min(β,γ)
n∑
i=1

(xi1 −
π∑
j=2

(xi1 − xij)βj − γ)2 s.t.x̄Tπ(β) = µ0 (8.3)

where

π(β) = (1−
π∑
j=2

βj, β
T )T .

Thus, the evaluation of the MV and the CVaR portfolio allocations resulted
from the reproduction of the π(MV ) and the π(CV aR) 100, 000 times. Figure
(8.2) reveals the outcome of this reproduction, giving the returns of the MV and
CVaR portfolios. It is obvious that CVaR portfolio has a better performance
than MV portfolio, as it out performs MV portfolio both in the left and right tail.
CVaR returns, which are distributed with right skewness, reveal less possible
losses in the lower tail but, also, more possible gains in the upper tail.

As seen in Table (8.1), with a required portfolio return of µ = 0.05, MV
distributes the portfolio between assets 1 and 2, given that their mean is the
same as the required return (0.05), avoiding completely assets 2 and 3. CVaR
also distributes the portfolio between assets 1 and 2 only, but attributes different
weights for each of these two assets. Given µ = 0.05 and α = 0.1, we observe
that CVaR attributes weights of 0.59 for asset 1, 0.38 for asset 2 and 0 for assets
3 and 4, preferring the normally distributed asset to its twin which is skewed
to the left, as expected.

For µ = 0.09, the mean of assets which satisfies this required return is the
mean of the second pair, assets 3, 4. As we expected, both MV and CVaR now
place the weights on assets 3 and 4. But, while MV attributes equal weights
between pair of assets 3 and 4 (0.05), CVaR distinguishes the two assets again,
preferring asset 4 (0.795) which is skewed to the right to asset 3 (0.205) which
is normally distributed. For 0.06 ≤ µ ≤ 0.08, MV tends to have a symmetrical
preference between the assets of each pair, while CVaR still prefers asset 1 over
asset 2 and asset 4 over asset 3.
The R code generating Table (8.1):

kappa <- 1000000
x1a <- c(x1,kappa*(0.05-0.05))
Xea <- rbind(Xe,kappa*c(0,0,-0.04,-0.04))
#Mean-Variance
coef <- lm(x1a~Xea-1)$coef
coef
wMV <- c(1-sum(coef[2:4]),coef[2:4])
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round(wMV,5)
wMV %*% mu
#CVaR
coef <- rq(x1a~Xea-1, tau=0.10)$coef
coef
wCV <- c(1-sum(coef[2:4]),coef[2:4])
round(wCV,5)
wCV %*% mu

Table 8.1: Portfolio weights- Skewness

µ = 0.05 w1 w2 w3 w4

wMV 0.500 0.500 0.000 0.000
wCV, α = 0.10 0.608 0.392 0.000 0.000
wCV, α = 0.15 0.584 0.416 0.000 0.000
wCV, α = 0.20 0.560 0.440 0.000 0.000

µ = 0.06

wMV 0.375 0.375 0.125 0.125
wCV, α = 0.10 0.440 0.310 0.082 0.168
wCV, α = 0.15 0.422 0.328 0.088 0.162
wCV, α = 0.20 0.409 0.341 0.092 0.158

µ = 0.07

wMV 0.250 0.250 0.250 0.250
wCV, α = 0.10 0.275 0.225 0.119 0.381
wCV, α = 0.15 0.266 0.234 0.137 0.363
wCV, α = 0.20 0.261 0.239 0.153 0.347

µ = 0.08

wMV 0.125 0.125 0.375 0.375
wCV, α = 0.10 0.128 0.122 0.155 0.595
wCV, α = 0.15 0.128 0.122 0.189 0.561
wCV, α = 0.20 0.128 0.122 0.218 0.532

µ = 0.09

wMV 0.000 0.000 0.500 0.500
wCV, α = 0.10 0.000 0.000 0.204 0.796
wCV, α = 0.15 0.000 0.000 0.251 0.749
wCV, α = 0.20 0.000 0.000 0.287 0.713
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In the case of kurtosis, the power of the Folk Theorem appears once again.
Kurtosis, an even moment, is undesirable as shown in the CVaR results of Table
(8.2). Fat tails are less appealing than thin tails. So, CVaR prefers assets 1
and 4, which appear having less kurtosis than their identical assets 2 and 3
respectively. MV, on the contrary, presents symmetrical preferences between
the assets of the two pairs, as its results depend only on the mean and the
variance. As in the former experiment of skewness, MV is unable to identify
the kurtosis of the assets.

In Table (8.2), with a return equal to 0.05 MV distributes the portfolio
between the assets 1 and 2, which have the same mean as the required return.
CVaR also distributes the portfolio on these assets, given their mean, but also
examines their kurtosis which results to larger weights on asset 1. CVaR, given
µ = 0.05 and α = 0.005, attributes weights of 0.561 for asset 1 and 0.418 for
asset 2, preferring the asset with the less kurtosis. For µ = 0.09 both CVaR
and MV distribute the portfolio between assets 3 and 4, which is now the pair
of assets with the same mean as the required return. CVaR, though, prefers
more asset 4 tending to avoid asset 3 which has fatter tails. Given µ = 0.09 and
α = 0.005, CVaR attributes weights of 0.526 for asset 4 and 0.474 for asset 3,
while MV attributes symmetrical weights to these two assets (0.50). Even for
the intermediate return price µ = 0.07, CVaR distinguishes the assets, setting
larger weights on assets 1 (0.260) and 4 (0.263) over their twin assets 2 (0.240)
and 3 (0.237) respectively.

The results of this experiment are remarkable. While MV takes into account
only the mean and the variance of an asset distribution, CVaR investigates
whether the asset in skewed or fat-tailed as well. In cases of non-normally
distributed assets MV cannot allocate their differences based on their skewness
or kurtosis. On the contrary, CVaR can examine these two moments as well
and establish weights into the assets that contain the best characteristics, i.e.
right skewness and thin tails.



8.1. An Experiment 87

Table 8.2: Portfolio weights- Kurtosis

µ = 0.05 w1 w2 w3 w4

wMV 0.500 0.500 0.000 0.000
wCV, α = 0.005 0.561 0.418 0.011 0.011
wCV, α = 0.010 0.551 0.441 0.004 0.004
wCV, α = 0.050 0.518 0.482 0.001 -0.001

µ = 0.06

wMV 0.375 0.375 0.125 0.125
wCV, α = 0.005 0.420 0.330 0.121 0.129
wCV, α = 0.010 0.409 0.341 0.121 0.129
wCV, α = 0.050 0.387 0.363 0.123 0.127

µ = 0.07

wMV 0.250 0.250 0.250 0.250
wCV, α = 0.005 0.260 0.240 0.237 0.263
wCV, α = 0.010 0.263 0.237 0.241 0.259
wCV, α = 0.050 0.252 0.248 0.247 0.253

µ = 0.08

wMV 0.125 0.125 0.375 0.375
wCV, α = 0.005 0.121 0.129 0.357 0.393
wCV, α = 0.010 0.125 0.125 0.358 0.392
wCV, α = 0.050 0.122 0.128 0.370 0.380

µ = 0.09

wMV 0.000 0.000 0.500 0.500
wCV, α = 0.005 0.005 -0.005 0.474 0.526
wCV, α = 0.010 0.000 0.000 0.482 0.518
wCV, α = 0.050 0.000 0.000 0.492 0.508
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Conclusion

Financial Markets are composed of marketplaces where different asset classes,
corresponding to different value levels, are negotiated. Due to this fact, risk
measurement in the financial field constitutes a process of great importance. In
the context of this thesis, two risk measures in Finance, Mean-Variance (MV)
and Conditional Value-at-Risk (CVaR) have been examined comparatively and
counterbalanced through a Monte Carlo experiment in R.

This thesis follows two paths, that both lead to a regression analysis. It
all begun with Bernoulli who, in the 17th century, expanded the idea of the
expected value and introduced the Utility function for Wealth. Later, von
Neumann and Morgenstern (1947), using the Utility function for Wealth of
Bernoulli, came up with the Expected Utility function. Savage (1954), based on
the ideas of von Neumann-Morgenstern, as well as de Finetti (1937), proposed
a complete set of axiomatics, the Axioms of Choice. Mean-Variance Analysis of
Markowitz (1952) is connected to Expected Utility Theory but it is consistent
with this Theory only under certain circumstances, since it demands returns to
be normally distributed and/or U(.) to follow a quadratic form. 50 years after
Markowitz’s fundamentals in Mean-Variance Portfolios, Britten-Jones (1999)
presented the connection between the Mean-Variance Analysis and the OLS
regression. So, Mean-Variance Analysis is an alternative process of the OLS
regression.

The second path begins with the Choquet capacity and the Comonotonic
Preferences of Schmeidler (1989), so the Choquet Expected Utility is formu-
lated. The idea of Choquet Expected Utility is to introduce a function v that
distorts probabilities of individual events, and v of a certain form incorporates
pessimism. This is equivalent to the loss function corresponding to coherent
measures of risk, like Conditional Value-at-Risk (CVaR) of Rockafeller and
Uryasev (2000), but unlike Value-at-Risk (VaR) which is not a coherent risk
measure. Bassett et al. (2004), imposing the condition of regularity for risk
measures, argued that a regular risk measure is coherent if and only if it is
pessimistic. Based on Koenker et al. (1978), Bassett et al. (2004) showed that
minimizing CVaR risk is equivalent to estimating a Quantile regression. So,
CVaR/ Pessimistic Analysis is an alternative process of the Quantile regres-
sion, hence a more sufficient method compared to the MV Analysis.

Expected Utility may be criticized both as a positive, as well as a norma-
tive guide to economic behavior. Mean-Variance Portfolio Allocation is also
unsatisfactory since it relies on unpalatable assumptions of Gaussian returns,
or quadratic utility. On the contrary, Choquet Expected Utility provides a sim-
ple and tractable generalization of Expected Utility that allows for pessimism.
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Pessimistic Portfolio Allocation can be formulated as a Quantile regression prob-
lem, thus providing an attractive practical alternative to the dominant Mean-
Variance approach of Markowitz (1952).

These results are supported by the outcome of the Monte Carlo experiment
in R. The Experiment illustrates two pairs of assets, the pair of assets 1 and 2,
and the pair of assets 3 and 4. The assets of each pair have the same mean and
variance, even though their return distributions differ. Assets 1 and 4 are those
with a better performance in both tails, compared to their identical assets, 2
and 3 respectively. CVaR recognizes the assets with the best characteristics
and attributes more weights to asset 1 and 4, both in the Skewness as well as
in the Kurtosis experiment. In contrast, MV examines only the mean and the
variance of the assets, thus it is not able to attribute different weights between
asset 1 and 2, 3 and 4. While MV takes into account only the mean and the
variance of an asset distribution, CVaR investigates whether the asset is skewed
or fat-tailed as well. This means that CVaR works functionally in cases where
MV is appropriate but MV is not functional in cases where CVaR is appropriate
to use.

But, what does it hold in reality? Derivatives and portfolios containing
derivative based strategies like bull-spread and bear-spread strategies, introduce
into portfolios non-linearities that make the normal assumptions impalatable.
Therefore, MV -and VaR- may be very misleading, while CVaR copes satisfac-
torily. This leads to the fact that Pessimistic Portfolio Allocation is not always
compulsory, but its use is necessary in these cases.

In the paper of Bassett et. al. (2004), which has been elaborated and ex-
tended in the context of this thesis, more general distortions are considered that
cannot be expressed as quantile/CVaR-risk problems but are still Pessimistic,
Choquet-expectation optimal choices. One very interesting distortion function
is given in the Example at the end of Section 2, where the investor picks portfo-
lios according to theminimum of several (say 2 or 3) realizations of the underling
asset distribution. This leads to potentially very pessimistic behavior, that can
be examined in future research.
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Appendix A

Statistical background

This Appendix part consists of some basic statistic terms used in this Master
thesis. It conducts a replication of the THE CAMBRIDGE DICTIONARY OF
STATISTICS, Second Edition by B.S. Everitt (2002).

"Covariance
The expected value of the product of the deviations of two random variables,
x, and y, from their respective means, µx and µy, i.e.,

cov(x, y) = E(x− µx)(y − µy)

The corresponding sample statistic is

cxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

where (xi, yi), i = 1, ..., n are the sample values on the two variables and x̄ and
ȳ their respective means.

Expected Value
The mean of a random variable, X, generally denoted as E(X). If the variable
is discrete with probability distribution, Pr(X = x), the E(X) =

∑
x xPr(X =

x). If the variable is continuous the summation is replaced by an integral. The
expected value of a function of a random variable, f(x), is defined similarly, i.e.

E(f(x)) = f(u)g(u)du

where g(x) is the probability distribution of x.

Hyperbolic distribution
Probability distribution, f(x), for which the graph of logf(x) is a hyperbola.
[Statistical Distribution in Scientific Work, Volume 4, 1981, edited by C. Taille,
G.P. Palit and B. Baldessari, Reidel, Dordrecht.]

Kurtosis
The extent to which the peak of a unimodal probability distribution or frequency
distribution departs from the shape of a normal distribution, by either being
more pointed (leptokurtic) or flatter (platykurtic). Usually measured for a
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probability distribution as
µ4/µ

2
2

where µ4 is the fourth central moment of the distribution, and µ2 is ts the vari-
ance. For a normal distribution this index takes the value three and often the
index is redefined as the value above minus three so that the normal distribu-
tion would have a value zero.(Other distributions with zero kurtosis are called
mesokurtic). For a distribution which is leptokurtic the index is positive and
for a platykurtic curve it is negative.

Lagrange multipliers
A method of evaluating maxima or minima of a function of possibly several
variables, subject to one or more . [Optimization, Theory and Applications,
1979, S.S. Rao, Wiley Eastern, New Dehli.]

Mean
A measure of location or central value for continuous variables. For a sample
of observations x1, x2, ..., xn the measure is calculated as

x̄ =

∑n i = 1xi
n

Monte Carlo methods
Methods for finding solutions to mathematical and statistical problems by sim-
ulation. Used when the analytic solution of the problem is either intractable or
time consuming. [Simulation and the Monte Carlo Method, 1981, R.Y. Ruben-
stein, Wiley, New York.]

Normal Distribution
A probability distribution, f(x), of a random variable, X, that is assumed by
many statistical methods. Specifically given by

f(x) =
1

σ
√

2π
exp[−1

2

(x− µ)2

σ2

where µ and σ2 are, respectively, the mean and the variance of x. This distri-
bution is bell-shaped (...).

Outlier
An observation that appears to deviate markedly from the other members of
the sample which it occurs. (...)the term refers to an observation which appears
to be incosistent with the rest of the data, relative to an assumed model. Such
extreme observations may be reflecting some abnormality in the measured char-
acteristic of a subject, or they may result from an error in the measurement or
recording. (...)

Probability distribution
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For a discrete random variable, a mathematical formula that gives the probabil-
ity of each value of the variable. (...) For a continuous random variable, a curve
described by a mathematical formula ehich specifies, by the way of areas under
the curve, the probability that the variable falls within a particular interval. (...)

Quantiles
The set of four variate values that divide a frequency distribution or a proba-
bility distribution into five equal parts.

R
A fast clone of S-PLUS which has the distinct advantage of being frely available.

Random variable
A variable, the values of which occur according to some specified probability
distribution.

Regression modelling
A frequently applied statistical technique that serves as a basis for studying and
characterizing a system of interest, by formulating a reasonable mathematical
model of the relationship between a response variable, y and a set of q ex-
planatory variables, x1, x2, ..., xq. The choice of the explicit form of the model
may be based on previous knowledge of the system or on considerations such as
’smoothness’ and continuity of y as a function of the x variable. In very general
terms all such models can be considered to be of the form

y = f(x1, ..., xq) + ε

where the function f reflects the true but unknown relationship between y and
the explanatory variables. The random additive error ε which is assumed to
have mean zero and variance σ2

ε reflects the dependence of y on quantities other
than x1, ..., xq. The goal is to formulate a function f̂(x1, x2, ..., xp) that is a
reasonable approximation of f . If the correct parametric form of f is known,
then methods such as least squares estimation or maximum likelihood estima-
tion can be used to estimate the set of the unknown coefficients. If f is linear
in the parameters, for example, then the model is that of multiple regression. If
the experimenter is unwilling to assume a particular parametric form of f then
nonparametric regression modelling can be used, for example, kernel regression
smoothing, recursive partitioning regression or multivariate adaptive regression
splines.

Skewness
The lack of symmetry in a probability distribution. Usually quantified by the
index, s, given by

σ =
µ3

µ
3/2
2

where µ2 and µ3 are the second and the third moments about the mean. the
index takes the value zero for a symmetrical distribution. A distribution is said
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to have positive skewness when it has a long thin tail to the right, and to have
negative skewness when it has a long thin tail to the left.

Standard deviation
The most commonly used measure of the spread of a set of observations. Equal
to the square root of the variance.

Variance
In a population, the second moment about the mean. An unbiased estimator
of the population value is provided by σ2 given by

σ2 =
1

n− 1

n∑
i=1

(xi − (̄x))2

where x1, x2, ..., xn are the n sample observations and x̄ is the sample mean."
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Appendix B

R Code

B.1 MV and CVaR portfolio weights for Skew-
ness

The R code generating the results presented in Table (8.1):

library(KernSmooth)
library(quantreg)

#set.seed(1)
n <- 200000

x1 <- rnorm(n)
x1 <- 0.05+0.02*((x1-mean(x1))/sqrt(var(x1)))
x2 <- -rchisq(n,3)
x2 <- 0.05+0.02*((x2-mean(x2))/sqrt(var(x2)))
x3 <- rnorm(n)
x3 <- 0.09+0.07*((x3-mean(x3))/sqrt(var(x3)))
x4 <- rchisq(n,3)
x4 <- 0.09+0.07*((x4-mean(x4))/sqrt(var(x4)))

x <- cbind(x1,x2,x3,x4)
mu = apply(x, 2, mean)
V = var(x)
#________________________________________________________________________________________________

#par(mfrow=c(2,2))

est1 <- bkde(x1)
est2 <- bkde(x2)
est3 <- bkde(x3)
est4 <- bkde(x4)

plot(est2,type="l",xlim=c(-0.1,0.4),lty=2,xlab="return",ylab="density",col=2)
lines(est1,col=1)
lines(est3,lty=3,col=3)
lines(est4,lty=4,col=4)
legend(0.25,25,c("Asset 1","Asset 2","Asset 3","Asset 4"),
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lty=c(1,2,3,4),col=c(1,2,3,4))
#________________________________________________________________________________________________

ones <- rep(1,n)
coef <- lm(ones~x1+x2+x3+x4-1)$coef
wtan <- coef/sum(coef)
wtan
wtan%*%c(mean(x1),mean(x2),mean(x3),mean(x4))
#________________________________________________________________________________________________

x2e <- x1-x2
x3e <- x1-x3
x4e <- x1-x4

coef <- lm(x1~x2e+x3e+x4e)$coef
coef
wmin <- c(1-sum(coef[2:4]),coef[2:4])
round(wmin,5)
wmin%*%c(mean(x1),mean(x2),mean(x3),mean(x4))

Xe <- cbind(1,x2e,x3e,x4e)
#coef <- rq(x1~Xe-1, tau=0.1)$coef
#coef <- rq(x1~x2e+x3e+x4e, tau=0.1)$coef
coef
#________________________________________________________________________________________________

#Add a pseudo obs to impose the return constraint
kappa <- 1000000
x1a <- c(x1,kappa*(0.05-0.05))
Xea <- rbind(Xe,kappa*c(0,0,-0.04,-0.04))

#Mean-Variance
coef <- lm(x1a~Xea-1)$coef
coef
wMV <- c(1-sum(coef[2:4]),coef[2:4])
round(wMV,5)
wMV %*% mu

#CVaR
coef <- rq(x1a~Xea-1, tau=0.10)$coef
coef
wCV <- c(1-sum(coef[2:4]),coef[2:4])
round(wCV,5)
wCV %*% mu
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B.2 MV and CVaR portfolio weights for Kurtosis
The R code generating the results presented in Table (8.2):

library(KernSmooth)
library(quantreg)

#set.seed(1)
n <- 500000

x1 <- rt(n,10)
x1 <- 0.05+0.02*((x1-mean(x1))/sqrt(var(x1)))
x2 <- rt(n,5)
x2 <- 0.05+0.02*((x2-mean(x2))/sqrt(var(x2)))
x3 <- rt(n,10)
x3 <- 0.09+0.07*((x3-mean(x3))/sqrt(var(x3)))
x4 <- rt(n,15)
x4 <- 0.09+0.07*((x4-mean(x4))/sqrt(var(x4)))

x <- cbind(x1,x2,x3,x4)
mu = apply(x, 2, mean)
V = var(x)

library(e1071) # load e1071
c(mean(x1),sqrt(var(x1)),kurtosis(x1))
c(mean(x2),sqrt(var(x2)),kurtosis(x2))
c(mean(x3),sqrt(var(x3)),kurtosis(x3))
c(mean(x4),sqrt(var(x4)),kurtosis(x4))
#________________________________________________________________________________________________

#par(mfrow=c(2,2))

est1 <- bkde(x1)
est2 <- bkde(x2)
est3 <- bkde(x3)
est4 <- bkde(x4)

plot(est2,type="l",xlim=c(-0.1,0.4),lty=2,xlab="return",ylab="density",col=2)
lines(est1,col=1)
lines(est3,lty=3,col=3)
lines(est4,lty=4,col=4)
legend(0.25,25,c("Asset 1","Asset 2","Asset 3","Asset 4"),
lty=c(1,2,3,4),col=c(1,2,3,4))
#________________________________________________________________________________________________

ones <- rep(1,n)
coef <- lm(ones~x1+x2+x3+x4-1)$coef
wtan <- coef/sum(coef)
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wtan
wtan%*%c(mean(x1),mean(x2),mean(x3),mean(x4))
#________________________________________________________________________________________________

x2e <- x1-x2
x3e <- x1-x3
x4e <- x1-x4

#coef <- lm(x1~x2e+x3e+x4e)$coef
#coef
#wmin <- c(1-sum(coef[2:4]),coef[2:4])
#round(wmin,5)
#wmin%*%c(mean(x1),mean(x2),mean(x3),mean(x4))

Xe <- cbind(1,x2e,x3e,x4e)
#coef <- rq(x1~Xe-1, tau=0.1)$coef
#coef <- rq(x1~x2e+x3e+x4e, tau=0.1)$coef
#coef
#________________________________________________________________________________________________

#Add a pseudo obs to impose the return constraint
kappa <- 500000
x1a <- c(x1,kappa*(0.05-0.05))
Xea <- rbind(Xe,kappa*c(0,0,-0.04,-0.04))

#Mean-Variance
coef <- lm(x1a~Xea-1)$coef
coef
wMV <- c(1-sum(coef[2:4]),coef[2:4])
round(wMV,5)
wMV %*% mu

#CVaR
coef <- rq(x1a~Xea-1, tau=0.005)$coef
coef
wCV <- c(1-sum(coef[2:4]),coef[2:4])
round(wCV,5)
wCV %*% mu
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Appendix C

Interesting divergences from
Expected Utility

C.1 The Allais Paradox
The Allais Paradox was introduced by Maurice Allais in his paper Le Comporte-
ment de l’homme rationnel devant le risque: critique des postulats et axiomes de
l’école américaine (1953). The Allais Paradox describes the fact that everyday
decisions are not always consistent with the Expected Utility Theory. The main
concept of the Allais Paradox is as follows:
An individual is asked to choose one between the following pair gambles:

• Gamble A: 100% chance of receiving 100 millions

• Gamble B: 10% chance of receiving 500 millions, 89% chance of receiving
100 millions, 1% chance of receiving nothing.

The same individual is asked to choose one of the following gambles as well:

• Gamble C: 11% chance of receiving 100 millions, 89% chance of receiving
nothing

• Gamble D: 10% chance of receiving 500 millions, 90% chance of receiving
nothing.

The expected value of each gamble is A=100, B=139, C=11 and D=50.
According to the Expected Utility, the preference A > B(A over B) should
imply that C > D(C over D) is preferred. This experiment indicates that most
individuals would choose A > B (A over B) indeed, but would choose C < D(D
over C). In the first gamble the more certain choice is preferred over a higher
expected utility, while in the second gamble a higher expected utility is preferred
over a more certain choice.
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C.2 The Ellsberg Paradox
The Ellsberg Paradox was developed by Daniel Ellsberg in his paper Risk,
Ambiguity, and the Savage Axioms (1961). The Ellsberg Paradox concerns
Subjective Probability Theory of Savage which is contradictory to the Expected
Utility Theory. The main concept of the Ellsberg Paradox is as follows:
There is an urn containing 90 balls from which 30 are red and the remaining
60 are either black or yellow. An individual is asked to choose between the
gambles:

• Gamble A: 100e if the ball is red

• Gamble B: 100e if the ball is black

And one between the following gambles:

• Gamble C: 100e if the ball is not black

• Gamble D: 100e if the ball is not red

In most cases people will choose A > B (A over B) and D > C (D over
C). The known information (red balls) is perceived as a more certain choice
against the unknown information (black/yellow balls). These choices constitute
a violation of the preferences principle that require the ordering of A to B to
be preserved in C to D.

In certain gambles, even though people generally prefer certainty over un-
certainty, different preferences occur. People sometimes overvalue risky choices
and depreciate safer ones. This leads to the result that Expected Utility Theory
does not always apply in the real world.
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